CN114478015A - 氧化铝纤维增强硼硅酸盐掺杂碳化硅陶瓷复合材料的制备方法 - Google Patents

氧化铝纤维增强硼硅酸盐掺杂碳化硅陶瓷复合材料的制备方法 Download PDF

Info

Publication number
CN114478015A
CN114478015A CN202210157304.3A CN202210157304A CN114478015A CN 114478015 A CN114478015 A CN 114478015A CN 202210157304 A CN202210157304 A CN 202210157304A CN 114478015 A CN114478015 A CN 114478015A
Authority
CN
China
Prior art keywords
silicon carbide
alumina fiber
carbide ceramic
sintering
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210157304.3A
Other languages
English (en)
Inventor
吴迪
侯振华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Xinda Hangke New Material Technology Co ltd
Original Assignee
Jiangxi Xinda Hangke New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Xinda Hangke New Material Technology Co ltd filed Critical Jiangxi Xinda Hangke New Material Technology Co ltd
Priority to CN202210157304.3A priority Critical patent/CN114478015A/zh
Publication of CN114478015A publication Critical patent/CN114478015A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62881Coating fibres with metal salts, e.g. phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62886Coating the powders or the macroscopic reinforcing agents by wet chemical techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • C04B2235/5256Two-dimensional, e.g. woven structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Products (AREA)

Abstract

本发明提供氧化铝纤维增强硼硅酸盐掺杂碳化硅陶瓷复合材料,包括以下步骤:改性氧化铝纤维布的制备,浸渍、压制和烧结,空隙填充,增强。本发明还提供了上述方法制得的氧化铝纤维增强硼硅酸盐掺杂碳化硅陶瓷复合材料。本发明提供了碳化硅陶瓷材料内部设有改性氧化铝纤维布层,同时在纤维布层上沉积磷酸氢锆氧化铝纤维布层与碳化硅的接触面积大大提高,不仅提高了材料强度,而且提高了材料韧性,同时在碳化硅内掺杂石墨粉末等材料,形成硼硅酸盐玻璃,并利用硼酸饱和醇溶液、硅酸乙酯水解液填充于碳化硅陶瓷内部空隙中,硼硅酸盐玻璃不仅可起到填充作用,而且为相变材料,可起到储热作用,减缓陶瓷材料高温应用时急剧变化,提高其应用寿命。

Description

氧化铝纤维增强硼硅酸盐掺杂碳化硅陶瓷复合材料的制备 方法
技术领域
本发明属于新材料领域,特别涉及一种氧化铝纤维增强硼硅酸盐掺杂碳化硅陶瓷复合材料的制备方法及制得的氧化铝纤维增强硼硅酸盐掺杂碳化硅陶瓷复合材料。
背景技术
陶瓷材料所具有的诸多优点是其他材料所不能比拟的,但是它的脆性也是不可避免的致命缺点,陶瓷材料的脆性在很大程度上影响了材料性能的可靠性和一致性。陶瓷材料都是由离子键或共价键所组成的多晶结构,它缺乏能促使材料变形的滑移系统,材料一旦受到外加的负荷,再加上陶瓷工艺所很难避免的在材料表面所构成的微缺陷的存在,它们都有可能构成裂纹源,应力就会在这些裂纹的尖端集中,在陶瓷材料中又没有其他可以消耗外来能量的系统,只有以新的自由能予以交换,所谓新的自由能就是裂纹尖端的扩展所形成的新的表面所吸收的能量,这样的结果就造成裂纹的快速扩展而表现为所谓脆性断裂。由此可知,陶瓷材料的脆性是物质的化学键合性质和它的显微结构所决定的。因此要使碳化硅发挥其优异的耐磨性能,首先应该克服其脆性,即提高碳化硅陶瓷的韧性。
HfC陶瓷是目前熔点最高的超高温陶瓷之一,其熔点高达3930℃,热膨胀系数为6.7×10-6/K-1,对应其氧化物(HfO2)的熔点为2700℃,CTE为5.6×10-6/K-1。HfC晶体属于面心立方结构(FCC),空间群是Fm3m,碳原子占据密排Hf原子立方晶格的八面体间隙位置,所以其成键方式包含共价键、金属键以及离子键,导致其具有优异的力学性能。与其他碳化物相比,HfC具有较高的弹性模量,硬度以及强度。因此,HfC被广泛应用于工业切削刀具、航空航天器的热结构部件及高超声速飞行器及推进系统(例如导弹)、第四代核反应堆的包壳材料等。除此之外,由于HfC陶瓷中存在金属键,因此具有较高的电导率和热导率,在电催化产氢、高温电极材料、高温太阳能吸收剂及储能材料等领域也具有很好的应用前景。
然而,HfC陶瓷本身固有的极强的共价键和较低的自扩散系数,导致其存在难以烧结致密化和断裂韧性较低这两大缺点。再者,HfC在温度超过500℃的有氧环境中极易氧化生成HfO2,而且在超高温极端服役环境下抗烧蚀性能差,烧蚀后的氧化层结构疏松易被机械冲刷、剥离,导致该材料在氧化烧蚀后力学性能大幅度降低,限制了其作为高温结构材料在极端环境下应用因此,解决HfC陶瓷烧结问题、提高HfC陶瓷断裂韧性以及抗氧化、烧蚀性能成为其作为高温结构材料应用于极端环境下的关键。
发明内容
技术问题:为了解决现有技术的缺陷,本发明提供了一种氧化铝纤维增强硼硅酸盐掺杂碳化硅陶瓷复合材料的制备方法及制得的氧化铝纤维增强硼硅酸盐掺杂碳化硅陶瓷复合材料。
技术方案:本发明提供氧化铝纤维增强硼硅酸盐掺杂碳化硅陶瓷复合材料,包括以下步骤:
(1)改性氧化铝纤维布的制备:室温下将磷酸氢锆分散于水中得磷酸氢锆分散体;在真空以及室温下,采用磷酸氢锆分散体对氧化铝纤维布进行真空浸渍;将经过真空浸渍后的氧化铝纤维布晾干,即得改性氧化铝纤维布;
(2)浸渍、压制和烧结:将碳化硅粉末、石墨粉末、SiO2、B2O3、BaO、硼酸铝、K2O、TiO2和烧结助剂混合后球磨,再加入至乙醇中分散,得混合浆料;将改性氧化铝纤维布置于混合浆料中浸渍,用蒸汽干燥箱将其烘干;烘干后加入钢模中加压使压制成型,得碳化硅陶瓷素坯;将碳化硅陶瓷素坯置于真空炉中烧结,得碳化硅陶瓷材料;
(3)空隙填充:将步骤(2)的碳化硅陶瓷材料置于硼酸饱和醇溶液中浸渍,取出烘干,再置于硅酸乙酯水解液中浸渍,取出烘干,再置于真空炉中中烧结;
(4)增强:将步骤(3)的碳化硅陶瓷材料置于反应釜中,通入惰性气体,加压至2-3MPa,以5-10℃/min的速度升温至1500-1600℃,保温2-4h,随炉冷却至600-850℃并保温1-2h;以惰性气体为载气,向反应釜中通入聚碳硅烷;当反应釜内聚碳硅烷浓度达到0.05-0.5mol/L时,以5-10℃/min的速率加热至1200-1400℃并保温4-8h;随后停止通入聚碳硅烷,保持惰性气体流量100-200ml/min,随炉冷却至室温;即得氧化铝纤维增强碳化硅陶瓷材料。
步骤(1)中,磷酸氢锆分散体中还包括乙二胺四乙酸,调pH至3-4;磷酸氢锆、水的用量比为1g:(100-300)mL;晾干条件为:室温下放置10~15h或在50~70℃下保温1~2h。
步骤(2)中,碳化硅粉末、石墨粉末、SiO2、B2O3、BaO、硼酸铝、K2O、TiO2和烧结助剂的重量比为1000:(100-200):(40~50):(10~15):(2~5):(1~5):(0.5~3):(0.5~2);烧结助剂的重量为碳化硅粉末、石墨粉末、SiO2、B2O3、BaO、硼酸铝、K2O、TiO2的总重量的2-4%;乙醇重量为碳化硅粉末、石墨粉末、SiO2、B2O3、BaO、硼酸铝、K2O、TiO2的总重量的1-3倍;氧化铝纤维布与混合浆料的重量比为10:(40-80)。
步骤(2)中,浸渍时间为1-2h;压制压力为150-250MPa/cm2,压制时间为1-10s;烧结温度为2100-2200℃,烧结时间为1-3h。
步骤(3)中,硼酸饱和醇溶液的制备方法为:将硼酸粉末和甲醇于温度为60-70℃的油浴下恒温搅拌1-2h,即得硼酸饱和醇溶液,所述硼酸粉末和甲醇的用量比为(10-20)g:100ml;所述硅酸乙酯水解液的制备方法为:将硅酸乙酯、蒸馏水和甲醇混匀,滴入浓盐酸调pH 3-4,室温搅拌1-2h,即得硅酸乙酯水解液。
步骤(3)中,硼酸饱和醇溶液中浸渍时间为20-40h,烘干时间为0.5-1h,烘干温度为150-180℃;硅酸乙酯水解液中浸渍时间为20-40h,烘干时间为0.5-1h,烘干温度为150-180℃;烧结条件为:5~10℃/min的升温速率,将真空炉升温至1000~1200℃,保温烧结1-2h。
步骤(4)中,所述聚碳硅烷的制备方法为:
(a)将纳米勃姆石均匀分散在KH550的水溶液中,超声震荡0.5-2小时,得混合物1;
(b)聚二甲基硅烷PDMS蒸馏,收集103℃的馏分,干燥;随后向其中滴加有机溶剂并不断搅拌,直至有机溶剂与聚二甲基硅烷PDMS质量比为(5-15):100,记为溶液2;
(c)将混合物1倒入溶液2中,60-80℃水浴加热,搅拌2-6小时,得混合物3;
(d)将混合物3放入反应釜,通入CO2和惰性气体的混合气体,加压至5-10MPa;按照一定的升温程序升温至500-520℃,保温12-24小时;随炉冷却至室温,得粗产物4;
(e)将粗产物4溶解在有机溶剂中,过滤,抽真空减压蒸馏,得产物聚碳硅烷PCS。
本发明还提供了上述方法制得的氧化铝纤维增强硼硅酸盐掺杂碳化硅陶瓷复合材料。
本发明还提供了氧化铝纤维增强硼硅酸盐掺杂碳化硅陶瓷复合材料,包括:分散有硼硅酸盐玻璃的碳化硅材料,碳化硅材料内设置的多层改性氧化铝纤维布层,所述改性氧化铝纤维布为表面分散磷酸氢锆的氧化铝纤维布。
有益效果:本发明提供了碳化硅陶瓷材料内部设有改性氧化铝纤维布层,同时在纤维布层上沉积磷酸氢锆氧化铝纤维布层与碳化硅的接触面积大大提高,不仅提高了材料强度,而且提高了材料韧性,同时在碳化硅内掺杂石墨粉末、SiO2、B2O3、BaO、硼酸铝、K2O、TiO2等材料,形成硼硅酸盐玻璃,并利用硼酸饱和醇溶液、硅酸乙酯水解液填充于碳化硅陶瓷内部空隙中,硼硅酸盐玻璃不仅可起到填充作用,而且为相变材料,可起到储热作用,减缓陶瓷材料高温应用时急剧变化,提高其应用寿命。
具体实施方式
下面对本发明作出进一步说明。
本发明中,使用的烧结助剂为MgO。
实施例1
氧化铝纤维增强硼硅酸盐掺杂碳化硅陶瓷复合材料,包括以下步骤:
(1)改性氧化铝纤维布的制备:室温下将磷酸氢锆分散于水中得磷酸氢锆分散体;在真空以及室温下,采用磷酸氢锆分散体对氧化铝纤维布进行真空浸渍;将经过真空浸渍后的氧化铝纤维布晾干,即得改性氧化铝纤维布;
磷酸氢锆分散体中还包括乙二胺四乙酸,调pH至3-4;磷酸氢锆、水的用量比为1g:200mL;晾干条件为:室温下放置12h或在60℃下保温1.5h。
(2)浸渍、压制和烧结:将碳化硅粉末、石墨粉末、SiO2、B2O3、BaO、硼酸铝、K2O、TiO2和烧结助剂混合后球磨,再加入至乙醇中分散,得混合浆料;将改性氧化铝纤维布置于混合浆料中浸渍,用蒸汽干燥箱将其烘干;烘干后加入钢模中加压使压制成型,得碳化硅陶瓷素坯;将碳化硅陶瓷素坯置于真空炉中烧结,得碳化硅陶瓷材料;
碳化硅粉末、石墨粉末、SiO2、B2O3、BaO、硼酸铝、K2O、TiO2和烧结助剂的重量比为1000:150:45:12:3:3:2:1;烧结助剂的重量为碳化硅粉末、石墨粉末、SiO2、B2O3、BaO、硼酸铝、K2O、TiO2的总重量的3%;乙醇重量为碳化硅粉末、石墨粉末、SiO2、B2O3、BaO、硼酸铝、K2O、TiO2的总重量的2倍;氧化铝纤维布与混合浆料的重量比为10:60。
浸渍时间为1.5h;压制压力为200MPa/cm2,压制时间为5s;烧结温度为2150℃,烧结时间为2h。
(3)空隙填充:将步骤(2)的碳化硅陶瓷材料置于硼酸饱和醇溶液中浸渍,取出烘干,再置于硅酸乙酯水解液中浸渍,取出烘干,再置于真空炉中中烧结;
硼酸饱和醇溶液的制备方法为:将硼酸粉末和甲醇于温度为65℃的油浴下恒温搅拌1.5h,即得硼酸饱和醇溶液,所述硼酸粉末和甲醇的用量比为15g:100ml;所述硅酸乙酯水解液的制备方法为:将硅酸乙酯、蒸馏水和甲醇混匀,滴入浓盐酸调pH 3-4,室温搅拌1.5h,即得硅酸乙酯水解液。
硼酸饱和醇溶液中浸渍时间为30h,烘干时间为0.5h,烘干温度为160℃;硅酸乙酯水解液中浸渍时间为30h,烘干时间为0.5h,烘干温度为160℃;烧结条件为:8℃/min的升温速率,将真空炉升温至1100℃,保温烧结1.5h。
(4)增强:将步骤(3)的碳化硅陶瓷材料置于反应釜中,通入惰性气体,加压至2.5MPa,以8℃/min的速度升温至1550℃,保温3h,随炉冷却至750℃并保温1.5h;以惰性气体为载气,向反应釜中通入聚碳硅烷;当反应釜内聚碳硅烷浓度达到0.3mol/L时,以8℃/min的速率加热至1300℃并保温6h;随后停止通入聚碳硅烷,保持惰性气体流量150ml/min,随炉冷却至室温;即得氧化铝纤维增强碳化硅陶瓷材料。
所述聚碳硅烷的制备方法为:
(a)将纳米勃姆石均匀分散在KH550的水溶液中,超声震荡1小时,得混合物1;
(b)聚二甲基硅烷PDMS蒸馏,收集103℃的馏分,干燥;随后向其中滴加有机溶剂并不断搅拌,直至有机溶剂与聚二甲基硅烷PDMS质量比为10:100,记为溶液2;
(c)将混合物1倒入溶液2中,70℃水浴加热,搅拌4小时,得混合物3;
(d)将混合物3放入反应釜,通入CO2和惰性气体的混合气体,加压至8MPa;按照一定的升温程序升温至510℃,保温18小时;随炉冷却至室温,得粗产物4;
(e)将粗产物4溶解在有机溶剂中,过滤,抽真空减压蒸馏,得产物聚碳硅烷PCS。
实施例2
氧化铝纤维增强硼硅酸盐掺杂碳化硅陶瓷复合材料,包括以下步骤:
(1)改性氧化铝纤维布的制备:室温下将磷酸氢锆分散于水中得磷酸氢锆分散体;在真空以及室温下,采用磷酸氢锆分散体对氧化铝纤维布进行真空浸渍;将经过真空浸渍后的氧化铝纤维布晾干,即得改性氧化铝纤维布;
磷酸氢锆分散体中还包括乙二胺四乙酸,调pH至3-4;磷酸氢锆、水的用量比为1g:(100-300)mL;晾干条件为:室温下放置10~15h或在50~70℃下保温1~2h。
(2)浸渍、压制和烧结:将碳化硅粉末、石墨粉末、SiO2、B2O3、BaO、硼酸铝、K2O、TiO2和烧结助剂混合后球磨,再加入至乙醇中分散,得混合浆料;将改性氧化铝纤维布置于混合浆料中浸渍,用蒸汽干燥箱将其烘干;烘干后加入钢模中加压使压制成型,得碳化硅陶瓷素坯;将碳化硅陶瓷素坯置于真空炉中烧结,得碳化硅陶瓷材料;
碳化硅粉末、石墨粉末、SiO2、B2O3、BaO、硼酸铝、K2O、TiO2和烧结助剂的重量比为1000:(100-200):(40~50):(10~15):(2~5):(1~5):(0.5~3):(0.5~2);烧结助剂的重量为碳化硅粉末、石墨粉末、SiO2、B2O3、BaO、硼酸铝、K2O、TiO2的总重量的2-4%;乙醇重量为碳化硅粉末、石墨粉末、SiO2、B2O3、BaO、硼酸铝、K2O、TiO2的总重量的1-3倍;氧化铝纤维布与混合浆料的重量比为10:(40-80)。
浸渍时间为1-2h;压制压力为150-250MPa/cm2,压制时间为1-10s;烧结温度为2100-2200℃,烧结时间为1-3h。
(3)空隙填充:将步骤(2)的碳化硅陶瓷材料置于硼酸饱和醇溶液中浸渍,取出烘干,再置于硅酸乙酯水解液中浸渍,取出烘干,再置于真空炉中中烧结;
硼酸饱和醇溶液的制备方法为:将硼酸粉末和甲醇于温度为60-70℃的油浴下恒温搅拌1-2h,即得硼酸饱和醇溶液,所述硼酸粉末和甲醇的用量比为(10-20)g:100ml;所述硅酸乙酯水解液的制备方法为:将硅酸乙酯、蒸馏水和甲醇混匀,滴入浓盐酸调pH3-4,室温搅拌1-2h,即得硅酸乙酯水解液。
硼酸饱和醇溶液中浸渍时间为20-40h,烘干时间为0.5-1h,烘干温度为150-180℃;硅酸乙酯水解液中浸渍时间为20-40h,烘干时间为0.5-1h,烘干温度为150-180℃;烧结条件为:5~10℃/min的升温速率,将真空炉升温至1000~1200℃,保温烧结1-2h。
(4)增强:将步骤(3)的碳化硅陶瓷材料置于反应釜中,通入惰性气体,加压至2-3MPa,以5-10℃/min的速度升温至1500-1600℃,保温2-4h,随炉冷却至600-850℃并保温1-2h;以惰性气体为载气,向反应釜中通入聚碳硅烷;当反应釜内聚碳硅烷浓度达到0.05-0.5mol/L时,以5-10℃/min的速率加热至1200-1400℃并保温4-8h;随后停止通入聚碳硅烷,保持惰性气体流量100-200ml/min,随炉冷却至室温;即得氧化铝纤维增强碳化硅陶瓷材料。
所述聚碳硅烷的制备方法为:
(a)将纳米勃姆石均匀分散在KH550的水溶液中,超声震荡2小时,得混合物1;
(b)聚二甲基硅烷PDMS蒸馏,收集103℃的馏分,干燥;随后向其中滴加有机溶剂并不断搅拌,直至有机溶剂与聚二甲基硅烷PDMS质量比为15:100,记为溶液2;
(c)将混合物1倒入溶液2中,60℃水浴加热,搅拌6小时,得混合物3;
(d)将混合物3放入反应釜,通入CO2和惰性气体的混合气体,加压至5MPa;按照一定的升温程序升温至520℃,保温24小时;随炉冷却至室温,得粗产物4;
(e)将粗产物4溶解在有机溶剂中,过滤,抽真空减压蒸馏,得产物聚碳硅烷PCS。
实施例3
氧化铝纤维增强硼硅酸盐掺杂碳化硅陶瓷复合材料,包括以下步骤:
(1)改性氧化铝纤维布的制备:室温下将磷酸氢锆分散于水中得磷酸氢锆分散体;在真空以及室温下,采用磷酸氢锆分散体对氧化铝纤维布进行真空浸渍;将经过真空浸渍后的氧化铝纤维布晾干,即得改性氧化铝纤维布;
磷酸氢锆分散体中还包括乙二胺四乙酸,调pH至3-4;磷酸氢锆、水的用量比为1g:(100-300)mL;晾干条件为:室温下放置10~15h或在50~70℃下保温1~2h。
(2)浸渍、压制和烧结:将碳化硅粉末、石墨粉末、SiO2、B2O3、BaO、硼酸铝、K2O、TiO2和烧结助剂混合后球磨,再加入至乙醇中分散,得混合浆料;将改性氧化铝纤维布置于混合浆料中浸渍,用蒸汽干燥箱将其烘干;烘干后加入钢模中加压使压制成型,得碳化硅陶瓷素坯;将碳化硅陶瓷素坯置于真空炉中烧结,得碳化硅陶瓷材料;
碳化硅粉末、石墨粉末、SiO2、B2O3、BaO、硼酸铝、K2O、TiO2和烧结助剂的重量比为1000:(100-200):(40~50):(10~15):(2~5):(1~5):(0.5~3):(0.5~2);烧结助剂的重量为碳化硅粉末、石墨粉末、SiO2、B2O3、BaO、硼酸铝、K2O、TiO2的总重量的2-4%;乙醇重量为碳化硅粉末、石墨粉末、SiO2、B2O3、BaO、硼酸铝、K2O、TiO2的总重量的1-3倍;氧化铝纤维布与混合浆料的重量比为10:(40-80)。
浸渍时间为1-2h;压制压力为150-250MPa/cm2,压制时间为1-10s;烧结温度为2100-2200℃,烧结时间为1-3h。
(3)空隙填充:将步骤(2)的碳化硅陶瓷材料置于硼酸饱和醇溶液中浸渍,取出烘干,再置于硅酸乙酯水解液中浸渍,取出烘干,再置于真空炉中中烧结;
硼酸饱和醇溶液的制备方法为:将硼酸粉末和甲醇于温度为60-70℃的油浴下恒温搅拌1-2h,即得硼酸饱和醇溶液,所述硼酸粉末和甲醇的用量比为(10-20)g:100ml;所述硅酸乙酯水解液的制备方法为:将硅酸乙酯、蒸馏水和甲醇混匀,滴入浓盐酸调pH3-4,室温搅拌1-2h,即得硅酸乙酯水解液。
硼酸饱和醇溶液中浸渍时间为20-40h,烘干时间为0.5-1h,烘干温度为150-180℃;硅酸乙酯水解液中浸渍时间为20-40h,烘干时间为0.5-1h,烘干温度为150-180℃;烧结条件为:5~10℃/min的升温速率,将真空炉升温至1000~1200℃,保温烧结1-2h。
(4)增强:将步骤(3)的碳化硅陶瓷材料置于反应釜中,通入惰性气体,加压至2-3MPa,以5-10℃/min的速度升温至1500-1600℃,保温2-4h,随炉冷却至600-850℃并保温1-2h;以惰性气体为载气,向反应釜中通入聚碳硅烷;当反应釜内聚碳硅烷浓度达到0.05-0.5mol/L时,以5-10℃/min的速率加热至1200-1400℃并保温4-8h;随后停止通入聚碳硅烷,保持惰性气体流量100-200ml/min,随炉冷却至室温;即得氧化铝纤维增强碳化硅陶瓷材料。
所述聚碳硅烷的制备方法为:
(a)将纳米勃姆石均匀分散在KH550的水溶液中,超声震荡0.5小时,得混合物1;
(b)聚二甲基硅烷PDMS蒸馏,收集103℃的馏分,干燥;随后向其中滴加有机溶剂并不断搅拌,直至有机溶剂与聚二甲基硅烷PDMS质量比为5:100,记为溶液2;
(c)将混合物1倒入溶液2中,80℃水浴加热,搅拌2小时,得混合物3;
(d)将混合物3放入反应釜,通入CO2和惰性气体的混合气体,加压至10MPa;按照一定的升温程序升温至500℃,保温12小时;随炉冷却至室温,得粗产物4;
(e)将粗产物4溶解在有机溶剂中,过滤,抽真空减压蒸馏,得产物聚碳硅烷PCS。
对比例1
碳化硅陶瓷复合材料,包括以下步骤:
(1)浸渍、压制和烧结:将碳化硅粉末、石墨粉末、SiO2、B2O3、BaO、硼酸铝、K2O、TiO2和烧结助剂混合后球磨,再加入至乙醇中分散,得混合浆料;将氧化铝纤维布置于混合浆料中浸渍,用蒸汽干燥箱将其烘干;烘干后加入钢模中加压使压制成型,得碳化硅陶瓷素坯;将碳化硅陶瓷素坯置于真空炉中烧结,得碳化硅陶瓷材料;
碳化硅粉末、石墨粉末、SiO2、B2O3、BaO、硼酸铝、K2O、TiO2和烧结助剂的重量比为1000:150:45:12:3:3:2:1;烧结助剂的重量为碳化硅粉末、石墨粉末、SiO2、B2O3、BaO、硼酸铝、K2O、TiO2的总重量的3%;乙醇重量为碳化硅粉末、石墨粉末、SiO2、B2O3、BaO、硼酸铝、K2O、TiO2的总重量的2倍;氧化铝纤维布与混合浆料的重量比为10:60。
浸渍时间为1.5h;压制压力为200MPa/cm2,压制时间为5s;烧结温度为2150℃,烧结时间为2h。
(2)空隙填充:将步骤(1)的碳化硅陶瓷材料置于硼酸饱和醇溶液中浸渍,取出烘干,再置于硅酸乙酯水解液中浸渍,取出烘干,再置于真空炉中中烧结;
硼酸饱和醇溶液的制备方法为:将硼酸粉末和甲醇于温度为65℃的油浴下恒温搅拌1.5h,即得硼酸饱和醇溶液,所述硼酸粉末和甲醇的用量比为15g:100ml;所述硅酸乙酯水解液的制备方法为:将硅酸乙酯、蒸馏水和甲醇混匀,滴入浓盐酸调pH 3-4,室温搅拌1.5h,即得硅酸乙酯水解液。
硼酸饱和醇溶液中浸渍时间为30h,烘干时间为0.5h,烘干温度为160℃;硅酸乙酯水解液中浸渍时间为30h,烘干时间为0.5h,烘干温度为160℃;烧结条件为:8℃/min的升温速率,将真空炉升温至1100℃,保温烧结1.5h。
(3)增强:将步骤(2)的碳化硅陶瓷材料置于反应釜中,通入惰性气体,加压至2.5MPa,以8℃/min的速度升温至1550℃,保温3h,随炉冷却至750℃并保温1.5h;以惰性气体为载气,向反应釜中通入聚碳硅烷;当反应釜内聚碳硅烷浓度达到0.3mol/L时,以8℃/min的速率加热至1300℃并保温6h;随后停止通入聚碳硅烷,保持惰性气体流量150ml/min,随炉冷却至室温;即得氧化铝纤维增强碳化硅陶瓷材料。
所述聚碳硅烷的制备方法为:
(a)将纳米勃姆石均匀分散在KH550的水溶液中,超声震荡1小时,得混合物1;
(b)聚二甲基硅烷PDMS蒸馏,收集103℃的馏分,干燥;随后向其中滴加有机溶剂并不断搅拌,直至有机溶剂与聚二甲基硅烷PDMS质量比为10:100,记为溶液2;
(c)将混合物1倒入溶液2中,70℃水浴加热,搅拌4小时,得混合物3;
(d)将混合物3放入反应釜,通入CO2和惰性气体的混合气体,加压至8MPa;按照一定的升温程序升温至510℃,保温18小时;随炉冷却至室温,得粗产物4;
(e)将粗产物4溶解在有机溶剂中,过滤,抽真空减压蒸馏,得产物聚碳硅烷PCS。
对比例2
碳化硅陶瓷复合材料,包括以下步骤:
(1)浸渍、压制和烧结:将碳化硅粉末、石墨粉末、SiO2、B2O3、BaO、硼酸铝、K2O、TiO2和烧结助剂混合后球磨,再加入至乙醇中分散,得混合浆料;将氧化铝纤维布置于混合浆料中浸渍,用蒸汽干燥箱将其烘干;烘干后加入钢模中加压使压制成型,得碳化硅陶瓷素坯;将碳化硅陶瓷素坯置于真空炉中烧结,得碳化硅陶瓷材料;
碳化硅粉末、石墨粉末、SiO2、B2O3、BaO、硼酸铝、K2O、TiO2和烧结助剂的重量比为1000:150:45:12:3:3:2:1;烧结助剂的重量为碳化硅粉末、石墨粉末、SiO2、B2O3、BaO、硼酸铝、K2O、TiO2的总重量的3%;乙醇重量为碳化硅粉末、石墨粉末、SiO2、B2O3、BaO、硼酸铝、K2O、TiO2的总重量的2倍;氧化铝纤维布与混合浆料的重量比为10:60。
浸渍时间为1.5h;压制压力为200MPa/cm2,压制时间为5s;烧结温度为2150℃,烧结时间为2h。
(2)增强:将步骤(2)的碳化硅陶瓷材料置于反应釜中,通入惰性气体,加压至2.5MPa,以8℃/min的速度升温至1550℃,保温3h,随炉冷却至750℃并保温1.5h;以惰性气体为载气,向反应釜中通入聚碳硅烷;当反应釜内聚碳硅烷浓度达到0.3mol/L时,以8℃/min的速率加热至1300℃并保温6h;随后停止通入聚碳硅烷,保持惰性气体流量150ml/min,随炉冷却至室温;即得氧化铝纤维增强碳化硅陶瓷材料。
所述聚碳硅烷的制备方法为:
(a)将纳米勃姆石均匀分散在KH550的水溶液中,超声震荡1小时,得混合物1;
(b)聚二甲基硅烷PDMS蒸馏,收集103℃的馏分,干燥;随后向其中滴加有机溶剂并不断搅拌,直至有机溶剂与聚二甲基硅烷PDMS质量比为10:100,记为溶液2;
(c)将混合物1倒入溶液2中,70℃水浴加热,搅拌4小时,得混合物3;
(d)将混合物3放入反应釜,通入CO2和惰性气体的混合气体,加压至8MPa;按照一定的升温程序升温至510℃,保温18小时;随炉冷却至室温,得粗产物4;
(e)将粗产物4溶解在有机溶剂中,过滤,抽真空减压蒸馏,得产物聚碳硅烷PCS。
对比例3
碳化硅陶瓷复合材料,包括以下步骤:
浸渍、压制和烧结:将碳化硅粉末、石墨粉末、SiO2、B2O3、BaO、硼酸铝、K2O、TiO2和烧结助剂混合后球磨,再加入至乙醇中分散,得混合浆料;将氧化铝纤维布置于混合浆料中浸渍,用蒸汽干燥箱将其烘干;烘干后加入钢模中加压使压制成型,得碳化硅陶瓷素坯;将碳化硅陶瓷素坯置于真空炉中烧结,得碳化硅陶瓷材料;
碳化硅粉末、石墨粉末、SiO2、B2O3、BaO、硼酸铝、K2O、TiO2和烧结助剂的重量比为1000:150:45:12:3:3:2:1;烧结助剂的重量为碳化硅粉末、石墨粉末、SiO2、B2O3、BaO、硼酸铝、K2O、TiO2的总重量的3%;乙醇重量为碳化硅粉末、石墨粉末、SiO2、B2O3、BaO、硼酸铝、K2O、TiO2的总重量的2倍;氧化铝纤维布与混合浆料的重量比为10:60。
浸渍时间为1.5h;压制压力为200MPa/cm2,压制时间为5s;烧结温度为2150℃,烧结时间为2h。
实验例
测试实施例1至3以及对比例1至3的产品性能。结果如下:
Figure BDA0003512707930000111
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (9)

1.氧化铝纤维增强硼硅酸盐掺杂碳化硅陶瓷复合材料,其特征在于:包括以下步骤:
(1)改性氧化铝纤维布的制备:室温下将磷酸氢锆分散于水中得磷酸氢锆分散体;在真空以及室温下,采用磷酸氢锆分散体对氧化铝纤维布进行真空浸渍;将经过真空浸渍后的氧化铝纤维布晾干,即得改性氧化铝纤维布;
(2)浸渍、压制和烧结:将碳化硅粉末、石墨粉末、SiO2、B2O3、BaO、硼酸铝、K2O、TiO2和烧结助剂混合后球磨,再加入至乙醇中分散,得混合浆料;将改性氧化铝纤维布置于混合浆料中浸渍,用蒸汽干燥箱将其烘干;烘干后加入钢模中加压使压制成型,得碳化硅陶瓷素坯;将碳化硅陶瓷素坯置于真空炉中烧结,得碳化硅陶瓷材料;
(3)空隙填充:将步骤(2)的碳化硅陶瓷材料置于硼酸饱和醇溶液中浸渍,取出烘干,再置于硅酸乙酯水解液中浸渍,取出烘干,再置于真空炉中中烧结;
(4)增强:将步骤(3)的碳化硅陶瓷材料置于反应釜中,通入惰性气体,加压至2-3MPa,以5-10℃/min的速度升温至1500-1600℃,保温2-4h,随炉冷却至600-850℃并保温1-2h;以惰性气体为载气,向反应釜中通入聚碳硅烷;当反应釜内聚碳硅烷浓度达到0.05-0.5mol/L时,以5-10℃/min的速率加热至1200-1400℃并保温4-8h;随后停止通入聚碳硅烷,保持惰性气体流量100-200ml/min,随炉冷却至室温;即得氧化铝纤维增强碳化硅陶瓷材料。
2.根据权利要求1所述的氧化铝纤维增强硼硅酸盐掺杂碳化硅陶瓷复合材料,其特征在于:步骤(1)中,磷酸氢锆分散体中还包括乙二胺四乙酸,调pH至3-4;磷酸氢锆、水的用量比为1g:(100-300)mL;晾干条件为:室温下放置10~15h或在50~70℃下保温1~2h。
3.根据权利要求1所述的氧化铝纤维增强硼硅酸盐掺杂碳化硅陶瓷复合材料,其特征在于:步骤(2)中,碳化硅粉末、石墨粉末、SiO2、B2O3、BaO、硼酸铝、K2O、TiO2和烧结助剂的重量比为1000:(100-200):(40~50):(10~15):(2~5):(1~5):(0.5~3):(0.5~2);烧结助剂的重量为碳化硅粉末、石墨粉末、SiO2、B2O3、BaO、硼酸铝、K2O、TiO2的总重量的2-4%;乙醇重量为碳化硅粉末、石墨粉末、SiO2、B2O3、BaO、硼酸铝、K2O、TiO2的总重量的1-3倍;氧化铝纤维布与混合浆料的重量比为10:(40-80)。
4.根据权利要求1所述的氧化铝纤维增强硼硅酸盐掺杂碳化硅陶瓷复合材料,其特征在于:步骤(2)中,浸渍时间为1-2h;压制压力为150-250MPa/cm2,压制时间为1-10s;烧结温度为2100-2200℃,烧结时间为1-3h。
5.根据权利要求1所述的氧化铝纤维增强硼硅酸盐掺杂碳化硅陶瓷复合材料,其特征在于:步骤(3)中,硼酸饱和醇溶液的制备方法为:将硼酸粉末和甲醇于温度为60-70℃的油浴下恒温搅拌1-2h,即得硼酸饱和醇溶液,所述硼酸粉末和甲醇的用量比为(10-20)g:100ml;所述硅酸乙酯水解液的制备方法为:将硅酸乙酯、蒸馏水和甲醇混匀,滴入浓盐酸调pH 3-4,室温搅拌1-2h,即得硅酸乙酯水解液。
6.根据权利要求1所述的氧化铝纤维增强硼硅酸盐掺杂碳化硅陶瓷复合材料,其特征在于:步骤(3)中,硼酸饱和醇溶液中浸渍时间为20-40h,烘干时间为0.5-1h,烘干温度为150-180℃;硅酸乙酯水解液中浸渍时间为20-40h,烘干时间为0.5-1h,烘干温度为150-180℃;烧结条件为:5~10℃/min的升温速率,将真空炉升温至1000~1200℃,保温烧结1-2h。
7.根据权利要求1所述的氧化铝纤维增强硼硅酸盐掺杂碳化硅陶瓷复合材料,其特征在于:步骤(4)中,所述聚碳硅烷的制备方法为:
(a)将纳米勃姆石均匀分散在KH550的水溶液中,超声震荡0.5-2小时,得混合物1;
(b)聚二甲基硅烷PDMS蒸馏,收集103℃的馏分,干燥;随后向其中滴加有机溶剂并不断搅拌,直至有机溶剂与聚二甲基硅烷PDMS质量比为(5-15):100,记为溶液2;
(c)将混合物1倒入溶液2中,60-80℃水浴加热,搅拌2-6小时,得混合物3;
(d)将混合物3放入反应釜,通入CO2和惰性气体的混合气体,加压至5-10MPa;按照一定的升温程序升温至500-520℃,保温12-24小时;随炉冷却至室温,得粗产物4;
(e)将粗产物4溶解在有机溶剂中,过滤,抽真空减压蒸馏,得产物聚碳硅烷PCS。
8.根据权利要求1所述的氧化铝纤维增强硼硅酸盐掺杂碳化硅陶瓷复合材料,其特征在于:权利要求1至7任一项方法制得的氧化铝纤维增强硼硅酸盐掺杂碳化硅陶瓷复合材料。
9.氧化铝纤维增强硼硅酸盐掺杂碳化硅陶瓷复合材料,其特征在于,包括:分散有硼硅酸盐玻璃的碳化硅材料,碳化硅材料内设置的多层改性氧化铝纤维布层,所述改性氧化铝纤维布为表面分散磷酸氢锆的氧化铝纤维布。
CN202210157304.3A 2022-02-21 2022-02-21 氧化铝纤维增强硼硅酸盐掺杂碳化硅陶瓷复合材料的制备方法 Pending CN114478015A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210157304.3A CN114478015A (zh) 2022-02-21 2022-02-21 氧化铝纤维增强硼硅酸盐掺杂碳化硅陶瓷复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210157304.3A CN114478015A (zh) 2022-02-21 2022-02-21 氧化铝纤维增强硼硅酸盐掺杂碳化硅陶瓷复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN114478015A true CN114478015A (zh) 2022-05-13

