CN113233875A - 一种柔性高导电导热陶瓷基复合薄膜及其制备方法 - Google Patents

一种柔性高导电导热陶瓷基复合薄膜及其制备方法 Download PDF

Info

Publication number
CN113233875A
CN113233875A CN202110453948.2A CN202110453948A CN113233875A CN 113233875 A CN113233875 A CN 113233875A CN 202110453948 A CN202110453948 A CN 202110453948A CN 113233875 A CN113233875 A CN 113233875A
Authority
CN
China
Prior art keywords
composite film
film
film blank
graphene
blank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110453948.2A
Other languages
English (en)
Inventor
王成勇
吴丹丹
郑李娟
胡小月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN202110453948.2A priority Critical patent/CN113233875A/zh
Publication of CN113233875A publication Critical patent/CN113233875A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本发明涉及一种柔性高导电导热陶瓷基复合薄膜,其采用以下方法制备:在陶瓷粉末中加入烧结助剂,制成基体材料;取金刚石颗粒进行镀膜,制成覆镀金刚石颗粒;取石墨烯纳米片和铜颗粒备用;将基体材料、覆镀金刚石颗粒、石墨烯纳米片和铜颗粒混合成浆料,然后采用流延成型工艺制成复合薄膜坯料;或者,将所述基体材料、覆镀金刚石颗粒、石墨烯纳米片和铜颗粒分别制成基体薄膜坯料、金刚石薄膜坯料、石墨烯薄膜坯料、铜薄膜坯料;将所述复合薄膜坯料放入模具中,然后烧结成型,得到陶瓷基复合薄膜。本发明很好地解决了宏观材料高导热和高柔性不能兼顾的难题。

Description

一种柔性高导电导热陶瓷基复合薄膜及其制备方法
技术领域
本发明涉及柔性复合薄膜技术领域,特别是涉及一种柔性高导电导热陶瓷基复合薄膜及其制备方法。
背景技术
随着集成电路的集成化和小型化,电子元器件的组装密度不断增加,热流密度持续增加。在这样高温的环境中势必会对电子元器件的稳定性、可靠性和寿命产生负面影响。因此,为了能够使电子元器件发挥最佳性能,必须选择合适的散热材料确保热电子元器件的热量能及时排出。同时,随着电子产品逐步向小、轻、薄方向发展,对其内部材料也提出了新的要求,包括轻薄、具有柔性以及较高的耐弯折性。此外,设备在工作过程中产生的电磁波将影响其它设备的运行,而高导电材料则可以有效地对微小设备产生的电磁干扰进行屏蔽。因此,电器设备领域迫切需要柔性、高导电、高导热的薄膜材料。
金刚石作为自然界中热导率最高的材料,常温下热导率可以达到2000W/(m·K),且室温下绝缘,具有优异的力学、声学、光学、电学和化学性质,在解决高功率电子器件散热问题上具有明显的优势。目前,现有技术制备的金刚石及其复合材料实现了高导热,但是仍然没有解决新一代电子器件散热材料所要求的可弯折性问题。而石墨烯的出现则为解决这一问题提供了理论上的可能。石墨烯是由碳原子形成的蜂窝平面单层二维大分子,原子质量轻、简单而又强力的键接结构赋予了它超高的导热性;同时,石墨烯单原子层厚度又使得其具有较好的柔性。
