CN111968862A - MnO-Co/生物碳电极材料的合成方法 - Google Patents

MnO-Co/生物碳电极材料的合成方法 Download PDF

Info

Publication number
CN111968862A
CN111968862A CN202010788338.3A CN202010788338A CN111968862A CN 111968862 A CN111968862 A CN 111968862A CN 202010788338 A CN202010788338 A CN 202010788338A CN 111968862 A CN111968862 A CN 111968862A
Authority
CN
China
Prior art keywords
hollyhock
mno
stalks
synthesis method
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010788338.3A
Other languages
English (en)
Inventor
刘成宝
刘高尚
王珂
夏雪晴
潘健
钱君超
陈丰
陈志刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University of Science and Technology
Original Assignee
Suzhou University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University of Science and Technology filed Critical Suzhou University of Science and Technology
Priority to CN202010788338.3A priority Critical patent/CN111968862A/zh
Publication of CN111968862A publication Critical patent/CN111968862A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种MnO‑Co/生物碳电极材料的合成方法,该方法首先以蜀葵茎秆为生物碳源,通过醇热法一步引入锰钴氧化物颗粒,基于高温热流驱动,导向合成了MnO‑Co/生物碳复合电极材料。本发明利用生物自组装搭建的分级多孔生物碳材料为骨架,将Co金属嵌入生物碳基体中,基于生物碳和金属纳米晶之间的互相作用,大幅降低了由于相变问题引起的结构崩塌从而提升了电极材料的循环寿命,材料的界面结构构建良好且比表面积达到345.9 m2·g‑1,最佳工艺条件下,比电容达到146F·g‑1,且经过1000次循环充放电测试,比电容保持率达到99.3%,具有极佳的稳定性。

