CN114501828A - 一种高效散热金刚石印刷电路板的制备方法 - Google Patents

一种高效散热金刚石印刷电路板的制备方法 Download PDF

Info

Publication number
CN114501828A
CN114501828A CN202210158068.7A CN202210158068A CN114501828A CN 114501828 A CN114501828 A CN 114501828A CN 202210158068 A CN202210158068 A CN 202210158068A CN 114501828 A CN114501828 A CN 114501828A
Authority
CN
China
Prior art keywords
diamond
diamond layer
circuit board
heat dissipation
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210158068.7A
Other languages
English (en)
Inventor
于盛旺
吴艳霞
黑鸿君
郑可
马永
高洁
王永胜
公彦鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN202210158068.7A priority Critical patent/CN114501828A/zh
Publication of CN114501828A publication Critical patent/CN114501828A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/274Diamond only using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/276Diamond only using plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/277Diamond only using other elements in the gas phase besides carbon and hydrogen; using other elements besides carbon, hydrogen and oxygen in case of use of combustion torches; using other elements besides carbon, hydrogen and inert gas in case of use of plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/26Cleaning or polishing of the conductive pattern

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明为一种高效散热金刚石印刷电路板的制备方法,属于金刚石电路板技术领域。本发明电路板是以高纯度金刚石作为基体层,B掺杂的导电金刚石为电路层。制备方法是,利用化学气相沉积法首先在基体上制备绝缘金刚石层,然后在沉积环境中加入含B的气体,沉积B掺杂导电金刚石层,再通过刻蚀法去除基体,进一步利用光刻技术在B掺杂导电金刚石层上刻出电路,最后采用高温热处理或者等离子刻蚀法去除光刻过程中产生的石墨等杂质。本发明采用化学气相沉积法依次沉积绝缘金刚石层和B掺杂导电金刚石电路层,操作方法简便,层间不存在界面突变,结合性能优异,同时全金刚石结构,具有高导热、高强度、耐腐蚀等优点。