因此,研究以金刚石、石墨烯材料来制备新一代电子元器件所需求的薄膜材料具有可行性、具有广阔的应用前景。
发明内容
本发明的第一目的在于克服现有技术中采用金刚石制备的材料不能够满足新一代电子元器件的弯折性需求,提供一种柔性高导电导热陶瓷基复合薄膜的制备方法,该制备方法得到的复合薄膜具有高导热、导电和高柔性的优点。
本发明的目的通过以下技术方案实现:
一种柔性高导电导热陶瓷基复合薄膜的制备方法,其包括以下步骤:
原料准备:在陶瓷粉末中加入烧结助剂,制成基体材料;取金刚石颗粒进行镀膜,制成覆镀金刚石颗粒;取石墨烯纳米片和铜颗粒备用;
制备薄膜坯料:将基体材料、覆镀金刚石颗粒、石墨烯纳米片和铜颗粒混合成浆料,然后采用流延成型工艺制成复合薄膜坯料;或者,将所述基体材料、覆镀金刚石颗粒、石墨烯纳米片和铜颗粒分别制成基体薄膜坯料、金刚石薄膜坯料、石墨烯薄膜坯料、铜薄膜坯料;
烧结:将所述复合薄膜坯料放入模具中;或者,将所述基体薄膜坯料、金刚石薄膜坯料、石墨烯薄膜坯料、铜薄膜坯料叠加后放入模具中,然后烧结成型,得到陶瓷基复合薄膜。
进一步的,所述陶瓷粉末选用氧化物陶瓷粉末、氮化物陶瓷粉末、碳化物陶瓷粉末中的一种或两种以上混合。
进一步的,所述氧化物陶瓷粉末选用Al2O3粉末、MgO粉末、ZrO2粉末中的一种或两种以上混合;所述氮化物陶瓷粉末选用Si3N4,BN,AIN中的一种或两种以上混合;所述碳化物陶瓷粉末选用TiC,WC,SiC中的一种或两种以上混合。
进一步的,所述烧结助剂为金属氧化物、稀土氧化物、稀土氟化物中的一种或两种以上混合。
进一步的,所述金属氧化物为MgO、CaO中的一种或两种组合;所述稀土氧化物的化学式为Re2O3,其中Re为La、Nd、Gd、Y、Yb、Ce、Sc中的任一种;所述稀土氟化物的化学式为ReF3,其中Re为La、Nd、Gd、Y、Yb、Ce、Sc中的任一种。
进一步的,所述覆镀金刚石颗粒的镀膜为Ti、W、Mo、Cr和Nb中的任一种,镀膜的厚度为100nm~1μm。
进一步的,所述石墨烯纳米片的层数为5~50层;所述烧结的方式为放电等离子烧结或者是热压烧结,所述模具为石墨模具。
进一步的,所述基体薄膜坯料采用流延成型;所述金刚石薄膜坯料采用流延成型;所述而铜薄膜坯料采用物理气相沉积或化学气相沉积制备;所述石墨烯薄膜坯料则采用涂覆还原法制成,所述石墨烯纳米片采用氧化石墨烯。
进一步的,还包括在所述陶瓷基复合薄膜上加工微容纳结构的步骤,所述微容纳结构为微槽阵列、方形台阵列或者凹陷的条形纹,采用超快激光烧蚀、超快激光诱导、离子束刻蚀加工而成。
本发明还提供了采用上述制备方法制成的一种柔性高导电导热陶瓷基复合薄膜。
与现有技术相比,本发明的有益效果是:
本发明以陶瓷为基体,以镀覆金刚石为第一增强相,金刚石以粉末颗粒形态分散在陶瓷基体中,而石墨烯则为第二增强相,石墨烯以石墨烯纳米片的形态分散于陶瓷基体中,铜则作为第三增强相,烧结成型后,铜以网络状形式将陶瓷颗粒包裹,也可以以铜薄膜的形式排布,烧结成型后得到复合薄膜。将石墨烯应用在陶瓷基金刚石复合材料中,在高热导金刚石的基础上更进一步提高热导率,且利用石墨烯的超柔性,很好地解决了宏观材料高导热和高柔性不能兼顾的难题。铜的应用可提高复合材料的导电性,且增强了复合材料中陶瓷颗粒间或层结构间的结合强度,增强复合材料的致密度,提高整体材料的导电导热性。
本发明在复合薄膜表面加工微容纳结构,增大散热面积比,在该高导热复合薄膜的基础上,进一步增强了散热能力,在高效热管理、新一代柔性电子器件有较广阔的应用前景。
附图说明
利用附图对发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。
图1是本发明的单片柔性高导电导热陶瓷基复合薄膜的结构示意图;
图2是本发明的三片柔性高导电导热陶瓷基复合薄膜叠加的结构示意图;
图3是本发明的复合薄膜表面上加工了V形槽阵列结体的示意图;
图4是本发明的复合薄膜表面加工了方形阵列结构的剖视图;
图5是本发明的复合薄膜表面加工了方形阵列结构的立体图;
图6是本发明的复合薄膜的另一种结构示意图;
图7是本发明的复合薄膜表面加工了条纹周期结构的示意图;
图8是本发明的复合薄膜的又一种结构示意图;
图9是本发明的复合薄膜表面加工了直边凹槽阵列结构的示意图。
具体实施方式
结合以下实施例对本发明作进一步描述。
一种柔性高导电导热陶瓷基复合薄膜,其采用以下制备方法制成。该制备方法包括以下步骤:
S1原料准备:在陶瓷粉末中加入烧结助剂,制成基体材料;取金刚石颗粒进行镀膜,制成覆镀金刚石颗粒;取石墨烯纳米片和铜颗粒备用;
S2制备薄膜坯料:将基体材料、覆镀金刚石颗粒、石墨烯纳米片和铜颗粒混合成浆料,然后采用流延成型工艺制成复合薄膜坯料;或者,将所述基体材料、覆镀金刚石颗粒、石墨烯纳米片和铜颗粒分别制成基体薄膜坯料、金刚石薄膜坯料、石墨烯薄膜坯料、铜薄膜坯料;
S3烧结:将所述复合薄膜坯料放入模具中;或者,将所述基体薄膜坯料、金刚石薄膜坯料、石墨烯薄膜坯料、铜薄膜坯料叠加后放入模具中,然后烧结成型,得到陶瓷基复合薄膜。
步骤S1中,所述陶瓷粉末选用氧化物陶瓷粉末、氮化物陶瓷粉末、碳化物陶瓷粉末中的一种或两种以上混合。具体地,所述氧化物陶瓷粉末可以选用Al2O3粉末、MgO粉末、ZrO2粉末中的一种或两种以上混合。所述氮化物陶瓷粉末选用Si3N4,BN,AIN中的一种或两种以上混合。所述碳化物陶瓷粉末选用TiC,WC,SiC中的一种或两种以上混合。
步骤S1中,所述烧结助剂为金属氧化物、稀土氧化物、稀土氟化物中的一种或两种以上混合。具体地,所述金属氧化物为MgO、CaO中的一种或两种组合。所述稀土氧化物的化学式为Re2O3,其中Re为La、Nd、Gd、Y、Yb、Ce、Sc中的任一种。所述稀土氟化物的化学式为ReF3,其中Re为La、Nd、Gd、Y、Yb、Ce、Sc中的任一种。
步骤S1中,所述石墨烯纳米片的层数为5~50层。
步骤S2中,所述覆镀金刚石颗粒的镀膜为Ti、W、Mo、Cr和Nb中的任一种,镀膜的厚度为100nm~1μm。
步骤S3中,所述烧结的方式为放电等离子烧结或者是热压烧结,所述模具为石墨模具。
步骤S2中制备基体薄膜坯料采用现有薄膜制备技术中的流延成型工艺制成。制备金刚石薄膜坯料同样采用现有薄膜制备技术中的流延成型工艺制成。而制备铜薄膜坯料则采用物理气相沉积或化学气相沉积制成。制备石墨烯薄膜坯料则采用涂覆还原法制成,所采用的石墨烯纳米片为氧化石墨烯。
作为本发明一种较佳的实施方式,所述制备方法还包括以下步骤:
S4:在所述陶瓷基复合薄膜上加工微容纳结构的步骤,所述微容纳结构为微槽阵列、方形台阵列或者凹陷的条形纹,采用超快激光烧蚀、超快激光诱导、离子束刻蚀加工而成。在复合薄膜上加工微容纳结构,增大散热面积比,进一步增强了散热能力。
可选地,所述微纳结构可以是V形槽阵列,也可以是直边凹槽阵列,高度范围是100nm~100μm,中心距为100nm~100μm,顶部槽口宽度是100nm~100μm,顶部槽口面积100nm2~200μm2,条形纹间的间距为50nm~1μm。
实例1
以Al2O3粉体为陶瓷粉末材料,加入MgO和Y2O3混合的烧结助剂,MgO:Y2O3质量比为3:5,Al2O3粉体与烧结助剂的质量比为92:8,混合制成基体材料。往基体材料中加入镀Ti金刚石颗粒、石墨烯纳米片和铜颗粒作为增强相,Al2O3粉体、金刚石颗粒、石墨烯纳米片和铜颗粒体积比为50:30:15:5。粉体按比列混合后采用行星式球磨机进行球磨,速度为300r/min,球磨24h后采用旋转蒸发器进行干燥得到混合粉体。接着制备浆料,以无水乙醇为溶剂,聚乙二醇为增塑剂,聚乙烯醇缩丁醛为分散剂,增塑剂和分散剂分别按混合粉料体积的20%加入到烧杯中,以无水乙醇为溶剂搅拌10h。待完全溶解后加入混合粉料搅拌48h得到具有一定粘度的均匀混合的浆料,采用流延成型方法得到复合薄膜。如图1所示,图1显示了单片复合薄膜的结构,其中基体材料2中,分布有金刚石2、石墨烯纳米片3和铜4。干燥后,将烘干的复合薄膜用无水乙醇软化后切成直径30mm的圆片,单片复合薄膜厚度为100μm,将3片复合薄膜叠加后经过排水排胶工艺,并用于放电等离子烧结实验,烧结温度为1750℃,升温速率为100℃/min,保温时间为5min,烧结压强为30MPa,烧结气氛为N2。请参照图2,图2显示了3片单片的复合薄膜叠加烧结为一体复合薄膜5的结构。烧结成型后,铜以网络状形式将陶瓷基体包裹,金刚石颗粒和石墨烯纳米片则分散于基体中,复合薄膜的致密度为98.3%,热导率为221W/(m·K),导电率1.4×105S/cm,抗曲折效果≥1000次。接着采用飞秒激光加工(激光功率10%,重复频率100kHz,加工次数400,加工速度800mm/s)在复合薄膜上加工V形槽阵列结构(单个V形微槽宽度为50μm,深度为50μm),阵列结构中心距为50μm,测得其热导率提升至289W/(m·K)。请参照图3,图3显示了一体复合薄膜5表面上加工了V形槽阵列结体的示意图。在一体复合薄膜5的顶部具有多个呈阵列排列的V形槽6。
实例2
以Si3N4粉体为陶瓷粉末材料,加入MgO和CeF3混合的烧结助剂,MgO:CeF3质量比为3:5,Si3N4粉体与烧结助剂质量比为92:8,混合制成基体材料。往基体材料中加入镀Ti金刚石颗粒、石墨烯纳米片和铜颗粒作为增强相,Si3N4粉体、金刚石颗粒、石墨烯纳米片和铜颗粒体积比为50:20:20:10,粉体按比列混合后采用行星式球磨机进行球磨,速度为300r/min,球磨24h后采用旋转蒸发器进行干燥得到混合粉体。接着制备浆料,以无水乙醇为溶剂,聚乙二醇为增塑剂,聚乙烯醇缩丁醛为分散剂,增塑剂和分散剂分别按混合粉料体积的20%加入到烧杯中,以无水乙醇为溶剂搅拌10h。待完全溶解后加入混合粉料搅拌48h得到具有一定粘度的均匀混合的浆料,采用流延成型方法得到复合薄膜,干燥后,将烘干的薄膜用无水乙醇软化后切成直径30mm的圆片,单片复合薄膜厚度为300μm,单个复合薄膜后经过排水排胶工艺,并用于放电等离子烧结实验,烧结温度为1700℃,升温速率为70℃/min,保温时间为8min,烧结压强为35MPa,烧结气氛为N2。烧结成型后,铜以网络状形式将陶瓷基体包裹,金刚石颗粒和石墨烯则分散于基体中,复合薄膜的致密度为98.7%,热导率为211W/(m·K),导电率1.53×105S/cm,抗曲折效果≥1200次,接着采用皮秒激光加工(激光功率60%,重复频率300kHz,加工次数500,加工速度1200mm/s)在复合薄膜上加工方形阵列结构(单个方形面积为50μm2,阵列中心距为80μm),测得其热导率提升至242W/(m·K)。请参照图5,图5显示了在复合薄膜上加上方形台7阵列的立体图,图4为在复合薄膜上加工了方形台7阵列结构的剖视图。
实例3
以Si3N4粉体为陶瓷粉末材料,加入MgO和Yb2O3混合的烧结助剂,质量比为Si3N4:MgO:Yb2O3=92:5:3,粉体按比列混合后加入溶剂、增塑剂、分散剂。粉体按比列混合后采用行星式球磨机进行球磨,速度为300r/min,球磨24h后采用旋转蒸发器进行干燥得到混合粉体。接着制备浆料,以无水乙醇为溶剂,聚乙二醇为增塑剂,聚乙烯醇缩丁醛为分散剂,增塑剂和分散剂分别按混合粉料体积的20%加入到烧杯中,以无水乙醇为溶剂搅拌10h。待完全溶解后加入混合粉料搅拌48h得到具有一定粘度的均匀混合的浆料,采用流延成型得到基体薄膜坯料。接着制备镀W金刚石浆料,聚乙二醇增塑剂和聚乙烯醇缩丁醛分散剂分别按金刚石粉体积的20%加入到烧杯中,以无水乙醇为溶剂搅拌10h,完全溶解后加入金刚石粉体搅拌24h得到金刚石浆料,采用流延成型得到镀W金刚石薄膜坯料。采用磁控溅射法制备铜薄膜坯料。基体薄膜坯料、金刚石薄膜坯料、铜薄膜坯料厚度均为100μm,将以上各种薄膜坯料干燥后,将烘干的薄膜坏料用无水乙醇软化后切成直径30mm的圆片。接着,采用涂覆还原法得到石墨烯薄膜坯料,厚度为60μm。请参照图6,将基体薄膜坯料11、金刚石薄膜坯料12、铜薄膜坯料13、石墨烯薄膜坏料14、铜薄膜坯料13、基体薄膜坯料11依次叠加后经过排水排胶工艺,并用于放电等离子烧结实验,将叠加烧结温度为1700℃,升温速率为70℃/min,保温时间为8min,烧结压强为35MPa,烧结气氛为N2。烧结成复合薄膜后,致密度为98.2%,热导率为221W/(m·K),导电率1.5×105S/cm,抗曲折效果≥1000次。接着,采用飞秒激光诱导技术在复合薄膜上形成凹陷的条纹结构,激光器波长800nm,脉宽50fs,重复频率1000Hz,经过20个脉冲加工后,条纹结构的空间周期为625nm,测得热导率提升到243W/(m·K)。请参照图7,图7显示了在复合薄膜上加工了条纹周期结构的示意图。
实例4
以AIN粉体为陶瓷粉末材料,加入Y2O3烧结助剂,质量比AIN:Y2O3=95:5,粉体按比列混合后采用行星式球磨机进行球磨,速度为250r/min,球磨24h后采用旋转蒸发器进行干燥得到混合粉体。接着制备浆料,以无水乙醇为溶剂,聚乙二醇为增塑剂,聚乙烯醇缩丁醛为分散剂,增塑剂和分散剂分别按混合粉料体积的20%加入到烧杯中,以无水乙醇为溶剂搅拌10h。待完全溶解后加入混合粉料搅拌48h得到具有一定粘度的均匀混合的浆料,采用流延成型得到基体薄膜坯料。接着制备镀Mo金刚石浆料,聚乙二醇增塑剂和聚乙烯醇缩丁醛分散剂分别按金刚石粉体积的20%加入到烧杯中,以无水乙醇为溶剂搅拌10h,完全溶解后加入金刚石粉体搅拌24h得到镀Mo金刚石浆料,采用流延成型得到镀Mo金刚石薄膜坯料。将基体薄膜坯料和金刚石薄膜坯料干燥后,将烘干的薄膜用无水乙醇软化后切成直径30mm的圆片,厚度为150μm。接着,采用涂覆还原法得到石墨烯薄膜坯料,厚度为50μm,采用磁控溅射法制备得到铜薄膜坯料,厚度为200μm。请参照图8,将基体薄膜坯料11、金刚石薄膜坯料12、石墨烯薄膜坯料13、铜薄膜坯料14、金刚石薄膜坯料12依次叠加后经过排水排胶工艺,并用于热压烧结实验,烧结温度为1800℃,升温速率为10℃/min,保温时间为10min,烧结压强为30MPa,烧结气氛为N2。烧结形成复合薄膜,测得致密度为98.9%,热导率为211W/(m·K),导电率1.38×105S/cm,抗曲折效果≥800次。接着,采用离子束刻蚀技术在复合薄膜上加工出直边凹槽阵列结构,单个直边凹槽高度为2μm,宽度为3μm,阵列中心距为6μm,测得热导率提升到233W/(m·K)。请参照图9,图9显示了在复合薄膜上加工了直边凹槽阵列结构的示意图。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

1.一种柔性高导电导热陶瓷基复合薄膜的制备方法,其特征在于,包括以下步骤:
原料准备:在陶瓷粉末中加入烧结助剂,制成基体材料;取金刚石颗粒进行镀膜,制成覆镀金刚石颗粒;取石墨烯纳米片和铜颗粒备用;
制备薄膜坯料:将基体材料、覆镀金刚石颗粒、石墨烯纳米片和铜颗粒混合成浆料,然后采用流延成型工艺制成复合薄膜坯料;或者,将所述基体材料、覆镀金刚石颗粒、石墨烯纳米片和铜颗粒分别制成基体薄膜坯料、金刚石薄膜坯料、石墨烯薄膜坯料、铜薄膜坯料;
烧结:将所述复合薄膜坯料放入模具中;或者,将所述基体薄膜坯料、金刚石薄膜坯料、石墨烯薄膜坯料、铜薄膜坯料叠加后放入模具中,然后烧结成型,得到陶瓷基复合薄膜。
2.如权利要求1所述的柔性高导电导热陶瓷基复合薄膜的制备方法,其特征在于,所述陶瓷粉末选用氧化物陶瓷粉末、氮化物陶瓷粉末、碳化物陶瓷粉末中的一种或两种以上混合。
3.如权利要求2所述的柔性高导电导热陶瓷基复合薄膜的制备方法,其特征在于,所述氧化物陶瓷粉末选用Al2O3粉末、MgO粉末、ZrO2粉末中的一种或两种以上混合;所述氮化物陶瓷粉末选用Si3N4,BN,AIN中的一种或两种以上混合;所述碳化物陶瓷粉末选用TiC,WC,SiC中的一种或两种以上混合。
4.如权利要求1所述的柔性高导电导热陶瓷基复合薄膜的制备方法,其特征在于,所述烧结助剂为金属氧化物、稀土氧化物、稀土氟化物中的一种或两种以上混合。
5.如权利要求4所述的柔性高导电导热陶瓷基复合薄膜的制备方法,其特征在于,所述金属氧化物为MgO、CaO中的一种或两种组合;所述稀土氧化物的化学式为Re2O3,其中Re为La、Nd、Gd、Y、Yb、Ce、Sc中的任一种;所述稀土氟化物的化学式为ReF3,其中Re为La、Nd、Gd、Y、Yb、Ce、Sc中的任一种。
6.如权利要求5所述的柔性高导电导热陶瓷基复合薄膜的制备方法,其特征在于,所述覆镀金刚石颗粒的镀膜为Ti、W、Mo、Cr和Nb中的任一种,镀膜的厚度为100nm~1μm。
7.如权利要求1所述的柔性高导电导热陶瓷基复合薄膜的制备方法,其特征在于,所述石墨烯纳米片的层数为5~50层;所述烧结的方式为放电等离子烧结或者是热压烧结,所述模具为石墨模具。
8.如权利要求1所述的柔性高导电导热陶瓷基复合薄膜的制备方法,其特征在于,所述基体薄膜坯料采用流延成型;所述金刚石薄膜坯料采用流延成型;所述而铜薄膜坯料采用物理气相沉积或化学气相沉积制备;所述石墨烯薄膜坯料则采用涂覆还原法制成,所述石墨烯纳米片采用氧化石墨烯。
9.如权利要求1所述的柔性高导电导热陶瓷基复合薄膜的制备方法,其特征在于,还包括在所述陶瓷基复合薄膜上加工微容纳结构的步骤,所述微容纳结构为微槽阵列、方形台阵列或者凹陷的条形纹,采用超快激光烧蚀、超快激光诱导、离子束刻蚀加工而成。
10.一种柔性高导电导热陶瓷基复合薄膜,其特征在于:采用权利要求1至9任意一项所述的制备方法制成。
CN202110453948.2A 2021-04-26 2021-04-26 一种柔性高导电导热陶瓷基复合薄膜及其制备方法 Pending CN113233875A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110453948.2A CN113233875A (zh) 2021-04-26 2021-04-26 一种柔性高导电导热陶瓷基复合薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110453948.2A CN113233875A (zh) 2021-04-26 2021-04-26 一种柔性高导电导热陶瓷基复合薄膜及其制备方法

Publications (1)

Publication Number Publication Date
CN113233875A true CN113233875A (zh) 2021-08-10

Family

ID=77129273

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110453948.2A Pending CN113233875A (zh) 2021-04-26 2021-04-26 一种柔性高导电导热陶瓷基复合薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN113233875A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113045320A (zh) * 2021-03-04 2021-06-29 杭州安誉科技有限公司 Led用高散热金属基板及其制备方法
CN115784751A (zh) * 2022-12-05 2023-03-14 北京理工大学 一种基于激光刻蚀技术实现高韧性陶瓷制备的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107215023A (zh) * 2017-05-24 2017-09-29 深圳市莱必德电子材料有限公司 石墨烯导热散热反射膜及其制备方法
CN107756986A (zh) * 2017-08-29 2018-03-06 六安永吉纳米材料科技有限公司 一种石墨烯散热膜及其制备方法
CN109320259A (zh) * 2018-11-16 2019-02-12 广东工业大学 一种氮化硅基金刚石复合材料及其制备方法
CN110627488A (zh) * 2019-09-23 2019-12-31 广东工业大学 一种新型陶瓷基金刚石复合片及其制备方法
CN110981497A (zh) * 2019-12-23 2020-04-10 广东工业大学 一种高导热高耐磨的氮化硅陶瓷及其制备方法和应用
CN112028636A (zh) * 2020-08-26 2020-12-04 北京科技大学 一种高导热氮化铝/石墨烯复合陶瓷器件的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107215023A (zh) * 2017-05-24 2017-09-29 深圳市莱必德电子材料有限公司 石墨烯导热散热反射膜及其制备方法
CN107756986A (zh) * 2017-08-29 2018-03-06 六安永吉纳米材料科技有限公司 一种石墨烯散热膜及其制备方法
CN109320259A (zh) * 2018-11-16 2019-02-12 广东工业大学 一种氮化硅基金刚石复合材料及其制备方法
CN110627488A (zh) * 2019-09-23 2019-12-31 广东工业大学 一种新型陶瓷基金刚石复合片及其制备方法
CN110981497A (zh) * 2019-12-23 2020-04-10 广东工业大学 一种高导热高耐磨的氮化硅陶瓷及其制备方法和应用
CN112028636A (zh) * 2020-08-26 2020-12-04 北京科技大学 一种高导热氮化铝/石墨烯复合陶瓷器件的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李松法: "《电子元器件应用技术》", 30 June 2009, 航空工业出版社 *
王迎军: "《新型材料科学与技术 无机材料卷(中册)》", 31 October 2016, 华南理工大学出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113045320A (zh) * 2021-03-04 2021-06-29 杭州安誉科技有限公司 Led用高散热金属基板及其制备方法
CN113045320B (zh) * 2021-03-04 2022-08-09 杭州安誉科技有限公司 Led用高散热金属基板及其制备方法
CN115784751A (zh) * 2022-12-05 2023-03-14 北京理工大学 一种基于激光刻蚀技术实现高韧性陶瓷制备的方法
CN115784751B (zh) * 2022-12-05 2023-10-10 北京理工大学 一种基于激光刻蚀技术实现高韧性陶瓷制备的方法

Similar Documents

Publication Publication Date Title
KR101986682B1 (ko) 금속 본딩된 보호 층을 갖는 기판 지지 조립체
CN113233875A (zh) 一种柔性高导电导热陶瓷基复合薄膜及其制备方法
WO2015096453A1 (zh) 导热复合材料片及其制作方法
CN105777210B (zh) 一种氮化铝陶瓷覆铜板及其制备方法
US10308560B2 (en) High thermal conductive silicon nitride sintered body, and silicon nitride substrate and silicon nitride circuit board and semiconductor apparatus using the same
JPWO2017170247A1 (ja) 回路基板および窒化ケイ素焼結基板の製造方法
CN103819215B (zh) 氮化铝基陶瓷覆铜板的制备方法
TW562737B (en) Method of manufacturing ceramic multi-layer substrate, and unbaked composite laminated body
CN108682662B (zh) 一种超高热流密度散热用金刚石微通道热沉的制备方法
CN109133966B (zh) 一种层状梯度石墨膜/铝复合材料的制备方法
CN102922828A (zh) 铜箔键合陶瓷基板的复合板及其制备方法
WO2018164967A1 (en) Sintered ceramic protective layer formed by hot pressing
JP2009181882A (ja) リチウム電池の製造方法
JP2022550701A (ja) 窒化珪素基板の製造方法
KR101411956B1 (ko) 이종접합 구조체 및 그 제조방법
CN114340896B (zh) 具有腐蚀保护层的多区氮化硅晶片加热器组件、和制造及使用其的方法
CN104014921B (zh) 一种快速制备铜钼多层复合材料的方法
CN110642644A (zh) 一种氮化铝陶瓷覆铜板及其制备方法
JP2000239074A (ja) 窒化アルミニウム焼結体用接合剤、それを用いる窒化アルミニウム焼結体の接合方法、並びにそれを用いるプレートヒータ及び静電チャックの製造方法
CN111231450B (zh) 一种用于均热板进行热扩散的多层复合材料及其制备方法
KR102144070B1 (ko) ITO 중간층을 포함하는 스커테루다이트 열전소재용 Ti 메탈라이징 구조과 그 형성 방법 및 ITO 중간층을 포함하여 Ti 메탈라이징된 스커테루다이트 열전소재와 그 제조 방법
JP4731790B2 (ja) 半導体搭載基板用小チップの製造方法
CN109133965A (zh) 一种二维高导热石墨膜/铝复合材料的制备方法
KR101292040B1 (ko) 저온동시소성세라믹스 기판의 제조방법
CN110933899A (zh) 复合导热片及其制备方法、散热件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210810