CN113215554A - 基于氢离子刻蚀反应辅助激光刻蚀的金刚石微加工方法 - Google Patents

基于氢离子刻蚀反应辅助激光刻蚀的金刚石微加工方法 Download PDF

Info

Publication number
CN113215554A
CN113215554A CN202110348181.7A CN202110348181A CN113215554A CN 113215554 A CN113215554 A CN 113215554A CN 202110348181 A CN202110348181 A CN 202110348181A CN 113215554 A CN113215554 A CN 113215554A
Authority
CN
China
Prior art keywords
diamond
laser
hydrogen ion
ion etching
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110348181.7A
Other languages
English (en)
Inventor
崔雨潇
马家豪
郭平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology and Education China Vocational Training Instructor Training Center
Original Assignee
Tianjin University of Technology and Education China Vocational Training Instructor Training Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology and Education China Vocational Training Instructor Training Center filed Critical Tianjin University of Technology and Education China Vocational Training Instructor Training Center
Priority to CN202110348181.7A priority Critical patent/CN113215554A/zh
Publication of CN113215554A publication Critical patent/CN113215554A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/60Preliminary treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种基于氢离子刻蚀反应辅助激光刻蚀的金刚石微加工方法,包括:对金刚石试样表面进行预处理,去除表面杂质;将激光光束聚焦在预处理后的金刚石试样表面,进行激光辐照处理,将金刚石试样表层金刚石成分诱变为石墨化成分;对经过激光辐照处理的金刚石试样进行氢离子刻蚀反应,将金刚石试样表面经过激光辐照诱变产生的石墨化成分选择性去除,实现对金刚石试样的微加工。本发明通过采用激光对金刚石试件表面进行石墨化诱变,随后采用氢离子刻蚀选择性去除金刚石试件表面激光诱变的石墨化成分,避免了常规激光刻蚀过程中金刚石表面出现杂质残留和破碎崩边等损伤,显著提升了金刚石微加工的质量和精度。

Description

基于氢离子刻蚀反应辅助激光刻蚀的金刚石微加工方法
技术领域
本发明涉及一种金刚石微加工方法。特别是涉及一种基于氢离子刻蚀反应辅助激光刻蚀的金刚石微加工方法。
背景技术
太赫兹电磁波以其优秀的宽带性和瞬态性,在无线通信过程中能够实现极高的数据传输速率和稳定性,因而成为未来6G通讯研发的关键技术。随着国内外针对太赫兹科学技术研究的不断深入,相关太赫兹器件的开发对材料提出了更高的要求。CVD金刚石材料以其良好的导热性能、低介电常数、低微波损耗、优秀的机械性能以及相对低廉的制备成本等,在太赫兹器件领域具有广阔的应用前景。太赫兹器件(如太赫兹MEMS滤波器和大功率太赫兹源等)内部涉及大量的高深宽比微光栅结构。因此,高精度高质量的金刚石微加工技术,成为实现金刚石在太赫兹器件领域应用的关键技术。
由于CVD金刚石本身极高的硬度和化学稳定性,常规微细制造工艺难以直接应用。目前针对金刚石材料的高深宽比微细加工,应用较多的是一些干法刻蚀技术,如RIE、DRIE、ICP等,并取得了一定的进展。然而,上述工艺的热效应较为严重,极容易污染和损伤金刚石表面,并且常常涉及掩模的应用,导致其工艺复杂,成本较高。激光刻蚀是近年来迅速发展的一种微细加工方法。该方法具有较高的加工精度和效率,并且热效应小,无需掩模,工艺简单,成本较低,对环境无污染,在高深宽比微细加工方向显示出极大的潜力。然而,对于高深宽比CVD金刚石微细结构加工,超快激光刻蚀尚存在一些不足。超快激光加工金刚石材料时焦斑附近的高温常常会造成微细结构边缘金刚石材料相变形成无定形碳和石墨相,同时高温气化去除的碳相会在金刚石材料表面重凝形成非晶碳相,因而降低金刚石表面质量;此外,焦斑附近材料瞬间被去除将导致周围材料应力状态的急剧变化,从而引发微细结构边缘应力集中,出现裂纹和崩碎,造成金刚石微细结构表面质量下降。如何另辟蹊径,克服现有技术不足,开发面向CVD金刚石的新型微细加工技术,制备高深宽比微光栅结构,是当前亟待解决的一大难题。
发明内容
本发明所要解决的技术问题是,提供一种能够显著提升金刚石微加工的质量和精度的基于氢离子刻蚀反应辅助激光刻蚀的金刚石微加工方法。
本发明所采用的技术方案是:一种基于氢离子刻蚀反应辅助激光刻蚀的金刚石微加工方法,包括如下步骤:
1)对金刚石试样表面进行预处理,去除表面杂质;
2)将激光光束聚焦在预处理后的金刚石试样表面,进行激光辐照处理,将金刚石试样表层金刚石成分诱变为石墨化成分;
3)对经过激光辐照处理的金刚石试样进行氢离子刻蚀反应,将金刚石试样表面经过激光辐照诱变产生的石墨化成分选择性去除,实现对金刚石试样的微加工。
步骤1)中所述的金刚石为单晶金刚石或多晶微米金刚石。
步骤1)中所述的金刚石试样表面粗糙度Ra小于等于10nm。
步骤1)中所述的预处理,是将金刚石试样浸入无水乙醇中超声清洗5min,然后烘干。
步骤2)所述的进行激光辐照处理,所采用的激光能量密度为0.51~1.02J/cm2,脉冲宽度为200fs,重复频率为50MHz,光斑直径为10μm。
步骤2)中诱变为石墨化成分的厚度为0.3~0.7μm,激光光斑的石墨化诱变直径为1~2μm。
步骤3)所述的对经过激光辐照处理的金刚石试样进行氢离子刻蚀反应,反应温度为25~70℃,反应过程中去除深度为0.3~0.7μm、宽度为1~2μm的石墨化成分。
步骤3)中所述完成微加工的金刚石试样表面无破碎崩边及石墨化残留杂质。
本发明的基于氢离子刻蚀反应辅助激光刻蚀的金刚石微加工方法,通过采用激光对金刚石试件表面进行石墨化诱变,随后采用氢离子刻蚀选择性去除金刚石试件表面激光诱变的石墨化成分,避免了常规激光刻蚀过程中金刚石表面出现杂质残留和破碎崩边等损伤,显著提升了金刚石微加工的质量和精度。本发明对促进金刚石材料在太赫兹器件领域的应用具有重要意义。
附图说明
图1是本发明基于氢离子刻蚀反应辅助激光刻蚀的金刚石微加工方法过程的示意图。
具体实施方式
下面结合实施例和附图对本发明的基于氢离子刻蚀反应辅助激光刻蚀的金刚石微加工方法做出详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
本发明的基于氢离子刻蚀反应辅助激光刻蚀的金刚石微加工方法,如图1所示,包括如下步骤:
1)对金刚石试样表面进行预处理,去除表面杂质;其中,
所述的金刚石为单晶金刚石或多晶微米金刚石;所述的金刚石试样表面粗糙度Ra小于等于10nm;所述的预处理,是将金刚石试样浸入无水乙醇中超声清洗5min,然后烘干。
2)将激光光束聚焦在预处理后的金刚石试样表面,进行激光辐照处理,将金刚石试样表层金刚石成分诱变为石墨化成分;其中,
所述的进行激光辐照处理,所采用的激光能量密度为0.51~1.02J/cm2,脉冲宽度为200fs,重复频率为50MHz,光斑直径为10μm;所述诱变为石墨化成分的厚度为0.3~0.7μm,激光光斑的石墨化诱变直径为1~2μm。
3)对经过激光辐照处理的金刚石试样进行氢离子刻蚀反应,将金刚石试样表面经过激光辐照诱变产生的石墨化成分选择性去除,实现对金刚石试样的微加工;其中,
所述的对经过激光辐照处理的金刚石试样进行氢离子刻蚀反应,反应温度为25~70℃,反应过程中去除深度为0.3~0.7μm、宽度为1~2μm的石墨化成分。
所述完成微加工的金刚石试样表面无破碎崩边及石墨化残留杂质。
下面给出具体实例。
实例1:
以表面粗糙度为10nm的单晶金刚石试件为对象,进行氢离子刻蚀反应辅助激光刻蚀微加工。首先对单晶金刚石试件进行预处理,将其浸入无水乙醇中超声清洗5min,然后烘干,去除表面杂质。
采用脉冲宽度为200fs、激光能量密度为1.02J/cm2、重复频率为50MHz、光斑直径为10μm的激光,将激光光束聚焦于单晶金刚石试件表面,进行激光辐照处理。激光辐照将单晶金刚石表层金刚石成分又变为石墨化成分,石墨化成分厚度为0.3μm,激光光斑的石墨化诱变直径为1μm。
将上述经过激光辐照处理的单晶金刚石试件置于化学气相沉积反应设备之中,进行氢离子刻蚀反应,其反应温度为70℃,去除单晶金刚石试件表面激光辐照诱变产生的深度为0.3μm、宽度为1μm的石墨化成分。
完成上述微加工过程的单晶金刚石试样表面无破碎崩边及石墨化残留杂质。
实例2:
以表面粗糙度10nm的多晶微米金刚石试件为对象,进行氢离子刻蚀反应辅助激光刻蚀微加工。首先对多晶微米金刚石试件进行预处理,将其浸入浸入无水乙醇中超声清洗5min,然后烘干,去除表面杂质。
采用脉冲宽度为200fs、激光能量密度为0.51J/cm2、重复频率为50MHz、光斑直径为10μm的激光,将激光光束聚焦于多晶微米金刚石试件表面,进行激光辐描处理。激光辐照将多晶微米金刚石表层金刚石成分又变为石墨化成分,石墨化成分厚度为0.7μm,激光光斑的石墨化诱变直径为2μm。
将上述经过激光辐照处理的单晶金刚石试件置于化学气相沉积反应设备之中,进行氢离子刻蚀反应,其反应温度为25℃,去除多晶微米金刚石试件表面激光辐照诱变产生的深度为0.7μm、宽度为2μm的石墨化成分。
完成上述微加工过程的多晶微米金刚石试样表面无破碎崩边及石墨化残留杂质。
实例3:
以表面粗糙度为8nm的单晶金刚石试件为对象,进行氢离子刻蚀反应辅助激光刻蚀微加工。首先对单晶金刚石试件进行预处理,将其浸入无水乙醇中超声清洗5min,然后烘干,去除表面杂质。
采用脉冲宽度为200fs、激光能量密度为0.8J/cm2、重复频率为50MHz、光斑直径为10μm的激光,将激光光束聚焦于单晶金刚石试件表面,进行激光辐照处理。激光辐照将单晶金刚石表层金刚石成分又变为石墨化成分,石墨化成分厚度为0.5μm,激光光斑的石墨化诱变直径为1.5μm。
将上述经过激光辐照处理的单晶金刚石试件置于化学气相沉积反应设备之中,进行氢离子刻蚀反应,其反应温度为50℃,去除单晶金刚石试件表面激光辐照诱变产生的深度为0.5μm、宽度为1.5μm的石墨化成分。
完成上述微加工过程的单晶金刚石试样表面无破碎崩边及石墨化残留杂质。
实例4:
以表面粗糙度8.5nm的多晶微米金刚石试件为对象,进行氢离子刻蚀反应辅助激光刻蚀微加工。首先对多晶微米金刚石试件进行预处理,将其浸入浸入无水乙醇中超声清洗5min,然后烘干,去除表面杂质。
采用脉冲宽度为200fs、激光能量密度为0.71J/cm2、重复频率为50MHz、光斑直径为10μm的激光,将激光光束聚焦于多晶微米金刚石试件表面,进行激光辐描处理。激光辐照将多晶微米金刚石表层金刚石成分又变为石墨化成分,石墨化成分厚度为0.6μm,激光光斑的石墨化诱变直径为1.8μm。
将上述经过激光辐照处理的单晶金刚石试件置于化学气相沉积反应设备之中,进行氢离子刻蚀反应,其反应温度为40℃,去除多晶微米金刚石试件表面激光辐照诱变产生的深度为0.6μm、宽度为1.8μm的石墨化成分。
完成上述微加工过程的多晶微米金刚石试样表面无破碎崩边及石墨化残留杂质。

Claims (8)

1.一种基于氢离子刻蚀反应辅助激光刻蚀的金刚石微加工方法,其特征在于,包括如下步骤:
1)对金刚石试样表面进行预处理,去除表面杂质;
2)将激光光束聚焦在预处理后的金刚石试样表面,进行激光辐照处理,将金刚石试样表层金刚石成分诱变为石墨化成分;
3)对经过激光辐照处理的金刚石试样进行氢离子刻蚀反应,将金刚石试样表面经过激光辐照诱变产生的石墨化成分选择性去除,实现对金刚石试样的微加工。
2.根据权利要求1所述的基于氢离子刻蚀反应辅助激光刻蚀的金刚石微加工方法,其特征在于,步骤1)中所述的金刚石为单晶金刚石或多晶微米金刚石。
3.根据权利要求1所述的基于氢离子刻蚀反应辅助激光刻蚀的金刚石微加工方法,其特征在于,步骤1)中所述的金刚石试样表面粗糙度Ra小于等于10nm。
4.根据权利要求1所述的基于氢离子刻蚀反应辅助激光刻蚀的金刚石微加工方法,其特征在于,步骤1)中所述的预处理,是将金刚石试样浸入无水乙醇中超声清洗5min,然后烘干。
5.根据权利要求1所述的基于氢离子刻蚀反应辅助激光刻蚀的金刚石微加工方法,其特征在于,步骤2)所述的进行激光辐照处理,所采用的激光能量密度为0.51~1.02J/cm2,脉冲宽度为200fs,重复频率为50MHz,光斑直径为10μm。
6.根据权利要求1所述的基于氢离子刻蚀反应辅助激光刻蚀的金刚石微加工方法,其特征在于,步骤2)中诱变为石墨化成分的厚度为0.3~0.7μm,激光光斑的石墨化诱变直径为1~2μm。
7.根据权利要求1所述的基于氢离子刻蚀反应辅助激光刻蚀的金刚石微加工方法,其特征在于,步骤3)所述的对经过激光辐照处理的金刚石试样进行氢离子刻蚀反应,反应温度为25~70℃,反应过程中去除深度为0.3~0.7μm、宽度为1~2μm的石墨化成分。
8.根据权利要求1所述的基于氢离子刻蚀反应辅助激光刻蚀的金刚石微加工方法,其特征在于,步骤3)中所述完成微加工的金刚石试样表面无破碎崩边及石墨化残留杂质。
CN202110348181.7A 2021-03-31 2021-03-31 基于氢离子刻蚀反应辅助激光刻蚀的金刚石微加工方法 Pending CN113215554A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110348181.7A CN113215554A (zh) 2021-03-31 2021-03-31 基于氢离子刻蚀反应辅助激光刻蚀的金刚石微加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110348181.7A CN113215554A (zh) 2021-03-31 2021-03-31 基于氢离子刻蚀反应辅助激光刻蚀的金刚石微加工方法

Publications (1)

Publication Number Publication Date
CN113215554A true CN113215554A (zh) 2021-08-06

Family

ID=77086161

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110348181.7A Pending CN113215554A (zh) 2021-03-31 2021-03-31 基于氢离子刻蚀反应辅助激光刻蚀的金刚石微加工方法

Country Status (1)

Country Link
CN (1) CN113215554A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114351088A (zh) * 2022-01-06 2022-04-15 中国矿业大学 一种固体自润滑涂层及其制备方法
CN114501828A (zh) * 2022-02-21 2022-05-13 太原理工大学 一种高效散热金刚石印刷电路板的制备方法
CN115255681A (zh) * 2022-06-29 2022-11-01 上海启镨新材料有限公司 一种利用飞秒激光从内层剥离金刚石晶体的方法
CN116926494A (zh) * 2023-08-07 2023-10-24 深圳市博源碳晶科技有限公司 一种金刚石铜基复合材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0740336A (ja) * 1993-07-30 1995-02-10 Sumitomo Electric Ind Ltd ダイヤモンドの加工方法
US6168744B1 (en) * 1996-10-08 2001-01-02 Board Of Trustees University Of Arkansas Process for sequential multi beam laser processing of materials
CN108941715A (zh) * 2018-06-29 2018-12-07 南京航空航天大学 一种cvd金刚石微铣刀的制备方法
CN111360415A (zh) * 2020-03-20 2020-07-03 吉林大学 一种利用化学处理辅助激光加工制备金刚石涡旋光束发生器的方法及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0740336A (ja) * 1993-07-30 1995-02-10 Sumitomo Electric Ind Ltd ダイヤモンドの加工方法
US6168744B1 (en) * 1996-10-08 2001-01-02 Board Of Trustees University Of Arkansas Process for sequential multi beam laser processing of materials
CN108941715A (zh) * 2018-06-29 2018-12-07 南京航空航天大学 一种cvd金刚石微铣刀的制备方法
CN111360415A (zh) * 2020-03-20 2020-07-03 吉林大学 一种利用化学处理辅助激光加工制备金刚石涡旋光束发生器的方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JAYSHREE SETH,ET AL: "《Lithographic application of diamond-like carbon flims》", 《THIN SOLID FILMS》 *
张永宏: "《现代薄膜材料与技术》", 31 August 2016 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114351088A (zh) * 2022-01-06 2022-04-15 中国矿业大学 一种固体自润滑涂层及其制备方法
CN114351088B (zh) * 2022-01-06 2022-12-27 中国矿业大学 一种固体自润滑涂层及其制备方法
CN114501828A (zh) * 2022-02-21 2022-05-13 太原理工大学 一种高效散热金刚石印刷电路板的制备方法
CN115255681A (zh) * 2022-06-29 2022-11-01 上海启镨新材料有限公司 一种利用飞秒激光从内层剥离金刚石晶体的方法
CN116926494A (zh) * 2023-08-07 2023-10-24 深圳市博源碳晶科技有限公司 一种金刚石铜基复合材料及其制备方法

Similar Documents

Publication Publication Date Title
CN113215554A (zh) 基于氢离子刻蚀反应辅助激光刻蚀的金刚石微加工方法
Liu et al. High-aspect-ratio crack-free microstructures fabrication on sapphire by femtosecond laser ablation
Nisar et al. Laser glass cutting techniques—A review
Huang et al. Micro-hole drilling and cutting using femtosecond fiber laser
Wu et al. High speed and low roughness micromachining of silicon carbide by plasma etching aided femtosecond laser processing
Pecholt et al. Review of laser microscale processing of silicon carbide
Fu et al. Investigation on the laser ablation of SiC ceramics using micro‐Raman mapping technique
CN111850507B (zh) 基于微增减材同步复合制造金刚石微光栅的方法及装置
Wu et al. Crystal cleavage, periodic nanostructure and surface modification of SiC ablated by femtosecond laser in different media
Ramanathan et al. Micro-and sub-micromachining of type IIa single crystal diamond using a Ti: Sapphire femtosecond laser
Liu et al. Chemical etching mechanism and properties of microstructures in sapphire modified by femtosecond laser
Zhong et al. Effect on nanoscale damage precursors of fused silica with wet etching in KOH solutions
Kim et al. Effect of beam profile on nanosecond laser drilling of 4H-SIC
CN112461263A (zh) 一种金刚石陀螺谐振子纳米制造方法
Xia et al. A comparative study of direct laser ablation and laser-induced plasma-assisted ablation on glass surface
CN113070565B (zh) 纳秒激光辐照制备非晶合金表面大面积锥状微结构的方法
Dong et al. High-quality micro/nano structures of 4H-SiC patterning by vector femtosecond laser
Chen et al. Femtosecond laser-selective polishing of RB-SiC at a fluence between its two-phase threshold
Guo et al. Investigation of material removal characteristics of Si (100) wafer during linear field atmospheric-pressure plasma etching
Zhou et al. Controllable preparation of microtips array on (100) crystal plane of single‐crystal lanthanum hexaboride ceramic
Geng et al. Slicing of 4H‐SiC Wafers Combining Ultrafast Laser Irradiation and Bandgap‐Selective Photo‐Electrochemical Exfoliation
Xie et al. Femtosecond laser nanostructuring on a 4H-SiC surface by tailoring the induced self-assembled nanogratings
Sun et al. Laser drilling in silicon carbide and silicon carbide matrix composites
Li et al. Crack-free femtosecond laser processing of lithium niobate benefited by high substrate temperature
Jian et al. Fabrication of fused silica microstructure based on the femtosecond laser

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210806