CN114515588A - 一种基于蜀葵茎秆合成g-C3N4/C复合材料的方法 - Google Patents

一种基于蜀葵茎秆合成g-C3N4/C复合材料的方法 Download PDF

Info

Publication number
CN114515588A
CN114515588A CN202111635860.9A CN202111635860A CN114515588A CN 114515588 A CN114515588 A CN 114515588A CN 202111635860 A CN202111635860 A CN 202111635860A CN 114515588 A CN114515588 A CN 114515588A
Authority
CN
China
Prior art keywords
stalks
hollyhock
composite material
solution
soaking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111635860.9A
Other languages
English (en)
Other versions
CN114515588B (zh
Inventor
刘成宝
唐飞
金涛
陈丰
钱君超
陈志刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University of Science and Technology
Original Assignee
Suzhou University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University of Science and Technology filed Critical Suzhou University of Science and Technology
Priority to CN202111635860.9A priority Critical patent/CN114515588B/zh
Publication of CN114515588A publication Critical patent/CN114515588A/zh
Priority to US17/866,889 priority patent/US11833491B2/en
Application granted granted Critical
Publication of CN114515588B publication Critical patent/CN114515588B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J27/26Cyanides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0213Preparation of the impregnating solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种基于蜀葵茎秆合成g‑C3N4/C复合材料的方法,包括以下步骤:(1)蜀葵茎秆的预处理;(2)制备g‑C3N4/C复合材料。该方法以蜀葵茎秆为碳骨架,g‑C3N4在模板表面铺展形成薄片层,构建具有特殊结构的复合体系,该复合材料相比纯相g‑C3N4大幅提升了比表面积,界面清晰,碳骨架不仅起到了刚性支撑的作用,而且提升了复合材料的电子转移效率,从而提高了光生载流子的分离效率,提高了可见光的利用率。本方法采用的原料低廉且对环境友好,可应用于工业生产,批量制备治理环境有机污染物的环保材料。