Description

MnO-Co/生物碳电极材料的合成方法
技术领域
本发明属于材料合成领域,具体涉及一种MnO-Co/生物碳电极材料的合成方法。
背景技术
全球经济的快速发展导致了化石燃料的日益殆尽以及由此产生的一系列环境问题。为了应对这些问题,开发和利用新型的电化学储能器件迫在眉睫。超级电容器由于具有储能密度大、充放电速度快、循环性能优异等特性,受到研究者们的普遍关注。而电极材料的设计、制备和优化是决定超级电容器性能优劣的关键所在。以生物质为原料开发结构和性能可控的高性能多孔材料,不仅可以节约成本,而且可以缓解因大量焚烧废弃生物质而引起的环境污染问题,实现生物质的高价值利用。同时为了使超级电容器电极材料兼具高比电容和良好的循环寿命,将生物质碳材料与过渡金属氧化物或导电聚合物进行结构整合,以期实现结构的协同是最有效的实施途径。
Mn具有最多数量的不同氧化物,其中大多数具有特殊的隧道结构,可进行本体氧化还原反应。较高的理论电容,更宽的电势窗口,以及较高的自然丰度使得MnOx物种成为储能应用的主体电极材料。秸秆是植物中传递水分和养分的重要组成部分,具有较高的水分含量和优良的孔结构。干燥后的茎可以吸收金属盐溶液并在碳化后保留其孔结构,因此在能源储存上有着广阔的发展空间。
发明内容
为了解决以上现有技术存在的问题,本发明的目的在于提供一种MnO-Co/生物碳电极材料的合成方法。本发明以四水合乙酸锰为锰源,六水合硝酸钴为钴源。通过蜀葵茎秆在高温碳化过程中的高还原性来限制锰钴的价态,最终得到MnO-Co/生物碳复合材料。
为实现上述目的,本发明提供以下技术方案:
一种MnO-Co/生物碳电极材料的合成方法,包括以下步骤:
(1)制备蜀葵茎秆模板材料
将蜀葵茎秆绿色表皮剥离,取内部白色嫩茎,并剪成1~2cm长的小段;在干净的超净工作台中对茎秆进行灭菌操作,然后用去离子水冲洗3-4次;取适量茎秆浸入pH 值为 2-3 的稀盐酸溶液中,用保鲜膜密封3天;取出蜀葵茎秆后用去离子水反复洗涤至中性,放入真空干燥箱中烘干,即得蜀葵茎秆模板材料。
(2)制备MnO-Co/生物碳复合材料
以Mn(CH3COO)2·4H2O 和 Co(NO3)2·6H2O为原料,按一定比例配置混合溶液,称取一定量的茎秆模板材料置于金属盐溶液中浸泡24h。取出浸泡的茎秆置于无水乙醇中并转移到聚四氟乙烯内衬中,水热反应一定时间;分离反应产物并放入真空干燥箱中烘干,最后放入管式炉中进行热处理,即可制得 MnO-Co/生物碳复合材料。
进一步的,所述步骤(1)中灭菌操作时间为15 min。
进一步的,所述步骤(1)中烘干温度为40℃。
进一步的,所述步骤(2)中锰钴的摩尔比为1:0.25~1。
进一步的,所述步骤(2)中水热反应温度为160~200℃,反应时间为4~10h。
进一步的,所述步骤(2)中烘干温度为60℃。
进一步的,所述步骤(2)中管式炉中热处理条件为:氮气气氛下,2~5℃·min-1的升温速度升至700~800℃并保温3~5h。
有益效果:本发明提供了一种MnO-Co/生物碳电极材料的合成方法,针对由于复杂的工艺和高昂的成本限制着复合电极材料的应用问题,以四水合乙酸锰和六水合硝酸钴为原料,通过蜀葵茎秆在高温碳化过程中的高还原性来限制锰钴的价态,最终得到MnO-Co/生物碳复合材料。本发明利用植物秆茎制备碳电极材料,可以充分利用废弃的生物质资源,减少环境污染,并且制备工艺简单、成本低廉,为其提供一条可靠的可持续发展的途径,是一种适于工业化推广应用的清洁高效和能耗较低的材料。
附图说明
图1 为MnO-Co/生物碳电极材料的热重分析图;
图2 为MnO-Co/生物碳电极材料的XRD图谱;
图3 为MnO-Co/生物碳电极材料的SEM图;
图4 为MnO-Co/生物碳电极材料的TEM及其相应能谱图;
图5 为MnO-Co/生物碳电极材料的XPS图;
图6 为MnO-Co/生物碳电极材料的BET和压汞分析图;
图7 为MnO-Co/生物碳电极材料的电化学分析图。
具体实施方式
以下结合实施例对本发明做进一步详细、完整地说明,但并不限制本发明的内容。
实施例1:
(1)采用剥离的方式将蜀葵茎秆绿色表皮剥离,只留下内部白色的部分。在干净的超净工作台进行灭菌操作(灭菌时间为15 min),将长茎秆剪切成长度为4-5cm基本一致的小段;用去离子水冲洗3-4次,以除去茎秆本身或者剥离过程中沾有的杂质,配置pH 值为 2-3 之间的稀盐酸溶液并加入适量蜀葵茎秆,用透明保鲜膜将蜀葵茎秆密封至玻璃器皿当中,保持茎秆完全浸入配制好的混合溶液中3天。取出蜀葵茎秆后用去离子水反复洗涤至中性以避免乙醇或者盐酸的残留。重复这一操作3次,以除去蜀葵茎秆中的杂质。最后放入真空干燥箱40℃烘干,即得蜀葵茎秆模板材料。
(2)按照Mn:Co摩尔比为1:0.25,计算称取0.98 g的Mn(CH3COO)2·4H2O和0.291 g的Co(NO3)2·6H2O,准确量取50 mL去离子水,配置成透明溶液。称取1.682 g的经预处理后的蜀葵茎秆,置于金属盐溶液中浸泡24 h后至达到渗透压平衡。取出浸泡的茎秆置于50mL无水乙醇中并转移到聚四氟乙烯内衬中,然后转移至电热恒温鼓风干燥箱,温度设定为160℃,水热反应6h。待冷却至室温后,取出反应釜中的蜀葵茎秆分别置于瓷舟中并放入真空干燥箱中60℃烘干,待水分蒸干后将瓷舟放入管式炉中通N2以5℃·min-1的升温速度在800℃保温4h,便制得了MnO-Co/生物碳复合材料。
实施例2:
按照Mn:Co 摩尔比为 1:0.5,计算称取0.49 g的Mn(CH3COO)2·4H2O和0.291 g的 Co(NO3)2·6H2O,准确量取50 mL去离子水,配置成透明溶液。称取1.886 g的经预处理后的蜀葵茎秆,置于金属盐溶液中浸泡24 h后至达到渗透压平衡。取出浸泡的茎秆置于50mL无水乙醇中并转移到聚四氟乙烯内衬中,然后转移至电热恒温鼓风干燥箱,温度设定为180℃,加热时间设定为5h。待冷却至室温后,取出反应釜中的蜀葵茎秆分别置于瓷舟中并放入真空干燥箱中60℃烘干,待水分蒸干后将瓷舟放入管式炉中通N2以3℃·min-1的升温速度在750℃保温5h,便制得了MnO-Co/生物碳复合材料。
实施例3:
按照Mn : Co 摩尔比为1:1,计算称取0.245 g的Mn(CH3COO)2·4H2O和0.291 g的Co(NO3)2·6H2O,准确量取50 mL去离子水,配置成透明溶液。称取1.782 g的经预处理后的蜀葵茎秆,置于金属盐溶液中浸泡24 h后至达到渗透压平衡。取出浸泡的茎秆置于50mL无水乙醇中并转移到聚四氟乙烯内衬中,然后转移至电热恒温鼓风干燥箱,温度设定为200℃,加热时间设定为8h。待冷却至室温后,取出反应釜中的蜀葵茎秆分别置于瓷舟中并放入真空干燥箱中60℃烘干,待水分蒸干后将瓷舟放入管式炉中通N2以4℃·min-1的升温速度在800℃保温3h,便制得了MnO-Co/生物碳复合材料。
将实施例1-3制备的MnO-Co/生物碳复合材料进行性能分析,测试结果如图1-7所示。
图1 为实施例1制备的MnO-Co/生物碳电极材料的热重分析图,从图中可以看出样品的重量损失在800℃时基本趋于稳定。
图2 为实施例1制备的MnO-Co/生物碳电极材料的XRD图谱,从图中可以看出Mn:Co=1:0.25的样品最强衍射峰峰强较高,半峰宽较窄,颗粒结晶度较好。
图3 (a)是水热下的锰钴纳米晶的SEM图片,可以看出氧化锰本身易发生团聚形成大颗粒。图3(b)-(d)是生物碳模板下锰钴不同比例的SEM图(分别为实施例1,3和2),可以看出模板碳的存在能够有效地有效防止颗粒的团聚。
从图4(实施例1)中能清楚的看到颗粒均匀地分布在碳基板上,颗粒大小相对均匀,未出现明显团聚。从图4(d)中可以看到,样品中含有C、Mn、Co和O元素,无其余元素存在。
图5(a)表明样品(实施例1)主要是由C,O,Mn和Co元素组成,材料中的元素相对较纯;图5(b)和图5(e)表明Co元素在材料中主要以金属相的形态出现,Mn元素是以MnO的形式存在。
通过孔径分布图(图6(b)、图6(d))可以看到样品(实施例1)具有丰富的大孔,狭缝中孔和微孔。丰富的孔结构和大的比表面积有利于保证材料高的储能密度,快速的充放电性能和长的使用寿命。
图7(a)可以看出在负载物的量一定的情况下,Mn与Co的比值越大,比电容越大。由充放电测试(图7(b)和(c))可知,MnO-Co的引入有效增加了其电容性能。由图7(d)和图7(e)可知,材料具有良好的导电性和稳定性。