Description

一种高效散热金刚石印刷电路板的制备方法
技术领域
本发明涉及金刚石印刷电路板及其散热绝缘双功效膜层的技术领域,具体是一种高效散热金刚石印刷电路板的制备方法。
背景技术
随着终端电子产品对轻薄短小的要求,高密度构建互联电路层和高散热基体层材料的研发对印刷电路板的开发提出了越来越高的要求,要求绝缘基体层必须具有优异的耐热性能和散热性,而导线层必须具有高密度、宽窄可控、性能稳定、容易焊接等特点。而传统印刷电路板的基材均为低导热的聚合物高分子,较难满足高功率器件信号处理过程的散热要求,同时,通过压膜、曝光、显影、蚀刻、去膜、冲洗等工艺制备的铜电路,制备流程复杂,对设备要求高,对环境会产生有害废液。因此,开发在提升阶数、缩小体积的同时开发具有兼具优异力学性能和散热性能的散热绝缘双功效基体膜层和高密度互联构建的电路层尤为重要。
发明内容
本发明的目的在于克服常规散热基体导热性差、散热器与Cu电路板之间的结合力差、电路元件安装加工较复杂、避免使用散热膏等问题,而提供了一种高效散热金刚石印刷电路板的制备方法。
本发明是通过如下技术方案实现的:
一种高效散热金刚石印刷电路板的制备方法,包括以下步骤:
A. 通过化学气相沉积技术沉积绝缘金刚石层和B掺杂导电金刚石层:
在洁净的基体上,通过化学气相沉积法沉积绝缘金刚石层,然后在沉积环境中加入含B的气体,继续在绝缘金刚石层上沉积B掺杂导电金刚石层;
B. 通过刻蚀法去除基体:
通过强酸刻蚀法去除基体;
C.利用光刻技术在B掺杂导电金刚石层上刻出电路:
对B掺杂导电金刚石层进行激光照射处理,在B掺杂导电金刚石层上照射出预先设计好图案的B掺杂金刚石电路;
D. 高温热处理或者等离子刻蚀法去除光刻过程中产生的石墨等杂质:
对刻有电路的工件进行高温煅烧或者微波等离子刻蚀,去除刻蚀过程中生成的石墨。
作为优选的技术方案,步骤A中,化学气相沉积法包括热丝CVD法、直流电弧等离子体喷射CVD法、微波等离子体CVD法;沉积绝缘金刚石层的气体包括CH4、C2H2中的任意一种,腔体气压为 2000~8000 Pa,H2与CH4或C2H2的气体体积流量比为5:1~1:1,微波功率为20~80 kW,温度为600~1000 ℃,绝缘金刚石层的沉积厚度为100 μm~700 μm;沉积B掺杂导电金刚石层时,在上述制备气体中通入含B气体,含B气体的气体流量占总气体流量的0.0001%~5%, B掺杂导电金刚石层的沉积厚度为50 μm~10 mm。
进一步的,含B的气体包括BH3、B2O3、B2H6、B(OCH4)3
进一步的,绝缘金刚石层和B掺杂导电金刚石层为纯多晶金刚石厚片或者膜,形态包括非晶,超纳米晶、纳米晶、超微晶、微晶等多晶和单晶形态。
进一步的,基体包括陶瓷类基体或含W、Mo、Ta、Ti 、Cr、Hf、Nb、Zr、Re、V等强碳化物形成材料及其O、N或C化合物过渡层的基体。
进一步的,陶瓷类基体为Si基体、SiC基体、SiO2基体。
作为优选的技术方案,步骤B中,强酸包括以氢氟酸、硝酸、硫酸、高氯酸。
作为优选的技术方案,步骤C中,激光功率为 200W-1kW,扫描速度为 1-20μm/s,光斑直径为 5-100μm,扫描次数为2-5,扫描路线为可设计的各种曲线和折线图。
作为优选的技术方案,步骤D中,高温煅烧处理过程中,退火炉的退火温度为200-500度,时间为20-40 min;等离子刻蚀处理过程中,H2与 O2 比例为1:1~1:10。