Description

一种基于蜀葵茎秆合成g-C3N4/C复合材料的方法
技术领域
本发明属于材料合成领域,具体涉及一种基于蜀葵茎秆合成g-C3N4/C复合材料的方法。
背景技术
作为一种无机非金属半导体光催化材料,石墨相氮化碳(g-C3N4)由于具有独特的能带结构和晶体结构特征,在环境治理和清洁能源领域受到了广泛的关注。然而单一相g-C3N4存在对太阳光的响应范围偏小、比表面积小、反应活性位点少和光生电子-空穴对易复合等问题,限制了其在光催化领域的大规模利用。
蜀葵茎秆具有天然生物结构,能为g-C3N4提供刚性骨架支撑,使前驱体能沿茎秆表面结晶,宏观上形成特殊的管状形貌。同时茎秆表面凹凸不平,能避免前驱体热聚合过程中形成的g-C3N4片层结块。制备得到的复合材料结构疏松,呈多孔状,比表面积大大提高。
经对现有技术的文献检索,围绕g-C3N4/C复合材料的制备有一些专利报道,如中国专利申请号CN201610873847.X,名称为“一种基于纤维素的三维多孔g-C3N4/C气凝胶及其制备方法”,该专利将三聚氰胺负载至纤维素气凝胶上,采用高温煅烧法将三聚氰胺转化为石墨相氮化碳气相沉积至碳气凝胶上,形成具有三维多孔结构的g-C3N4/C气凝胶。此所得的三维多孔g-C3N4/C气凝胶易于回收利用,且具有均匀孔径和大比表面积,但制备方法较为繁琐,且后续负载第三相光催化剂较为困难,不利于进行多相复合。中国专利申请号CN202010046036.9,名称为“一种含氮空位的g-C3N4/C复合材料的制备方法”,该专利通过常用煅烧法制备了含氮空位g-C3N4/C复合材料,此发明制得的氮空位的g-C3N4/C复合材料对光催化固氮反应有着优异的催化性能,但制备方法较为常见,且制备得到的材料不具备较为特殊的微观形貌。
发明内容
为了解决以上现有技术存在的问题,本发明的目的在于提供一种基于蜀葵茎秆合成g-C3N4/C复合材料的方法。本发明通过借助生物天然模板的结构,构建具有特殊形貌的g-C3N4/C复合材料,得到的g-C3N4片层薄而均匀,比表面积相对于块状g-C3N4大大提高,增强复合材料对可见光的吸收,促进光生电子与空穴的分离,提升光能的利用效率,从而达到提升光催化活性的作用。
为实现上述目的,本发明提供以下技术方案:
一种基于蜀葵茎秆合成g-C3N4/C复合材料的方法,包括以下步骤:
(1)蜀葵茎秆的预处理
将新鲜采摘的蜀葵茎秆切段并用去离子水多次洗涤,浸泡于预处理液中以脱除其中的叶绿素和生物活性物质,浸泡结束后将茎秆用去离子水洗涤后自然晾干,避免阳光直射,收集备用;
(2)制备g-C3N4/C复合材料
以双氰胺为前驱体配制浸渍溶液,将步骤(1)预处理过的茎秆浸渍于其中进行处理,然后经脱水并热处理即可生成g-C3N4/C复合材料;其中蜀葵茎秆和双氰胺的质量比为1:1-1:4。
进一步的,所述步骤(1)中茎秆切段的长度为3-5cm。
进一步的,所述步骤(1)中预处理液的成分为:体积比为1:1-1:2的水和乙醇的混合液,pH为2-3,浸泡时间为三至四周,浸泡结束后将茎秆洗涤至洗涤液pH呈中性后方可晾干。
进一步的,所述步骤(2)中将预处理过的茎秆先于浸渍溶液中于50℃下水浴搅拌1-2h,待前驱体完全溶解后停止搅拌,继续水浴保温20-24h,后在60-80℃下隔夜烘干。
进一步的,所述步骤(2)中的热处理条件为于马弗炉内进行热处理,反应条件为:空气气氛下以3-5℃/min升温至500-550℃并保温4-6h。
有益效果:本发明提供了一种蜀葵茎秆合成g-C3N4/C复合材料的合成方法,本发明针对现有双氰胺为前驱体煅烧g-C3N4光催化材料进行微观结构的改进,纯相g-C3N4存在片层结构易重叠结块,比表面积偏小等问题,导致光生载流子复合率高和光能利用效率偏低。以蜀葵茎秆为模板,为复合材料提供刚性支撑结构,同时碳骨架能为复合材料提供电子转移通道,提高光生载流子的复合效率,从而提高材料光催化性能。其优势在于该催化材料具有特殊微观形貌,界面清晰可实现光生载流子的有效分离,提升了光能利用效率,在可见光激发下,具有很高降解有机污染物的能力,当光照时间持续120min,20mg/L罗丹明B的降解率接近53.91%,远超单相生物炭和石墨烯氮化碳的光催化性能,且大幅提升了石墨烯氮化碳的利用效率。该催化材料易于合成,原料低廉,可以批量生产,是一种适于工业化推广应用的清洁高效和能耗较低的有机污染物治理用材料。