Family

ID=81481900

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210157304.3A Pending CN114478015A (zh) 2022-02-21 2022-02-21 氧化铝纤维增强硼硅酸盐掺杂碳化硅陶瓷复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN114478015A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114890795A (zh) * 2022-06-01 2022-08-12 湖南博翔新材料有限公司 一种碳化硅纤维增强玻璃陶瓷复合材料及其制备方法
CN115928264A (zh) * 2022-11-29 2023-04-07 湖南泽睿新材料有限公司 一种含金属近化学计量比连续碳化硅纤维的制备方法
CN116102333A (zh) * 2022-08-10 2023-05-12 航天特种材料及工艺技术研究所 一种耐高温高弹性碳化硅@氧化物陶瓷核壳纳米纤维气凝胶材料及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO845015L (no) * 1983-12-14 1985-06-17 Kennecott Corp Sintret, keramisk komposittlegeme og fremgangsmaate for fremstilling av dette
JPS63288974A (ja) * 1987-05-22 1988-11-25 Ishikawajima Harima Heavy Ind Co Ltd 繊維強化セラミックスの製造方法
CA2189516A1 (en) * 1995-11-06 1997-05-07 Timothy Edward Easler Sintering alpha silicon carbide powder with multiple sintering aids
CN101560104A (zh) * 2009-05-12 2009-10-21 宁波欧翔精细陶瓷技术有限公司 碳化硅陶瓷管或棒的制备方法
CN102745994A (zh) * 2012-07-26 2012-10-24 武汉科技大学 一种碳化硅-碳复合材料及其制备方法
CN103193509A (zh) * 2013-03-26 2013-07-10 西北工业大学 一种利用硼硅玻璃对碳化硅基复合材料改性的方法
CN108706976A (zh) * 2018-05-29 2018-10-26 安徽尚游文化传媒有限公司 用于轴承的碳化硅陶瓷材料及其制备方法
CN111825459A (zh) * 2019-04-23 2020-10-27 中国科学院金属研究所 防弹装甲用碳化硅/石墨烯仿生复合材料及其制备方法
CN113896538A (zh) * 2021-10-08 2022-01-07 江西信达航科新材料科技有限公司 氧化铝纤维增强碳化硅陶瓷材料的制备方法及制得的氧化铝纤维增强碳化硅陶瓷材料

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO845015L (no) * 1983-12-14 1985-06-17 Kennecott Corp Sintret, keramisk komposittlegeme og fremgangsmaate for fremstilling av dette
JPS63288974A (ja) * 1987-05-22 1988-11-25 Ishikawajima Harima Heavy Ind Co Ltd 繊維強化セラミックスの製造方法
CA2189516A1 (en) * 1995-11-06 1997-05-07 Timothy Edward Easler Sintering alpha silicon carbide powder with multiple sintering aids
EP0771769A2 (en) * 1995-11-06 1997-05-07 Dow Corning Corporation Sintering alpha silicon carbide powder with multiple sintering aids
CN101560104A (zh) * 2009-05-12 2009-10-21 宁波欧翔精细陶瓷技术有限公司 碳化硅陶瓷管或棒的制备方法
CN102745994A (zh) * 2012-07-26 2012-10-24 武汉科技大学 一种碳化硅-碳复合材料及其制备方法
CN103193509A (zh) * 2013-03-26 2013-07-10 西北工业大学 一种利用硼硅玻璃对碳化硅基复合材料改性的方法
CN108706976A (zh) * 2018-05-29 2018-10-26 安徽尚游文化传媒有限公司 用于轴承的碳化硅陶瓷材料及其制备方法
CN111825459A (zh) * 2019-04-23 2020-10-27 中国科学院金属研究所 防弹装甲用碳化硅/石墨烯仿生复合材料及其制备方法
CN113896538A (zh) * 2021-10-08 2022-01-07 江西信达航科新材料科技有限公司 氧化铝纤维增强碳化硅陶瓷材料的制备方法及制得的氧化铝纤维增强碳化硅陶瓷材料

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HANQIN LIANG等: ""In situ toughening of pressureless liquid phase sintered α-SiC by using TiO2"", 《CERAMICS INTERNATIONAL》 *
孙文周: ""碳化硅基陶瓷材料高温相平衡研究"", 《万方知识平台》 *
杨新领等: "碳化硅/石墨复合陶瓷密封材料的显微结构与性能", 《硅酸盐学报》 *
王少锋等: ""烧结助剂对高气孔率SiC陶瓷结构和性能的影响"", 《中国有色金属学报》 *
邝生鲁等: "《现代精细化工—高新技术与产品合成工艺》", 31 December 1997 *
韩永军等: ""石墨含量对碳化硅复合材料机械性能及摩擦性能的影响"", 《陶瓷学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114890795A (zh) * 2022-06-01 2022-08-12 湖南博翔新材料有限公司 一种碳化硅纤维增强玻璃陶瓷复合材料及其制备方法
CN116102333A (zh) * 2022-08-10 2023-05-12 航天特种材料及工艺技术研究所 一种耐高温高弹性碳化硅@氧化物陶瓷核壳纳米纤维气凝胶材料及其制备方法
CN115928264A (zh) * 2022-11-29 2023-04-07 湖南泽睿新材料有限公司 一种含金属近化学计量比连续碳化硅纤维的制备方法
CN115928264B (zh) * 2022-11-29 2024-02-20 湖南泽睿新材料有限公司 一种含金属近化学计量比连续碳化硅纤维的制备方法

Similar Documents

Publication Publication Date Title
CN114478015A (zh) 氧化铝纤维增强硼硅酸盐掺杂碳化硅陶瓷复合材料的制备方法
CN107032816B (zh) 一种碳化硅纳米线增强C/C-SiC-ZrB2陶瓷基复合材料的制备方法
CN101863665B (zh) 自愈合抗氧化功能纤维增强陶瓷基复合材料的制备方法
CN110256082B (zh) 反应烧结制备单晶碳化硅纳米纤维/碳化硅陶瓷基复合材料的方法
CN111825471B (zh) 一种电泳沉积制备连续碳纤维增韧超高温陶瓷基复合材料的方法
CN113845367B (zh) 高温抗氧化碳纤维增韧氧化锆陶瓷材料的制备方法及高温抗氧化碳纤维增韧氧化锆陶瓷材料
CN103058711A (zh) 一种通过超高温陶瓷粉基体改性制备超高温陶瓷基复合材料的方法
CN108249944B (zh) 一种SiO2基复合材料的制备方法
CN115028456B (zh) 碳化硅纤维废丝增强碳化硅陶瓷基复合材料的制备方法
CN107759251B (zh) 一种多孔陶瓷表面高韧性陶瓷涂层的制备方法
CN106747555B (zh) 一种含自增韧基体、连续纤维增强的热结构复合材料及其制备方法
CN110304932B (zh) 一种具有HfB2界面的Cf/SiC复合材料的制备方法
CN107827461A (zh) 一种耐烧蚀纤维增韧硅硼碳氮锆陶瓷基复合材料、其制备方法及应用
CN111807853B (zh) 一种碳碳复合材料及其制备工艺与应用
CN113045325B (zh) 一种高强度碳/碳-碳化硅复合材料的制备方法
CN111205097B (zh) 一种具有双透波陶瓷涂层的纤维预制体及其制备方法
CN102603344B (zh) 一种碳化硅晶须增韧二硼化锆陶瓷的制备工艺
CN113135740B (zh) 一种陶瓷基复合材料及其制备方法和应用
CN106518119B (zh) 一种致密的Ti2AlC/Al2O3纤维复合材料及其制备方法
CN108409328A (zh) 一种碳化硼陶瓷复合材料的制备方法
CN107500796A (zh) 一种碳纤维增强陶瓷基复合材料及其制备方法
CN116289238B (zh) 一种碳纤维硬毡表面涂层及其制备工艺
CN117534495A (zh) 前驱体浸渍裂解结合反应熔渗制备陶瓷基复合材料的方法
CN106966743B (zh) 一种连续纤维增强热结构材料复合界面层的制备方法
CN113896538B (zh) 氧化铝纤维增强碳化硅陶瓷材料的制备方法及制得的氧化铝纤维增强碳化硅陶瓷材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220513