本发明中,采用金刚石作为散热基体材料,由于金刚石具有很高的热导率,可以取代传统陶瓷散热基体材料。采用B掺杂金刚石作为电路层,具有导电性能可根据沉积条件调控,而且在特殊环境中可实现超导的优点,可以起到传统电路板铜导线的作用。采用激光光刻技术,通过使用高精度的激光束按照设定的图形和深度刻蚀掺B金刚石表面,使刻蚀区域的掺B金刚石表面发生石墨化,未刻蚀区域的掺B金刚石形成电路。进一步在高温或者等离子体刻蚀的作用下,刻蚀区域的石墨等杂质发生氧化转变为二氧化碳而被除去,未刻蚀区域的掺B金刚石形成的清晰完整电路。
与现有技术相比,本发明的有益效果如下:
1)本发明通过化学气相沉积法依次实现了高导热绝缘金刚石层和良好导电性能B掺杂导电金刚石层在同一设备中沉积,操作简单,可控性强,资源利用率高;同时,不同功能层采用的相同的金刚石主体,避免了由于采用不同材料导致的界面结合力差、应力高、需要采用散热膏的问题,制备两层无粘合界面,二者间结合良好。
2)本发明利用光刻技术在B掺杂导电金刚石层上刻出电路,这种方法效率高可控性强,可以刻蚀各种图案的电路,同时精密度高,方法安全简单,绿色环保,设备简易成本低,操作简便耗时短,可实现高密度互联构建。
3)本发明利用高温热处理或者等离子刻蚀法去除光刻过程中产生的石墨,能将任意形状金刚石表面的石墨除去,避免了化学法不安全、不环保、耗时长的问题,具有操作简便、安全环保、易于实现、耗时短的优点。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明电路板的结构示意图。
图2为本发明电路板的制备流程示意图。
图中:1-绝缘金刚石层、2-B掺杂导电金刚石层、3-电路图案、4-基体。
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
实施例1
一种高效散热金刚石印刷电路板的制备方法,如图2所示,包括以下步骤:
A.将Si基体4先后放置在去离子水和酒精中分别超声处理15 min,干燥后将其置于化学气相沉积腔室;待腔体真空度达到1.0×10-4 Pa以下,通入Ar气体,流量为30 mL/min,利用等离子体清洗Si基体430 min,以除去表面的吸附物质;在Si基体4上沉积绝缘金刚石层1:设置腔体气压为 2000 Pa,H2与CH4的气体体积流量比5:1,微波功率为80 kW,温度为800 ℃,沉积时间为60 h,沉积绝缘金刚石层1的厚度为500 μm;在绝缘金刚石层1上沉积B掺杂导电金刚石层2:向腔室中通入H2稀释的B2H6, 流量为 1 sccm, 腔室气压为 2000Pa, 微波功率为 80 kW,温度为800 ℃,沉积时间为 20 h,沉积B掺杂导电金刚石层2的厚度为 1mm;
B.分别选取500目、1000目SiC 砂纸对所得工件进行机械抛磨,再用金刚石研磨膏进行抛光,使工件的金刚石层表面粗糙度Ra< 10 nm;使用硝酸与氢氟酸和水(或醋酸)的混合液,比例为3:1:1,将工件浸泡24 h,去除Si基体4,然后再分别用丙酮和去离子水超声清洗15 min,得到绝缘金刚石层1和B掺杂导电金刚石层2;
C.将得到的绝缘金刚石层1和B掺杂导电金刚石层2整体放到激光下照射,激光功率为 2600 W,扫描速度 10μm/s,光斑直径为 100μm,扫描次数为2,扫描路线为折线形,最终得到刻有电路图案3的B掺杂导电金刚石层2;
D.将得到的刻有电路图案3的绝缘金刚石层1和B掺杂导电金刚石层2整体放到管式退火炉中,设置退火温度为300度,退火时间为 30 min,自然冷去后取出样品,即得到所述的高效散热金刚石印刷电路板,如图1所示。
实施例2
一种高效散热金刚石印刷电路板的制备方法,如图2所示,包括以下步骤:
A.将含有Mo层的金属基体4先后放置在去离子水和丙酮中分别超声处理25 min,干燥后将其置于化学气相沉积腔室;待腔体真空度达到1.0×10-4 Pa以下,通入Ar气体,流量为50 mL/min,利用等离子体清洗含有Mo层的金属基体4 20 min,以除去表面的吸附物质;在含有Mo层的金属基体4上沉积绝缘金刚石层1:设置腔体气压为 4000 Pa,H2与C2H2的气体体积流量比5:3,微波功率为20 kW,温度为1000 ℃,沉积时间为80 h,沉积绝缘金刚石层1的厚度为100 μm;在绝缘金刚石层1上沉积B掺杂导电金刚石层2:向腔室中通入H2稀释的BH3, 流量为 4 sccm, 腔室气压为 4000 Pa, 微波功率为 20 kW,温度为1000 ℃,沉积时间为 30 h,沉积B掺杂导电金刚石层2的厚度为 50μm;
B.分别选取1200目、1800目SiC 砂纸对所得工件进行机械抛磨,再用金刚石研磨膏进行抛光,使工件的金刚石层表面粗糙度Ra< 8 nm;使用硫酸与氢氟酸和水(或醋酸)的混合液,比例为3:1:1,将工件浸泡24 h,去除Si基体4,然后再分别用丙酮和去离子水超声清洗20 min,得到绝缘金刚石层1和B掺杂导电金刚石层2;
C. 将得到的绝缘金刚石层1和B掺杂导电金刚石层2整体放到激光下照射,激光功率为 1 kW,扫描速度为 20μm/s,光斑直径为 5μm,扫描次数为5,扫描路线为折线形,最终得到刻有电路图案3的B掺杂导电金刚石层2;
D. 将得到的刻有电路图案3的绝缘金刚石层1和B掺杂导电金刚石层2整体放到管式退火炉中,设置退火温度为500度,退火时间为 20 min,自然冷去后取出样品,即得到所述的高效散热金刚石印刷电路板,如图1所示。
实施例3
一种高效散热金刚石印刷电路板的制备方法,如图2所示,包括以下步骤:
A.将SiC基体4先后放置在去离子水和丙酮中分别超声处理15 min,干燥后将其置于化学气相沉积腔室;待腔体真空度达到0.6×10-4 Pa以下,通入Ar气体,流量为60 mL/min,利用等离子体清洗Si基体440 min,以除去表面的吸附物质;在SiC基体4上沉积绝缘金刚石层1:设置腔体气压为 8000 Pa,H2与CH4的气体体积流量比1:1,微波功率为50 kW,温度为600 ℃,沉积时间为90 h,沉积绝缘金刚石层1的厚度为700 μm;在绝缘金刚石层1上沉积B掺杂导电金刚石层2:向腔室中通入H2稀释的B(OCH4)3, 流量为 3 sccm, 腔室气压为8000 Pa, 微波功率为 50 kW,温度为600 ℃,沉积时间为 40 h,沉积B掺杂导电金刚石层2的厚度为 100μm;
B.分别选取600目、1200目、1800目SiC 砂纸对所得工件进行机械抛磨,再用金刚石研磨膏进行抛光,使工件的金刚石层表面粗糙度Ra< 5 nm;使用硝酸与高氯酸和水(或醋酸)的混合液,比例为3:1:1,将工件浸泡24 h,去除Si基体4,然后再分别用丙酮和去离子水超声清洗30 min,得到绝缘金刚石层1和B掺杂导电金刚石层2;
C. 将得到的绝缘金刚石层1和B掺杂导电金刚石层2整体放到激光下照射,激光功率为 800 W,扫描速度为 1μm/s,光斑直径为 10μm,扫描次数为3,扫描路线为折线形,最终得到刻有电路图案3的B掺杂导电金刚石层2;
D. 将得到的刻有电路图案3的绝缘金刚石层1和B掺杂导电金刚石层2整体放到管式退火炉中,设置退火温度为200度,退火时间为 40 min,自然冷去后取出样品,即得到所述的高效散热金刚石印刷电路板,如图1所示。
实施例4
一种高效散热金刚石印刷电路板的制备方法,如图2所示,包括以下步骤:
A.将SiO2基体4先后放置在去离子水和丙酮中分别超声处理25 min,干燥后将其置于化学气相沉积腔室;待腔体真空度达到1.0×10-4 Pa以下,通入Ar气体,流量为50 mL/min,利用等离子体清洗SiO2基体4 20 min,以除去表面的吸附物质;在SiO2基体4上沉积绝缘金刚石层1:设置腔体气压为 4000 Pa,H2与C2H2的气体体积流量比5:3,微波功率为20kW,温度为1000 ℃,沉积时间为80 h,沉积绝缘金刚石层1的厚度为100 μm;在绝缘金刚石层1上沉积B掺杂导电金刚石层2:向腔室中通入H2稀释的B2H6, 流量为 3 sccm, 腔室气压为 4000 Pa, 微波功率为 20 kW,温度为1000 ℃,沉积时间为 30 h,沉积B掺杂导电金刚石层2的厚度为 10mm;
B.分别选取1200目、1800目SiC 砂纸对所得工件进行机械抛磨,再用金刚石研磨膏进行抛光,使工件的金刚石层表面粗糙度Ra< 8 nm;使用硝酸与氢氟酸和水(或醋酸)的混合液,比例为3:1:1,将工件浸泡24 h,去除Si基体4,然后再分别用丙酮和去离子水超声清洗20 min,得到绝缘金刚石层1和B掺杂导电金刚石层2;
C. 将得到的绝缘金刚石层1和B掺杂导电金刚石层2整体放到激光下照射,激光功率为 1 kW,扫描速度为 20μm/s,光斑直径为 5μm,扫描次数为5,扫描路线为折线形,最终得到刻有电路图案3的B掺杂导电金刚石层2;
D. 将得到的刻有电路图案3的绝缘金刚石层1和B掺杂导电金刚石层2整体经等离子刻蚀法处理,等离子刻蚀处理过程中,H2与 O2 比例为1:1,即得到所述的高效散热金刚石印刷电路板,如图1所示。
实施例5
一种高效散热金刚石印刷电路板的制备方法,如图2所示,包括以下步骤:
A.将SiC基体4先后放置在去离子水和酒精中分别超声处理15 min,干燥后将其置于化学气相沉积腔室;待腔体真空度达到1.0×10-4 Pa以下,通入Ar气体,流量为30 mL/min,利用等离子体清洗SiC基体430 min,以除去表面的吸附物质;在SiC基体4上沉积绝缘金刚石层1:设置腔体气压为 2000 Pa,H2与CH4的气体体积流量比5:1,微波功率为80 kW,温度为800 ℃,沉积时间为60 h,沉积绝缘金刚石层1的厚度为500 μm;在绝缘金刚石层1上沉积B掺杂导电金刚石层2:向腔室中通入H2稀释的B2H6, 流量为 2 sccm, 腔室气压为 2000Pa, 微波功率为 80 kW,温度为800 ℃,沉积时间为 20 h,沉积B掺杂导电金刚石层2的厚度为 500μm;
B.分别选取500目、1000目SiC 砂纸对所得工件进行机械抛磨,再用金刚石研磨膏进行抛光,使工件的金刚石层表面粗糙度Ra< 10 nm;使用硝酸与氢氟酸和水(或醋酸)的混合液,比例为3:1:1,将工件浸泡24 h,去除Si基体4,然后再分别用丙酮和去离子水超声清洗15 min,得到绝缘金刚石层1和B掺杂导电金刚石层2;
C.将得到的绝缘金刚石层1和B掺杂导电金刚石层2整体放到激光下照射,激光功率为 2600 W,扫描速度 10μm/s,光斑直径为 100μm,扫描次数为2,扫描路线为折线形,最终得到刻有电路图案3的B掺杂导电金刚石层2;
D. 将得到的刻有电路图案3的绝缘金刚石层1和B掺杂导电金刚石层2整体经等离子刻蚀法处理,等离子刻蚀处理过程中,H2与 O2 比例为1:10,即得到所述的高效散热金刚石印刷电路板,如图1所示。
通过该方法所制备的绝缘金刚石层1和B掺杂导电金刚石层2的印刷电路板,室温时,线热膨胀系数可低至10 ppm/K,导热系数可达1000 w/(m·k); B掺杂金刚石导电层载流子迁移率可达1020-21 cm2V-1s-1,电阻率可达10-3 Ω·m
需要说明的是,以上所述仅为本发明的具体实施例,并不用以限制本发明,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。凡在本发明揭露的技术范围和原则之内,所做的任何修改、等同替换、改进等变化均应包含在本发明的保护范围之内。

Claims (9)

1.一种高效散热金刚石印刷电路板的制备方法,其特征在于,包括以下步骤:
A. 通过化学气相沉积技术沉积绝缘金刚石层和B掺杂导电金刚石层:
在洁净的基体上,通过化学气相沉积法沉积绝缘金刚石层,然后在沉积环境中加入含B的气体,继续在绝缘金刚石层上沉积B掺杂导电金刚石层;
B. 通过刻蚀法去除基体:
通过强酸刻蚀法去除基体;
C.利用光刻技术在B掺杂导电金刚石层上刻出电路:
对B掺杂导电金刚石层进行激光照射处理,在B掺杂导电金刚石层上照射出预先设计好图案的B掺杂金刚石电路;
D. 高温热处理或者等离子刻蚀法去除光刻过程中产生的石墨等杂质:
对刻有电路的工件进行高温煅烧或者微波等离子刻蚀,去除刻蚀过程中生成的石墨。
2.根据权利要求1所述的一种高效散热金刚石印刷电路板的制备方法,其特征在于:步骤A中,化学气相沉积法包括热丝CVD法、直流电弧等离子体喷射CVD法、微波等离子体CVD法;沉积绝缘金刚石层的气体包括CH4、C2H2中的任意一种,腔体气压为 2000~8000 Pa,H2与CH4或C2H2的气体体积流量比为5:1~1:1,微波功率为20~80 kW,温度为600~1000 ℃,绝缘金刚石层的沉积厚度为100 μm~700 μm;沉积B掺杂导电金刚石层时,在上述制备气体中通入含B气体,含B气体的气体流量占总气体流量的0.0001%~5%, B掺杂导电金刚石层的沉积厚度为50 μm~10 mm。
3.根据权利要求2所述的一种高效散热金刚石印刷电路板的制备方法,其特征在于:含B的气体包括BH3、B2O3、B2H6、B(OCH4)3
4.根据权利要求2所述的一种高效散热金刚石印刷电路板的制备方法,其特征在于:绝缘金刚石层和B掺杂导电金刚石层为纯多晶金刚石厚片或者膜,形态包括非晶,超纳米晶、纳米晶、超微晶、微晶等多晶和单晶形态。
5.根据权利要求1所述的一种高效散热金刚石印刷电路板的制备方法,其特征在于:基体包括陶瓷类基体或含W、Mo、Ta、Ti 、Cr、Hf、Nb、Zr、Re、V等强碳化物形成材料及其O、N或C化合物过渡层的基体。
6.根据权利要求5所述的一种高效散热金刚石印刷电路板的制备方法,其特征在于:陶瓷类基体为Si基体、SiC基体、SiO2基体。
7.根据权利要求1所述的一种高效散热金刚石印刷电路板的制备方法,其特征在于:步骤B中,强酸包括以氢氟酸、硝酸、硫酸、高氯酸。
8.根据权利要求1所述的一种高效散热金刚石印刷电路板的制备方法,其特征在于:步骤C中,激光功率为 200W-1kW,扫描速度为 1-20μm/s,光斑直径为 5-100μm,扫描次数为2-5,扫描路线为可设计的各种曲线和折线图。
9.根据权利要求1所述的一种高效散热金刚石印刷电路板的制备方法,其特征在于:步骤D中,高温煅烧处理过程中,退火炉的退火温度为200-500度,时间为20-40 min;等离子刻蚀处理过程中,H2与 O2 比例为1:1~1:10。
CN202210158068.7A 2022-02-21 2022-02-21 一种高效散热金刚石印刷电路板的制备方法 Pending CN114501828A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210158068.7A CN114501828A (zh) 2022-02-21 2022-02-21 一种高效散热金刚石印刷电路板的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210158068.7A CN114501828A (zh) 2022-02-21 2022-02-21 一种高效散热金刚石印刷电路板的制备方法

Publications (1)

Publication Number Publication Date
CN114501828A true CN114501828A (zh) 2022-05-13

Family

ID=81482011

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210158068.7A Pending CN114501828A (zh) 2022-02-21 2022-02-21 一种高效散热金刚石印刷电路板的制备方法

Country Status (1)

Country Link
CN (1) CN114501828A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115491637A (zh) * 2022-09-30 2022-12-20 太原理工大学 一种提高金刚石衬底光学透过率的方法
CN116916547A (zh) * 2023-09-14 2023-10-20 中国科学院宁波材料技术与工程研究所 金刚石基封装线路板及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157353A (zh) * 2010-12-03 2011-08-17 北京科技大学 一种高导热集成电路用金刚石基片的制备方法
WO2015049344A1 (en) * 2013-10-04 2015-04-09 Element Six Technologies Limited Diamond based electrical conductivity sensor
CN105331948A (zh) * 2015-09-25 2016-02-17 北京科技大学 一种表面p型导电金刚石热沉材料的制备方法
CN107003267A (zh) * 2014-11-25 2017-08-01 六号元素技术有限公司 掺杂硼的基于金刚石的电化学传感器头
US20190282110A1 (en) * 2016-05-27 2019-09-19 Board Of Trustees Of Michigan State University Hybrid Diamond-Polymer Thin Film Sensors And Fabrication Method
CN110482482A (zh) * 2019-07-24 2019-11-22 北京科技大学 一种绝缘图形化高导热金刚石散热器件的制备方法
CN112839449A (zh) * 2021-01-06 2021-05-25 南昌大学 一种基于激光直接加工的金刚石电路板制备方法
CN113215554A (zh) * 2021-03-31 2021-08-06 天津职业技术师范大学(中国职业培训指导教师进修中心) 基于氢离子刻蚀反应辅助激光刻蚀的金刚石微加工方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157353A (zh) * 2010-12-03 2011-08-17 北京科技大学 一种高导热集成电路用金刚石基片的制备方法
WO2015049344A1 (en) * 2013-10-04 2015-04-09 Element Six Technologies Limited Diamond based electrical conductivity sensor
CN107003267A (zh) * 2014-11-25 2017-08-01 六号元素技术有限公司 掺杂硼的基于金刚石的电化学传感器头
US20170322172A1 (en) * 2014-11-25 2017-11-09 Element Six Technologies Limited Boron doped diamond based electrochemical sensor heads
CN105331948A (zh) * 2015-09-25 2016-02-17 北京科技大学 一种表面p型导电金刚石热沉材料的制备方法
US20190282110A1 (en) * 2016-05-27 2019-09-19 Board Of Trustees Of Michigan State University Hybrid Diamond-Polymer Thin Film Sensors And Fabrication Method
CN110482482A (zh) * 2019-07-24 2019-11-22 北京科技大学 一种绝缘图形化高导热金刚石散热器件的制备方法
CN112839449A (zh) * 2021-01-06 2021-05-25 南昌大学 一种基于激光直接加工的金刚石电路板制备方法
CN113215554A (zh) * 2021-03-31 2021-08-06 天津职业技术师范大学(中国职业培训指导教师进修中心) 基于氢离子刻蚀反应辅助激光刻蚀的金刚石微加工方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115491637A (zh) * 2022-09-30 2022-12-20 太原理工大学 一种提高金刚石衬底光学透过率的方法
CN116916547A (zh) * 2023-09-14 2023-10-20 中国科学院宁波材料技术与工程研究所 金刚石基封装线路板及其制备方法
CN116916547B (zh) * 2023-09-14 2023-12-05 中国科学院宁波材料技术与工程研究所 金刚石基封装线路板及其制备方法

Similar Documents

Publication Publication Date Title
CN114501828A (zh) 一种高效散热金刚石印刷电路板的制备方法
CN103819215B (zh) 氮化铝基陶瓷覆铜板的制备方法
JP6803901B2 (ja) 半導体製品用絶縁層構造及びその作製方法
CN100587887C (zh) 一种螺旋线行波管慢波组件及制备方法
JP3728021B2 (ja) プラズマエッチング電極及びその製造方法
JP5376752B2 (ja) 太陽電池の製造方法及び太陽電池
CN110482482A (zh) 一种绝缘图形化高导热金刚石散热器件的制备方法
CN110557936B (zh) 一种金刚石微通道Cu基CVD金刚石热沉片及其制备方法
TW201637870A (zh) 石墨烯及用於將cvd生長石墨烯轉移至疏水性基材之無聚 合物方法
JP2012514850A (ja) 太陽電池用電極の製造方法、これを用いて製造された太陽電池用基板および太陽電池
CN103594306B (zh) 一种金刚石/金属复合材料夹持杆及制备方法
CN111825478A (zh) 基于多孔碳材料的碳化钽涂层及其制备方法
CN112366095A (zh) 一种水平有序碳纳米管阵列微型超级电容器的制备方法
CN113571410B (zh) 一种低界面热阻金刚石基氮化镓晶片材料的制备方法
CN100517063C (zh) 一维纳米材料的三维微构型制备方法
CN113233875A (zh) 一种柔性高导电导热陶瓷基复合薄膜及其制备方法
CN114927805B (zh) 一种高度石墨化碳层复合多孔金属结构热管理材料的制备方法
CN105197878A (zh) 一种利用石墨烯实现电子场发射装置的制备方法
CN113430498B (zh) 一种高精密金刚石抛光片的制备方法
CN114093771B (zh) 微纳金属膏体填孔的紧实化处理方法及微孔填充工艺
JP2006286537A (ja) 水素透過構造体、及びその製造方法
CN112073025B (zh) 一种基于多孔硅的自支撑空气隙型体声波谐振器及其制备方法
JP2011219285A (ja) ダイヤモンドフレークの製造方法およびダイヤモンドフレークを含有した伝熱性強化材
CN115866904A (zh) 一种纳米粒子增强金属-金刚石印刷电路板的制备方法
CN112968005B (zh) 带连通孔的金刚石复合片及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220513