附图说明
图1 为g-C3N4/C复合材料的XRD图谱;
图2 为g-C3N4/C复合材料的SEM图;
图3 为g-C3N4/C复合材料的TEM图;
图4 为不同样品的可见光降解罗丹明B曲线图;
图5 (a)为g-C3N4/C复合材料4次循环降解RhB染料曲线图;(b)为g-C3N4/C复合材料在循环光催化实验前后的XRD图谱;
图6 为g-C3N4/C复合材料的光催化原理图。
具体实施方式
以下结合实施例对本发明做进一步详细、完整地说明,但并不限制本发明的内容。
实施例1:
(1)将洗涤后的蜀葵茎秆切段(3cm),浸泡于预处理液(水和乙醇的体积比为1:1,并用0.1mol/L 稀盐酸将溶液pH调节至2,浸泡时间为三至四周)中以脱除其中的叶绿素和生物活性物质,浸泡结束后将茎秆用去离子水洗涤后自然晾干,避免阳光直射,收集备用;
(2)取1.5g预处理过的干燥蜀葵茎秆和3g双氰胺,溶于50mL 去离子水中,于50℃下水浴搅拌1h,待双氰胺完全溶解后停止搅拌,在50℃水浴保温24h,将混合物转移至氧化铝坩埚中,在60℃下隔夜烘干。
(3)将得到的固体置于马弗炉内,空气气氛下以3℃/min升温至550℃并保温4h,煅烧结束后研磨即得g-C3N4/C复合材料。
图1为g-C3N4/C复合材料的XRD图谱。从图中可以看出g-C3N4相(002)较为明显,峰形尖锐,C相(001)不明显,主要原因是C相主要呈非晶态,结晶峰不明显。图2的扫描电镜图中能清晰看到蜀葵茎秆模板的碳骨架结构和负载在模板表面的g-C3N4片层,图3的透射电镜图中能看到g-C3N4片层具有多孔结构,比表面积较大,可有效促进有机染料和光催化材料表面的化学反应活性位点相结合,提高其光催化降解效率。
将30mg产物加入到盛有100 mL,20 mg/L的罗丹明B溶液中,在氙灯模拟可见光照射下每隔20min取样,利用紫外-可见光分光光度计,结合标准曲线分析其浓度变化,绘制光催化降解效率曲线,如图4,显示光照120 min后其降解率达53.91%。图5的循环实验结果表明,在四次循环降解催化反应后,g-C3N4/C复合材料的光催化活性下降的不明显,且催化反应前后,催化剂的XRD图谱之间并无显著差异。
光催化机理图(图6)表明,在g-C3N4光催化材料中,蜀葵茎秆经过煅烧形成的碳骨架起到了电子转移介质的作用,为光生载流子提供电子转移通道,从而降低光生电子和光生空穴的复合效率,提高了体系光催化降解有机染料的效率。同时碳骨架也为材料提供了微观形貌的刚性支撑,使其能保持较高的比表面积,从而具有更多的化学反应活性位点,光催化降解效率得到进一步提高。
实施例2:
(1)将洗涤后的蜀葵茎秆切段(5cm),浸泡于预处理液(水和乙醇的体积比为1:2,并用0.1mol/L 稀盐酸将溶液pH调节至2,浸泡时间为三至四周)中以脱除其中的叶绿素和生物活性物质,浸泡结束后将茎秆用去离子水洗涤后自然晾干,避免阳光直射,收集备用;
(2)取1.5g预处理过的干燥蜀葵茎秆和1.5g双氰胺,溶于50mL 去离子水中,于50℃下水浴搅拌1h,待双氰胺完全溶解后停止搅拌,在50℃水浴保温24h,将混合物转移至氧化铝坩埚中,在80℃下隔夜烘干。
(3)将得到的固体置于马弗炉内,空气气氛下以4℃/min升温至520℃并保温6h,煅烧结束后研磨即得g-C3N4/C复合材料。
实施例3:
(1)将洗涤后的蜀葵茎秆切段(4cm),浸泡于预处理液(水和乙醇的体积比为1:2,并用0.1mol/L 稀盐酸将溶液pH调节至3,浸泡时间为三至四周)中以脱除其中的叶绿素和生物活性物质,浸泡结束后将茎秆用去离子水洗涤后自然晾干,避免阳光直射,收集备用;
(2)取1.5g预处理过的干燥蜀葵茎秆和6.0g双氰胺,溶于50mL 去离子水中,于50℃下水浴搅拌1h,待双氰胺完全溶解后停止搅拌,在50℃水浴保温24h,将混合物转移至氧化铝坩埚中,在60℃下隔夜烘干。
(3)将得到的固体置于马弗炉内,空气气氛下以5℃/min升温至500℃并保温6h,煅烧结束后研磨即得g-C3N4/C复合材料。