Claims (7)

1.一种MnO-Co/生物碳电极材料的合成方法,其特征在于,包括以下步骤:
(1)制备蜀葵茎秆模板材料
将蜀葵茎秆绿色表皮剥离,取内部白色嫩茎,并剪成4~5cm长的小段;在干净的超净工作台中对茎秆进行灭菌操作,然后用去离子水冲洗3-4次;取适量茎秆浸入pH 值为 2-3 的稀盐酸溶液中,用保鲜膜密封3天;取出蜀葵茎秆后用去离子水反复洗涤至中性,放入真空干燥箱中烘干,即得蜀葵茎秆模板材料;
(2)制备MnO-Co/生物碳复合材料
以Mn(CH3COO)2·4H2O和 Co(NO3)2·6H2O为原料配置混合溶液,称取步骤(1)制备的蜀葵茎秆模板材料置于金属盐溶液中浸泡24h;取出浸泡的茎秆置于无水乙醇中并转移到聚四氟乙烯内衬中,水热反应后,分离反应产物并放入真空干燥箱中烘干,最后放入管式炉中进行热处理,即可制得 MnO-Co/生物碳复合材料。
2.根据权利要求1所述的合成方法,其特征在于,所述步骤(1)中灭菌操作时间为15min。
3.根据权利要求1所述的合成方法,其特征在于,所述步骤(1)中烘干温度为40℃。
4.根据权利要求1所述的合成方法,其特征在于,所述步骤(2)中锰钴的摩尔比为1:0.25~1。
5.根据权利要求1所述的合成方法,其特征在于,所述步骤(2)中水热反应温度为160~200℃,反应时间为4~10h。
6.根据权利要求1所述的合成方法,其特征在于,所述步骤(2)中烘干温度为60℃。
7.根据权利要求1所述的合成方法,其特征在于,所述步骤(2)中管式炉中热处理条件为:氮气气氛下,2~5℃·min-1的升温速度升至700~800℃并保温3~5h。
CN202010788338.3A 2020-08-07 2020-08-07 MnO-Co/生物碳电极材料的合成方法 Pending CN111968862A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010788338.3A CN111968862A (zh) 2020-08-07 2020-08-07 MnO-Co/生物碳电极材料的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010788338.3A CN111968862A (zh) 2020-08-07 2020-08-07 MnO-Co/生物碳电极材料的合成方法

Publications (1)

Publication Number Publication Date
CN111968862A true CN111968862A (zh) 2020-11-20

Family

ID=73366214

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010788338.3A Pending CN111968862A (zh) 2020-08-07 2020-08-07 MnO-Co/生物碳电极材料的合成方法

Country Status (1)

Country Link
CN (1) CN111968862A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114515588A (zh) * 2021-12-29 2022-05-20 苏州科技大学 一种基于蜀葵茎秆合成g-C3N4/C复合材料的方法
CN113546635B (zh) * 2021-08-04 2023-08-22 江苏中烟工业有限责任公司 一种烟蒂衍生炭基材料的制备方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106564871A (zh) * 2016-11-08 2017-04-19 广西大学 一种晶须状薄膜生物碳材料及其制备方法
US20170323735A1 (en) * 2016-05-03 2017-11-09 Korea Institute Of Ceramic Engineering And Technology Lithium-sulfur ultracapacitor and manufacturing method of the same
CN111009659A (zh) * 2019-10-14 2020-04-14 桂林理工大学 生物质碳/聚氟磷酸锰钠复合材料的制备方法及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170323735A1 (en) * 2016-05-03 2017-11-09 Korea Institute Of Ceramic Engineering And Technology Lithium-sulfur ultracapacitor and manufacturing method of the same
CN106564871A (zh) * 2016-11-08 2017-04-19 广西大学 一种晶须状薄膜生物碳材料及其制备方法
CN111009659A (zh) * 2019-10-14 2020-04-14 桂林理工大学 生物质碳/聚氟磷酸锰钠复合材料的制备方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIAN PAN: "Facile synthesis of porous biocarbon decorated with MnO-CeO2 nanocrystals for high-capacitance electrodes", 《CHEMICAL PHYSICS LETTERS》 *
陈晓: "生物片状结构碳/三氧化二铁材料的合成及其光催化性能的研究", 《中国优秀硕士学位论文全文库》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113546635B (zh) * 2021-08-04 2023-08-22 江苏中烟工业有限责任公司 一种烟蒂衍生炭基材料的制备方法及其应用
CN114515588A (zh) * 2021-12-29 2022-05-20 苏州科技大学 一种基于蜀葵茎秆合成g-C3N4/C复合材料的方法
CN114515588B (zh) * 2021-12-29 2024-09-03 苏州科技大学 一种基于蜀葵茎秆合成g-C3N4/C复合材料的方法

Similar Documents

Publication Publication Date Title
CN104445186B (zh) 一种介孔活性炭的制备方法
CN109704307B (zh) 一种基于胖大海渣的硫掺杂多孔碳的制备及其应用
CN106356517A (zh) 一种钠离子电池与锂离子电池负极植物生物质碳掺杂硫氮复合材料及其制备方法
CN107244672A (zh) 一种以油菜花粉为原料的活性炭制备方法
CN111584251B (zh) 一种基于浮萍的碳包覆金属氧化物电极材料及其制备方法
AU2020101074A4 (en) Licorice root residue-based hierarchical porous carbon, preparation method and application thereof
CN110615487A (zh) 一种CoNiO2纳米花电极材料的制备方法
CN111968862A (zh) MnO-Co/生物碳电极材料的合成方法
CN104681800A (zh) 基于玉米秸秆的生物碳/硫复合材料及其制备方法与应用
CN107337205A (zh) 一利用废弃玉米秸秆转变为钠离子电池电极材料的方法
CN111530490A (zh) 一种Co3O4-TiO2异质结负载碳纳米管光催化降解材料及其制法
CN113262791B (zh) 氧化铈改性的仿生催化剂制备方法
CN108695076B (zh) 一种3d空心结构的电容器材料的制备方法及其应用
CN112735857A (zh) 基于豆芽构建复合材料的方法
CN109309225B (zh) 一种菌种炭为碳源的MoS2@C复合电极材料的制备方法
CN115367751A (zh) 生物质多孔活性炭及其制备方法和在铅酸电池中的应用
CN111041523A (zh) 一种铜掺杂二氧化钛光电极及其制备方法和在光电催化分解水中的应用
CN112624111B (zh) 一种金属催化玉米秸秆衍生碳电极材料的制备方法
CN107154498B (zh) 植物材料制备微孔碳结构电极材料的制备方法及其应用
CN110117025B (zh) 一种ZnO/Zn2SnO4异质结构复合气敏材料及制备方法和应用
CN107224978A (zh) 羟基锡酸钴/石墨烯复合光催化剂的制备方法及其应用
CN111048751A (zh) 一种锰酸锌/松针生物质炭复合材料及其制备方法
CN115259303B (zh) 一种Co3O4/MoS2阳极单室MFC处理垃圾渗滤液混合废水产电的新方法
CN112093790B (zh) 一种实现高效光热转换的多孔碳化甘蔗的制备方法及其应用
CN116099510A (zh) 一种脱脂微藻基氮掺杂多孔碳材料及其制备方法和对有机染料的吸附应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201120

RJ01 Rejection of invention patent application after publication