Claims (5)

1.一种基于蜀葵茎秆合成g-C3N4/C复合材料的方法,其特征在于,包括以下步骤:
(1)蜀葵茎秆的预处理
将新鲜采摘的蜀葵茎秆切段并用去离子水多次洗涤,浸泡于预处理液中以脱除其中的叶绿素和生物活性物质,浸泡结束后将茎秆用去离子水洗涤后自然晾干,避免阳光直射,收集备用;
(2)制备g-C3N4/C复合材料
以双氰胺为前驱体配制浸渍溶液,将步骤(1)预处理过的茎秆浸渍于其中进行处理,然后经脱水并热处理即可生成g-C3N4/C复合材料;其中蜀葵茎秆和双氰胺的质量比为1:1-1:4。
2.根据权利要求1所述的合成方法,其特征在于,所述步骤(1)中茎秆切段的长度为3-5cm。
3.根据权利要求1所述的合成方法,其特征在于,所述步骤(1)中预处理液的成分为:体积比为1:1-1:2的水和乙醇的混合液,pH为2-3,浸泡时间为三至四周,浸泡结束后将茎秆洗涤至洗涤液pH呈中性后方可晾干。
4.根据权利要求1所述的合成方法,其特征在于,所述步骤(2)中将预处理过的茎秆先于浸渍溶液中于50℃下水浴搅拌1-2h,待前驱体完全溶解后停止搅拌,继续水浴保温20-24h,后在60-80℃下隔夜烘干。
5.根据权利要求1所述的合成方法,其特征在于,所述步骤(2)中的热处理条件为于马弗炉内进行热处理,反应条件为:空气气氛下以3-5℃/min升温至500-550℃并保温4-6h。
CN202111635860.9A 2021-12-29 2021-12-29 一种基于蜀葵茎秆合成g-C3N4/C复合材料的方法 Active CN114515588B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111635860.9A CN114515588B (zh) 2021-12-29 2021-12-29 一种基于蜀葵茎秆合成g-C3N4/C复合材料的方法
US17/866,889 US11833491B2 (en) 2021-12-29 2022-07-18 Synthesis method of g-C3N4/c composite material based on hollyhock stalk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111635860.9A CN114515588B (zh) 2021-12-29 2021-12-29 一种基于蜀葵茎秆合成g-C3N4/C复合材料的方法

Publications (2)

Publication Number Publication Date
CN114515588A true CN114515588A (zh) 2022-05-20
CN114515588B CN114515588B (zh) 2024-09-03

Family

ID=81597719

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111635860.9A Active CN114515588B (zh) 2021-12-29 2021-12-29 一种基于蜀葵茎秆合成g-C3N4/C复合材料的方法

Country Status (2)

Country Link
US (1) US11833491B2 (zh)
CN (1) CN114515588B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115193467A (zh) * 2022-07-06 2022-10-18 苏州科技大学 一种豆芽茎秆合成CuS-g-C3N4/C复合材料及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108043445A (zh) * 2017-12-21 2018-05-18 江苏大学 质子化g-C3N4包裹竹茎炭球复合催化剂的制备及应用
CN109850857A (zh) * 2017-11-30 2019-06-07 中国科学院金属研究所 一种富纳米孔的二维超薄纳米片石墨相氮化碳材料及其制备方法和应用
CN111318272A (zh) * 2020-03-19 2020-06-23 江苏开放大学(江苏城市职业学院) 一种具有吸附重金属的生物炭及其制备方法与应用
CN111968862A (zh) * 2020-08-07 2020-11-20 苏州科技大学 MnO-Co/生物碳电极材料的合成方法
AU2020102640A4 (en) * 2020-09-18 2020-11-26 Qilu University Of Technology PREPARATION METHOD AND APPLICATION OF g-C3N4/(101)-(001)-TiO2 COMPOSITE MATERIAL

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103745836B (zh) * 2013-12-29 2017-01-18 渤海大学 用于超级电容器的g‑C3N4/碳量子点复合电极材料的制备方法
CN106513027B (zh) * 2016-09-30 2019-01-29 浙江理工大学 一种基于纤维素的三维多孔g-C3N4/C气凝胶及其制备方法
CN107121466A (zh) * 2016-12-08 2017-09-01 百色学院 一种炭氮复合材料修饰的工作电极检测微量重金属的电化学方法
MY190658A (en) * 2018-10-22 2022-05-09 Univ Kebangsaan Malaysia Method of fabricating uniform layer of graphitic carbon nitride (g-c3n4) on conductive substrate and semiconductor device thereof
CN109647475A (zh) * 2018-11-14 2019-04-19 中国地质大学(北京) 一种g-C3N4/C复合光催化纤维材料及其制备方法
CN111151286A (zh) * 2020-01-16 2020-05-15 南京理工大学 一种含氮空位的g-C3N4/C复合材料的制备方法
CN114188554A (zh) * 2021-12-06 2022-03-15 温州大学 一种铁复合生物质衍生碳基材料及制备方法和应用
CN114188521B (zh) * 2021-12-10 2023-10-20 湖南大学 一种双离子电池石墨正极材料表面的轻质包覆层及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109850857A (zh) * 2017-11-30 2019-06-07 中国科学院金属研究所 一种富纳米孔的二维超薄纳米片石墨相氮化碳材料及其制备方法和应用
CN108043445A (zh) * 2017-12-21 2018-05-18 江苏大学 质子化g-C3N4包裹竹茎炭球复合催化剂的制备及应用
CN111318272A (zh) * 2020-03-19 2020-06-23 江苏开放大学(江苏城市职业学院) 一种具有吸附重金属的生物炭及其制备方法与应用
CN111968862A (zh) * 2020-08-07 2020-11-20 苏州科技大学 MnO-Co/生物碳电极材料的合成方法
AU2020102640A4 (en) * 2020-09-18 2020-11-26 Qilu University Of Technology PREPARATION METHOD AND APPLICATION OF g-C3N4/(101)-(001)-TiO2 COMPOSITE MATERIAL

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIANG LI ET AL.: "Preparation of a novel composite comprising biochar skeleton and "chrysanthemum" g-C3N4 for enhanced visible light photocatalytic degradation of formaldehyde", 《APPLIED SURFACE SCIENCE》, vol. 487, 17 May 2019 (2019-05-17), pages 1262 - 1270 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115193467A (zh) * 2022-07-06 2022-10-18 苏州科技大学 一种豆芽茎秆合成CuS-g-C3N4/C复合材料及其制备方法与应用

Also Published As

Publication number Publication date
US20230201811A1 (en) 2023-06-29
CN114515588B (zh) 2024-09-03
US11833491B2 (en) 2023-12-05

Similar Documents

Publication Publication Date Title
US11059031B2 (en) Three-dimensional lignin porous carbon/zinc oxide composite material and its preparation and application in the field of photocatalysis
CN108097255B (zh) 一种用于二氧化碳重整反应的多孔碳框架镍基催化剂及其制备方法和使用方法
CN108816234B (zh) 一种基于ldh固定过渡金属mof的衍生物催化剂的制备方法及其应用
CN108993550B (zh) 一种表面氧空位改性的溴氧铋光催化剂及其制备方法
CN107115884B (zh) 一种g-C3N4/TiO2纳米线组装结构光催化剂
CN109046425A (zh) 一种MOF基衍生的复合光催化剂TiO2/g-C3N4的制备方法
CN110342477B (zh) 一种氧掺杂多孔氮化碳纳米片及其制备方法
CN107349927A (zh) 一种绣球花簇状钨酸铋/生物炭复合光催化材料及其制备方法和应用
CN104907087A (zh) 一种具有可见光响应的多孔氮化碳/氧化铜纳米棒复合材料的合成方法及应用
CN109289888A (zh) 一种硼掺杂多孔氮化碳材料的制备方法
CN111974436B (zh) 一种石墨相氮化碳及其制备方法、以及光催化水产氢的方法
CN114180553B (zh) 一种废弃农作物根系为原料制备掺氮多孔碳的方法及应用
CN103833076A (zh) 一种氧化镍-二氧化钛纳米复合材料
CN113145138A (zh) 热响应型复合光催化剂及其制备方法和应用
CN114515588B (zh) 一种基于蜀葵茎秆合成g-C3N4/C复合材料的方法
CN112316969A (zh) 一种N掺杂TiO2中空微球-BiOBr的光催化降解材料及制备方法
CN103352211A (zh) 一种低维钽基纳米阵列光电极制备方法
CN103801354A (zh) 一种后退火处理的石墨相氮化碳空心球可见光催化剂
CN113332983A (zh) 一种多孔棒状Fe21.34O32/C纳米棒复合材料的制备方法
CN113058601A (zh) 用于光解水催化制氢的三元复合催化剂的制备方法及应用
CN110102326B (zh) 一种纳米金负载多孔炭改性氮化碳复合光催化材料及其制备方法与应用
CN114558600B (zh) 一种混合维度S掺杂g-C3N4基范德华异质结光催化剂及其制备方法和应用
CN113877556B (zh) 羟基氧化铟/改性凹凸棒石光催化复合材料及其制备方法和应用
CN116212966A (zh) 一种间接z型多组分铋基mof异质结及其制备方法和应用
CN113457692A (zh) 一种3D纳米花状CuS制备方法及其光催化应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant