CN114457144A - 一种用于靶基因拷贝数检测的方法 - Google Patents

一种用于靶基因拷贝数检测的方法 Download PDF

Info

Publication number
CN114457144A
CN114457144A CN202210286587.1A CN202210286587A CN114457144A CN 114457144 A CN114457144 A CN 114457144A CN 202210286587 A CN202210286587 A CN 202210286587A CN 114457144 A CN114457144 A CN 114457144A
Authority
CN
China
Prior art keywords
smn1
gene
gapdh
copy number
reference gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210286587.1A
Other languages
English (en)
Other versions
CN114457144B (zh
Inventor
钱学庆
秦炜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Runda Rongjia Biotechnology Co ltd
Original Assignee
Shanghai Runda Rongjia Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Runda Rongjia Biotechnology Co ltd filed Critical Shanghai Runda Rongjia Biotechnology Co ltd
Priority to CN202210286587.1A priority Critical patent/CN114457144B/zh
Publication of CN114457144A publication Critical patent/CN114457144A/zh
Priority to PCT/CN2022/131962 priority patent/WO2023179053A1/zh
Application granted granted Critical
Publication of CN114457144B publication Critical patent/CN114457144B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/166Oligonucleotides used as internal standards, controls or normalisation probes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供一种用于靶基因拷贝数检测的方法,在同一反应中同时扩增待测样本的靶基因和内参基因,通过计算qPCR扩增曲线上两者的扩增曲线ΔRn比值C(C=ΔRn靶基因/ΔRn内参基因)确定待测个体的靶基因拷贝数,根据该比值的范围可有效检测出靶基因的基因型。

Description

一种用于靶基因拷贝数检测的方法
技术领域
本发明属于基因检测技术领域,具体涉及一种用于靶基因拷贝数检测的方法及其引物探针组合。
背景技术
脊髓性肌萎缩症(Spinal Muscular atrophy,SMA)是一种由于脊髓前角运动神经元退化引起的神经肌肉性疾病。本病为先天性隐形遗传病,多发于新生儿。患儿病情轻重程度不同,按照发病年龄和表型分为四型:I型,出生后6个月内发病,表现为肌张力低下,肌无力以四肢近端肌群受累为主,躯干肌亦无力;II型,通常于1岁内起病,婴儿早期生长正常,但6个月以后运动发育迟缓,虽然能坐,但独站及行走均未达到正常;III型,多数于5岁前起病,表现为进行性肢体近端肌无力和萎缩;IV型,发病年龄为15~60岁,起病和进展均较隐袭,但预后相对较好,行走能力常可保持终生1
所有类型的SMA均由运动神经元存活基因1(Survival Motor Neuron 1,SMN1)发生的纯合缺失导致。该基因位于染色体5q13.2区域,其产物SMN蛋白是维持骨骼和肋间肌正常生理功能的重要蛋白2。约95%的SMA患者体内SMN1基因的2个拷贝均发生了缺失突变,导致体内缺乏正常功能的SMN蛋白,引起发病。也有少数病人是由于1个SMN1基因拷贝发生缺失,而另一个SMN1基因拷贝中出现了其它突变,也能导致体内丧失正常功能的SMN蛋白,引起发病3
在SMN1基因所在的区域内还存在着另一个SMN1的同源基因SMN2。SMN2与SMN1高度同源,两者间只存在5个核苷酸的差异。其中4个位于非编码区,只有1个(c.840C>T)位于SMN2基因第7号外显子的编码区2。该编码区的碱基改变并不改变蛋白的氨基酸序列,但却能影响外显子的剪接,导致其生成的50-90%的SMN蛋白出现异常剪接,丧失生物学活性4。尽管如此,SMN2基因还是能够生成一定数量的具有生物学功能的SMN蛋白,在一定程度上通过剂量补偿作用代偿性减轻SMN1缺失引起的症状。因此,临床上部分SMA患者SMN2基因拷贝数的增加可以一定程度上缓解疾病的症状5
脊髓性肌萎缩症作为一种常染色体隐性遗传病是世界范围内新生儿死亡的重要遗传因素之一6。已报道文献中,世界各地不同人群中携带者频率约为1:47到1:72,活产儿中发病比例约为6000-10000分之一7。由于本病可严重威胁患者的生命健康,同时人群中携带者比例较高,孕前携带者筛查可通过遗传咨询有效降低新生儿中的发病率8。由于SMN1缺失是SMA发病的最主要原因,携带者筛查主要是检测SMN1拷贝数的变异9
目前已报道的SMA基因诊断方法众多,不同的方法的稳定性、可靠性、操作难易程度及经济成本等指标各不相同。这些诊断方法中聚合酶链式限制性片段长度多态性分析(PCR-restriction fragment length polymorphism,PCR-RFLP)可靠性最高,可作为基因诊断的“金标准”,但其操作步骤复杂,需要琼脂糖电泳,EB染色等步骤,无法实现大规模检测,也不符合体外诊断产品注册的要求。多重探针连接扩增技术(Multiplex Ligation-dependent Probe Amplification,MLPA)通过对不同靶区域的扩增,利用毛细管电泳检测各个区域产物信号强度,再将受检个体样本与正常对照样本比较,检测受检个体目标区域拷贝数的变异。其准确性、可靠性较高,但需毛细管电泳操作,步骤繁琐,对设备、人员要求都非常高,极大地限制了该方法的推广。
实时荧光定量PCR(real-time PCR)主要是通过对靶基因和内参基因PCR扩增中Ct值的分析,通过ΔΔCt方法分析靶基因拷贝数。该方法多用于生物学中基因表达水平分析,当基因间表达水平差异较大,特别是呈指数差异时,该方法可靠性较高。但在SMA携带者中,其SMN1多为1个拷贝,与正常个体的2个拷贝仅相差一倍,在Ct值上差别并不十分显著。某些正是由于荧光定量PCR方法不能准确区分杂合缺失携带者与野生型正常个体,目前国家药品监督管理局只批准了该方法用于纯合突变的检测,尚不能用于杂合缺失突变检测。此外,芯片杂交、SNP分析、高通量测序等新技术也都可以应用于拷贝数分析,但其技术平台复杂,成本过高,不适合大规模临床推广。
Luming Zhou等在2015年报道的通过对产物溶解曲线的定量分析可有效检出杂合缺失携带者11。之后,国内又有研究者在此基础上进一步改进、补充了检测步骤和分析方法12溶解曲线分析方法一定程度上可以检测SMN1基因拷贝数,但最大的问题是PCR过程不直观,不能实时监测反应进程。并且该方法特异性不高,终产物中如有片段大小类似的非特异性扩增产物也无法识别。此外,溶解曲线定量分析中对峰高、峰宽的数据采集识别也有一定的要求,区分不同样式的溶解曲线较为不易,极易出现偏差,同时,结果判读过程复杂、繁琐且难度高,难于广泛推广应用。
发明内容
针对现有技术存在的不足和实际需求,本发明的目的在于提供一种用于人运动神经元存活基因SMN1拷贝数检测的方法及其引物探针组合。本发明提供的方法及其引物探针组合,在同一反应中同时扩增待测样本的靶基因SMN1和内参基因GAPDH,通过计算qPCR扩增曲线上两者的扩增曲线ΔRn比值C(C=ΔRnSMN1/ΔRnGAPDH)确定待测个体的SMN1基因拷贝数,根据该比值的范围可有效检测出SMN1基因纯合缺失、杂合缺失和野生型3种基因型。
具体地,本发明基于如下发现:
荧光定量PCR反应中Rn值(Normalized reporter)反映了每个循环的荧光强度,其与基线本底荧光值(Rn-)的差值ΔRn可以表示每个扩增循环中PCR产物的量。PCR反应中的各种组分,如模板浓度、引物浓度、dNTP浓度、Mg2+浓度等都会对产物扩增效率产生影响。
本发明在PCR扩增体系中同时扩增待测基因SMN1和内参基因GAPDH,二者间存在竞争关系。同时,本发明将反应中的dNTP浓度由正常的200μM降低到80μM以下,以限制待测基因SMN1和内参基因GAPDH的扩增效率。当待测基因SMN1和内参基因GAPDH均为2个拷贝数时,两基因浓度相同(1:1),反应中两者对限制性试剂dNTP的竞争会达到一个平衡水平,两者的扩增产物也会达到一个平衡水平。此时在qPCR扩增曲线上表现为两者的扩增曲线ΔRn比值C(C=ΔRnSMN1/ΔRnGAPDH)处在一个稳定的范围内。
当扩增反应中待测基因SMN1的拷贝数减少为1个拷贝,而内参基因GAPDH仍为2个拷贝数时,二者模板浓度比值为1:2。此时待测基因SMN1的模板浓度相对降低,其在扩增体系中的竞争水平降低,因此竞争获得的反应试剂dNTP也相应减少,PCR扩增产物减少,ΔRn值降低。在这种情况下,内参基因GAPDH的竞争能力相对增强,其获得的反应试剂dNTP也会相应增加,PCR扩增产物增加,ΔRn值增加。此时在qPCR扩增曲线上表现为两者的扩增曲线ΔRn比值C(C=ΔRnSMN1/ΔRnGAPDH)降低,处在一个较低的范围内。
当扩增反应中待测基因SMN1的拷贝数减少为0个拷贝,而内参基因GAPDH仍为2个拷贝数时,此时扩增体系中没有待测基因SMN1的模板,只有内参基因GAPDH的模板。扩增体系中不会有待测基因SMN1的产物,只有内参基因GAPDH的扩增产物,在qPCR扩增曲线上表现为两者的扩增曲线ΔRn比值C(C=ΔRnSMN1/ΔRnGAPDH)为0。
同理,当待测基因SMN1的拷贝数增加时,qPCR扩增曲线上两者的扩增曲线ΔRn比值C(C=ΔRnSMN1/ΔRnGAPDH)也会增加。
基于上述发明构思,本发明提供以下技术方案:
第一方面,本发明提供一种检测靶基因拷贝数的方法,所述方法包括:
(1)提取样本DNA;
(2)在同一反应中同时对所述样本DNA中的靶基因和内参基因进行qPCR扩增,分别获得所述靶基因和内参基因的扩增曲线ΔRn值;
(3)靶基因拷贝数分析:计算所述靶基因和内参基因的扩增曲线ΔRn值的比值C,根据比值C判断靶基因拷贝数。
优选地,所述靶基因为SMN1,所述内参基因为GAPDH;
优选地,步骤(3)中扩增曲线ΔRn值的比值C的计算公式为:C=ΔRn靶基因/ΔRn内参基因,进一步优选为:C=ΔRnSMN1/ΔRnGAPDH,;
优选地,步骤(3)中,判断靶基因拷贝数的标准包括:
SMN1和内参基因GAPDH的扩增曲线ΔRn值的比值C为0.85~1.15,则判断SMN1基因和内参基因GAPDH均为2个拷贝;
SMN1和内参基因GAPDH的扩增曲线ΔRn值的比值C为0.3~0.7,则判断SMN1基因的拷贝数为1个拷贝,内参基因GAPDH为2个拷贝;
SMN1和内参基因GAPDH的扩增曲线ΔRn值的比值C为-0.1~0.1,则判断SMN1基因的拷贝数为零个拷贝。
优选地,步骤(2)具体包括如下步骤:
将样本DNA、检测靶基因的引物探针组合和检测内参基因的引物探针组合加入检测体系PCR反应液中,混合,得到PCR体系,对PCR体系进行扩增,分别获得所述靶基因和内参基因的扩增曲线ΔRn值。
优选地,所述检测靶基因的引物探针组合包括用于人运动神经元存活基因SMN1拷贝数检测的引物探针组合,所述用于人运动神经元存活基因SMN1拷贝数检测的引物探针组合包括特异性扩增并检测人运动神经元存活基因SMN1的引物对和探针;
所述特异性扩增人运动神经元存活基因SMN1的引物对包括,
正向引物SEQ ID No.1:TTTATTTTCCTTACAGGGTTTC;
反向引物SEQ ID No.2:GCTGGCAGACTTACTCCTTA;
所述检测人运动神经元存活基因SMN1的探针包括SEQ ID No.3:AGAAGGAAGGTGCTCACATT所示的核苷酸序列;
优选地,所述探针的5’端修饰荧光染料,所述探针的3’端修饰淬灭剂。
优选地,所述探针的3’端还连接了MGB基团。
优选地,所述荧光染料包括FAM。
优选地,所述淬灭剂包括TAMRA。
本发明中,所设计的MGB探针引物利用FAM荧光染料进行5’端修饰,荧光信号强,检测效率最高。
本发明中,SMN1基因的NCBI编码为GenBank:NG_008691.1,所述正向引物及反向引物分别对应于SMN1基因31985~32006和32049~32068碱基,所述MGB探针对应于SMN1基因32021~32040处碱基。
优选地,所述检测内参基因的引物探针组合包括特异性扩增并检测内参基因GAPDH的引物对和探针;
所述特异性扩增内参基因GAPDH的引物对包括,
正向引物SEQ ID No.4:AAGGGCTTCGTATGACTGGG;
反向引物SEQ ID No.5:CTCCCTTGAGCTTCCCTGC;
所述检测内参基因GAPDH的探针包括SEQ ID No.6:TTGGGCAGCCCTGGA所示的核苷酸序列;
优选地,所述探针的5’端修饰荧光染料,所述探针的3’端修饰淬灭剂。
优选地,所述探针的3’端还连接了MGB基团。
优选地,所述荧光染料包括FAM、TET、VIC或HEX中任意一种。
优选地,所述淬灭剂包括BHQ。
本发明中,使用GAPDH基因作为内参基因,扩增效果良好,检测效率高。本发明中设计的正向引物和反向引物的碱基分布随机,引物3’端无连续的G或C碱基聚集,3’端不存在自身互补重叠序列,可避免发夹结构和引物二聚体的产生。同时,正向引物特意性地设计在SMN1基因和SMN2基因第7外显子中c.840位点的C>T差异碱基处,可避免SMN2基因对SMN1基因扩增产生干扰。
优选地,所述样本DNA的浓度为5~100ng/μL,例如可以是5ng/μL、10ng/μL、20ng/μL、30ng/μL、40ng/μL、50ng/μL、60ng/μL、70ng/μL、80ng/μL、90ng/μL或100ng/μL等。
优选地,所述PCR体系中特异性扩增所述人运动神经元存活基因SMN1的正向引物和反向引物的终浓度各自独立的为0.1~1μM,例如可以是0.1μM、0.3μM、0.5μM、0.7μM、0.9μM或1μM等。
优选地,所述PCR体系中特异性扩增所述内参基因GAPDH的正向引物和反向引物的终浓度各自独立的为0.1~1μM,例如可以是0.1μM、0.3μM、0.5μM、0.7μM、0.9μM或1μM等。
优选地,所述PCR体系中检测人运动神经元存活基因SMN1的探针和检测内参基因GAPDH的探针的终浓度各自独立的为0.1~1μM,例如可以是0.1μM、0.3μM、0.5μM、0.7μM、0.9μM或1μM等。
优选地,所述PCR体系中dNTP的终浓度为80~1.0μM,例如可以是80μM、60μM、40μM、20μM、10μM、5.0μM或1.0μM等。优选地,所述PCR体系中DNA聚合酶的终浓度为0.02~0.1U/μL,例如可以是0.02U/μL、0.03U/μL、0.05U/μL、0.07U/μL、0.09U/μL或0.1U/μL等。
本发明中,所述PCR扩增的程序包括:
预变性:93~96℃孵育3~7min,孵育的温度例如可以是93℃、94℃、95℃或96℃等,孵育的时间例如可以是3min、4min、5min、6min或7min等;
变性:93~96℃孵育25~35s,孵育的温度例如可以是93℃、94℃、95℃或96℃等,孵育的时间例如可以是25s、27s、29s、30s、31s、33s或35s等;
退火和延伸:
50~55℃孵育85~95s,孵育的温度例如可以是50℃、51℃、52℃、53℃、54℃或55℃等,孵育的时间例如可以是85s、87s、89s、90s、91s、93s或95s等;
70~74℃孵育25~35s,孵育的温度例如可以是70℃、71℃、72℃、73℃或74℃等,孵育的时间例如可以是25s、27s、29s、30s、31s、33s或35s等;
循环38~42次,循环的次数例如可以是38次、39次、40次、41次或42次;
保温:0~4℃保存,例如可以是0℃、1℃、2℃、3℃或4℃等。
优选地,所述方法还包括使用质控试剂进行同步检测的步骤。
本发明的方法中,利用在同一反应中同时扩增待测个体的靶基因SMN1和内参基因GAPDH,并创造性地设计计算拷贝数方法,通过计算qPCR扩增曲线上两者的扩增曲线ΔRn比值C(C=ΔRnSMN1/ΔRnGAPDH)确定待测样本中的SMN1基因拷贝数,与现有技术中判断方法相比,本发明的判断方法不需要制作qPCR定量标准曲线,操作简单,使用方便,结果准确,有利于广泛推广应用。
优选地,所述使用方法还包括判断SMN1基因的缺失情况的步骤。
优选地,判断SMN1基因的缺失情况的标准包括:
SMN1基因和内参基因GAPDH均为2个拷贝,所述SMN1基因为野生型;
SMN1基因的拷贝数为1个拷贝,内参基因GAPDH为2个拷贝,所述SMN1基因为杂合缺失型;
SMN1基因的拷贝数为零个拷贝,SMN1无扩增产物,所述SMN1基因为纯合缺失型。
第二方面,本发明提供一种用于人运动神经元存活基因SMN1拷贝数检测的试剂盒,所述用于人运动神经元存活基因SMN1拷贝数检测的试剂盒包括第一方面所述的检测靶基因的引物探针组合、检测内参基因的引物探针组合、反应试剂和质控试剂。
优选地,所述反应试剂包括样本DNA抽提试剂和检测体系PCR反应液。
优选地,所述检测体系PCR反应液包括DNA聚合酶、酶缓冲液、MgCl2和dNTPs。
优选地,所述质控试剂包括SMN1零拷贝质控品、SMN1单拷贝质控品或SMN1两拷贝质控品。
优选地,所述SMN1零拷贝质控品为含有两拷贝内参基因GAPDH的质粒。
优选地,所述SMN1单拷贝质控品为含有单拷贝SMN1基因和两拷贝内参基因GAPDH的质粒。
优选地,所述SMN1两拷贝质控品为含有两拷贝SMN1基因和两拷贝内参基因GAPDH的质粒。
本发明中,所述用于人运动神经元存活基因SMN1拷贝数检测的试剂盒中设计了检测SMN1的正向引物、反向引物及MGB探针引物,可同时用于荧光定量PCR及其它PCR技术方法,所述引物的扩增效率高,对质粒标准品及送检样本进行qPCR检测,均可以准确地检测判断患者的SMN1基因型。通过调整正向引物、反向引物、MGB探针的浓度和退火温度等反应条件,可使扩增效率达到最佳。
作为本发明的优选技术方案,所述用于人运动神经元存活基因SMN1拷贝数检测的试剂盒以非疾病诊断和/或治疗为目的的使用方法包括以下步骤:
(1)采集并处理待测DNA样本,将待测DNA样本、用于SMN1、内参基因GAPDH拷贝数检测的引物探针组合加入检测体系PCR反应液中,混合,得到PCR体系;所述PCR体系中所述待测DNA样本的浓度为5~100ng/μL,特异性扩增所述人运动神经元存活基因SMN1的正向引物和反向引物的终浓度各自独立的为0.1~1μM,特异性扩增所述内参基因GAPDH的正向引物和反向引物的终浓度各自独立的为0.1~1μM,检测人运动神经元存活基因SMN1的探针和检测内参基因GAPDH的探针的终浓度各自独立的为0.1~1μM,所述PCR体系中dNTP的终浓度为80~1.0μM,所述PCR体系中DNA聚合酶的终浓度为0.02~0.1U/μL。
在检测时,使用质控试剂进行同步检测。
(2)对PCR体系进行扩增,获得SMN1和GAPDH的扩增曲线。
所述PCR扩增的程序包括:
预变性:93~96℃孵育3~7min;
变性:93~96℃孵育25~35s;
退火和延伸:50~55℃孵育85~95s,70~74℃孵育25~35s,循环38~42次;
保温:0~4℃保存。
(3)利用SMN1和GAPDH的扩增曲线的ΔRn值,进行SMN1基因拷贝数分析,判断SMN1基因的缺失情况,判断SMN1基因的缺失情况的标准包括:
SMN1基因和内参基因GAPDH均为2个拷贝,SMN1和内参基因GAPDH的扩增曲线ΔRn间的比值C处于正常水平(0.85-1.15范围),所述SMN1基因为野生型;
SMN1基因的拷贝数为1个拷贝,内参基因GAPDH为2个拷贝,SMN1和内参基因GAPDH的扩增曲线ΔRn间的比值C显著性降低(0.3-0.7范围),所述SMN1基因为杂合缺失型;
SMN1基因的拷贝数为零个拷贝,SMN1无扩增产物,SMN1和内参基因GAPDH的扩增曲线ΔRn间的比值C为0(-0.1-+0.1范围),所述SMN1基因为纯合缺失型。
第三方面,本发明提供一种用于人运动神经元存活基因SMN1拷贝数检测的系统,所述用于人运动神经元存活基因SMN1缺失检测的系统包括:
(1)样本制备模块:采集并处理待测DNA样本,将待测DNA样本、用于SMN1、内参基因GAPDH拷贝数检测的引物探针组合加入检测体系PCR反应液中,混合,配制PCR体系;
(2)检测模块:对PCR体系进行扩增检测,获得SMN1和GAPDH的扩增曲线;
(3)分析模块:计算SMN1和GAPDH的扩增曲线的ΔRn值,进行SMN1基因拷贝数分析;
其中,用于SMN1、内参基因GAPDH拷贝数检测的引物探针组合,PCR体系,以及SMN1基因拷贝数的判断方法如上述第一和第二方面所述。
本发明所述的数值范围不仅包括上述例举的点值,还包括没有例举出的上述数值范围之间的任意的点值,限于篇幅及出于简明的考虑,本发明不再穷尽列举所述范围包括的具体点值。
相对于现有技术,本发明具有以下有益效果:
(1)本发明中设计的检测方法可有效地检测出SMN1基因的拷贝数,所述检测方法不需要制作定量标准曲线,操作简单,使用方便,根据所述ΔRn比值的范围C值可有效地检测出SMN1基因的拷贝数,并进一步分析纯合缺失、杂合缺失和野生型3种基因型;
(2)本发明中的检测SMN1基因的正向和反向扩增引物,可以高效地扩增出目的基因,具有很高的特异性及精确性,检测效率高,所述MGB探针的特异性好、荧光信号强,检测效率高;
(3)qPCR扩增曲线分析技术具有操作简单方便,结果易于判断,成本低通量大等优点,将极大地提高SMN1基因杂合缺失携带者的检出效率,有效应用于评估SMN1基因检测试剂盒的性能、SMN1基因相关机理研究以及辅助分析检测SMN1基因缺失的中间结果信息等,对于脊髓性肌萎缩症检测领域具有重要意义。本发明中开发的方法不仅能够用于SMN1基因拷贝数检测,同样可用于其它基因的拷贝数检测。
附图说明
图1为测试例1中SMN1基因两拷贝质控品的检测结果图。
图2为测试例1中SMN1基因单拷贝质控品的检测结果图。
图3为测试例1中SMN1基因零拷贝质控品的检测结果图。
图4为测试例2中野生型样本SMN1基因两拷贝数的检测结果图。
图5为测试例2中杂合缺失样本SMN1基因单拷贝数的检测结果图。
图6为测试例2中纯合缺失样本SMN1基因两拷贝数的检测结果图。
具体实施方式
下面通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件,或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可通过正规渠道商购获得的常规产品。
实施例1
本实施例提供一种用于人运动神经元存活基因SMN1拷贝数检测的引物探针组合,所述用于人运动神经元存活基因SMN1拷贝数检测的引物探针组合包括特异性扩增并检测人运动神经元存活基因SMN1的引物对和探针、特异性扩增并检测内参基因GAPDH的引物对和探针。
特异性扩增所述人运动神经元存活基因SMN1的正向引物的核苷酸序列如SEQ IDNo.1所示,反向引物的核苷酸序列如SEQ ID No.2所示;检测所述人运动神经元存活基因SMN1的探针的核苷酸序列如SEQ ID No.3所示,所述探针的5’端修饰FAM,所述探针的3’端修饰TAMRA,所述探针的3’端还连接了MGB基团。
特异性扩增所述内参基因GAPDH的正向引物的核苷酸序列如SEQ ID No.4所示,反向引物的核苷酸序列如SEQ ID No.5所示;检测所述内参基因GAPDH的探针的核苷酸序列如SEQ ID No.6所示,所述探针的5’端修饰HEX,所述探针的3’端修饰BHQ,所述探针的3’端还连接了MGB基团。
SEQ ID No.1:TTTATTTTCCTTACAGGGTTTC。
SEQ ID No.2:GCTGGCAGACTTACTCCTTA。
SEQ ID No.3:AGAAGGAAGGTGCTCACATT。
SEQ ID NO.4:AAGGGCTTCGTATGACTGGG。
SEQ ID NO.5:CTCCCTTGAGCTTCCCTGC。
SEQ ID NO.6:TTGGGCAGCCCTGGA。
实施例2
本实施例提供一种用于人运动神经元存活基因SMN1拷贝数检测的试剂盒,所述用于人运动神经元存活基因SMN1拷贝数检测的试剂盒包括实施例1中所述的用于人运动神经元存活基因SMN1拷贝数检测的引物探针组合、反应试剂和质控试剂。
所述反应试剂包括样本DNA抽提试剂(凯捷公司的提取试剂盒,货号51104)、乙醇和检测体系PCR反应液,所述检测体系PCR反应液包括DNA聚合酶、酶缓冲液、MgCl2和dNTPs。
所述质控试剂包括SMN1两拷贝质控、SMN1单拷贝质控或SMN1零拷贝质控。所述SMN1两拷贝质控为含有两拷贝SMN1基因和两拷贝内参基因GAPDH的质粒,所述SMN1单拷贝质控为含有单拷贝SMN1基因和两拷贝内参基因GAPDH的质粒,所述SMN1零拷贝质控为含有两拷贝内参基因GAPDH的质粒。上述质控质粒由上海生物工程股份有限公司合成。
测试例1
本测试例使用实施例2中所述的用于人运动神经元存活基因SMN1拷贝数检测的试剂盒测试SMN1零拷贝质控、SMN1单拷贝质控和SMN1两拷贝质控的扩增曲线。
(1)配制PCR体系。
PCR体系如下所示:
Figure BDA0003558482590000131
分别加入SMN1零拷贝质控、SMN1单拷贝质控和SMN1两拷贝质控进行检测。
(2)对PCR体系进行扩增,获得SMN1和GAPDH的扩增曲线。
PCR扩增在ABI7500 PCR仪上进行,PCR扩增的程序如下所示:
预变性:94℃孵育5min;
变性:94℃孵育30s;
退火和延伸:55℃孵育90s,72℃孵育30s,循环40次;
保温:4℃保存。
(3)计算SMN1和GAPDH的扩增曲线的ΔRn值,进行SMN1基因拷贝数分析。
检测结果如图1、图2和图3所示,其中SMN1基因两拷贝质控的检测结果图如图1所示,SMN1基因单拷贝质控的检测结果图如图2所示,SMN1基因零拷贝质控的检测结果图如图3所示。
质粒标准品检测结果如表1所示。
表1
Figure BDA0003558482590000141
由表1可知,本发明在qPCR基础上,创造性地设计计算拷贝数方法,可快速、准确分析SMN1基因拷贝数,不需要制作qPCR定量标准曲线,操作简单,使用方便。
测试例2
本测试例使用实施例2中所述的用于人运动神经元存活基因SMN1拷贝数检测的试剂盒检测临床标本,评估所述试剂盒的准确性,所述临床标本包括抗凝血标本24例。
(1)采集并处理待测DNA样本。
抽提全血液样本中的基因组DNA:
用移液枪吸取20μL蛋白酶K溶液置于1.5mL离心管底部;在1.5mL离心管中加入200μL全血液样本;加入200μL Buffer AL,震荡混匀15s,56℃孵育10min;短时离心,使溶液沉降到1.5mL离心管底部;加入200μL无水乙醇,振荡混匀15s,离心;将离心后的上清液全部转入2mL带滤膜的过滤柱子中,盖上管盖,6000g离心1min;在过滤柱中加入500μL BufferAW1,6000g离心1min;在过滤柱中加入500μL Buffer AW2,20000g离心3min;将过滤柱再放入离心机中离心1min,甩干残留液体;将过滤柱放置于新的1.5mL离心管,加入200μLBuffer AE,6000g离心1min。
配制PCR体系,PCR体系如下所示:
Figure BDA0003558482590000151
所述样本DNA模板为从全血液样本中抽提的基因组DNA,所述基因组DNA在PCR体系中的终浓度为50ng/μL。根据检测份数配制PCR反应液。
实验组中每个PCR反应液中加将1μL提取的血液基因组DNA溶液,阳性对照组中直接加1μL阳性对照品(以SMN1两拷贝质控品、SMN1单拷贝质控品和SMN1零拷贝质控品作为阳性对照品),阴性对照组中直接加1μL ddH2O。
(2)对PCR体系进行扩增,获得SMN1和GAPDH的扩增曲线。
PCR扩增在ABI7500 PCR仪上进行,PCR扩增的程序如下所示:
预变性:94℃孵育5min;
变性:94℃孵育30s;
退火和延伸:55℃孵育90s,72℃孵育30s,循环40次;
保温:4℃保存。
(3)计算SMN1和GAPDH的扩增曲线的ΔRn值,进行SMN1基因拷贝数分析,判断SMN1基因的缺失情况。
判断SMN1基因的缺失情况的标准包括:
SMN1基因和内参基因GAPDH均为2个拷贝,SMN1和内参基因GAPDH的扩增曲线ΔRn间的比值C处于0.85-1.15范围,所述SMN1基因为野生型;
SMN1基因的拷贝数为1个拷贝,内参基因GAPDH为2个拷贝,SMN1和内参基因GAPDH的扩增曲线ΔRn间的比值C处于0.3-0.7范围,所述SMN1基因为杂合缺失型;
SMN1基因的拷贝数为零个拷贝,SMN1无扩增产物,SMN1和内参基因GAPDH的扩增曲线ΔRn间的比值C为0(-0.1-+0.1范围),所述SMN1基因为纯合缺失型。
检测结果如图4、图5和图6所示,其中SMN1基因两拷贝的野生型样本检测结果图如图4所示,SMN1基因单拷贝的杂合缺失样本检测结果图如图5所示,SMN1基因零拷贝的纯合缺失样本检测结果图如图6所示。
临床24例样本检测结果如表2所示。
表2
Figure BDA0003558482590000171
Figure BDA0003558482590000181
由表2中可知,上述24例样本的qPCR扩增曲线比值检测结果显示样本中有4例野生型(两拷贝)样本,,10例杂合缺失(单拷贝)样本,10例纯合缺失(零拷贝)样本,且与SMN1临床检测拷贝数结果一致,准确率为100%。
综上,本发明中所述用于人运动神经元存活基因SMN1缺失检测的方法及其引物探针组合具有很好的特异性与灵敏度,本发明所提供的用于人运动神经元存活基因SMN1缺失检测的扩增曲线比值检测方法检测准确度高,扩增效果好,使用时操作简单、结果易于判断,检测成本低通量大,极大地提高了SMN1基因杂合缺失携带者的检出效率,对于脊髓性肌萎缩症检测领域具有重要意义。本发明中开发的方法不仅能够用于SMN1基因拷贝数检测,同样可用于其它基因的拷贝数检测。
申请人声明,以上所述仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,均落在本发明的保护范围和公开范围之内。
参考文献
1 Munsat,T.L.&Davies,K.E.International SMA consortium meeting.(26-28June 1992,Bonn,Germany).Neuromuscul Disord 2,423-428,doi:10.1016/s0960-8966(06)80015-5(1992).
2 Bergin,A.et al.Identification and characterization of a mousehomologue of the spinal muscular atrophy-determining gene,survival motorneuron.Gene 204,47-53,doi:10.1016/s0378-1119(97)00510-6(1997).
3 Wirth,B.An update of the mutation spectrum of the survival motorneuron gene(SMN1)in autosomal recessive spinal muscular atrophy(SMA).HumMutat 15,228-237,
doi:10.1002/(SICI)1098-1004(200003)15:3<228::AID-HUMU3>3.0.CO;2-9(2000).
4 Kashima,T.&Manley,J.L.A negative element in SMN2 exon 7inhibitssplicing in spinal muscular atrophy.Nat Genet 34,460-463,doi:10.1038/ng1207(2003).
5 Gavrilov,D.K.,Shi,X.,Das,K.,Gilliam,T.C.&Wang,C.H.Differential SMN2expression associated with SMA severity.Nat Genet 20,230-231,doi:10.1038/3030(1998).
6 Minino,A.M.,Xu,J.&Kochanek,K.D.Deaths:preliminary data for2008.Natl Vital Stat Rep 59,1-52(2010).
7 Sugarman,E.A.et al.Pan-ethnic carrier screening and prenataldiagnosis for spinal muscular atrophy:clinical laboratory analysis of>72,400specimens.Eur J Hum Genet 20,27-32,doi:10.1038/ejhg.2011.134(2012).
8 Prior,T.W.,Professional,P.&Guidelines,C.Carrier screening forspinal muscular atrophy.Genet Med 10,840-842,doi:10.1097/GIM.0b013e318188d069(2008).
9 Prior,T.W.,Nagan,N.,Sugarman,E.A.,Batish,S.D.&Braastad,C.Technicalstandards and guidelines for spinal muscular atrophy testing.Genet Med 13,686-694,doi:10.1097/GIM.0b013e318220d523(2011).
10 Zimmermann,K.&Mannhalter,J.W.Technical aspects of quantitativecompetitive PCR.Biotechniques 21,268-272,274-269,doi:10.2144/96212rv01(1996).
11 Zhou,L.,Palais,R.A.,Paxton,C.N.,Geiersbach,K.B.&Wittwer,C.T.Copynumber assessment by competitive PCR with limiting deoxynucleotidetriphosphates and high-resolution melting.Clin Chem 61,724-733,doi:10.1373/clinchem.2014.236208(2015).
12 Xia,Z.et al.Carrier screening for spinal muscular atrophy with asimple test based on melting analysis.J Hum Genet 64,387-396,doi:10.1038/s10038-019-0576-6(2019).

Claims (10)

1.一种检测靶基因拷贝数的方法,所述方法包括:
(1)提取样本DNA;
(2)在同一反应中同时对所述样本DNA中的靶基因和内参基因进行qPCR扩增,分别获得所述靶基因和内参基因的扩增曲线ΔRn值;
(3)靶基因拷贝数分析:计算所述靶基因和内参基因的扩增曲线ΔRn值的比值C,根据比值C判断靶基因拷贝数。
2.根据权利要求1所述的方法,其特征在于,所述靶基因为SMN1,所述内参基因为GAPDH;
优选地,步骤(3)中,扩增曲线ΔRn值的比值C的计算公式为:C=ΔRn靶基因/ΔRn内参基因,进一步优选为:C=ΔRnSMN1/ΔRnGAPDH,;
优选地,步骤(3)中,判断靶基因拷贝数的标准包括:
SMN1和内参基因GAPDH的扩增曲线ΔRn值的比值C为0.85~1.15,则判断SMN1基因和内参基因GAPDH均为2个拷贝;
SMN1和内参基因GAPDH的扩增曲线ΔRn值的比值C为0.3~0.7,则判断SMN1基因的拷贝数为1个拷贝,内参基因GAPDH为2个拷贝;
SMN1和内参基因GAPDH的扩增曲线ΔRn值的比值C为-0.1~0.1,则判断SMN1基因的拷贝数为零个拷贝。
3.根据权利要求2所述的方法,其特征在于,步骤(2)具体包括如下步骤:将样本DNA、检测靶基因的引物探针组合和检测内参基因的引物探针组合加入检测体系PCR反应液中,混合,得到PCR体系,对PCR体系进行扩增,分别获得所述靶基因和内参基因的扩增曲线ΔRn值;
优选地,所述检测靶基因的引物探针组合包括用于SMN1拷贝数检测的引物探针组合,所述用于SMN1拷贝数检测的引物探针组合包括特异性扩增并检测SMN1的引物对和探针;
优选地,所述特异性扩增SMN1的引物对包括,
正向引物SEQ ID No.1:TTTATTTTCCTTACAGGGTTTC;
反向引物SEQ ID No.2:GCTGGCAGACTTACTCCTTA;
优选地,所述检测SMN1的探针包括SEQ ID No.3:AGAAGGAAGGTGCTCACATT所示的核苷酸序列;
优选地,所述检测内参基因的引物探针组合包括特异性扩增并检测内参基因GAPDH的引物对和探针;
优选地,所述特异性扩增内参基因GAPDH的引物对包括,
正向引物SEQ ID No.4:AAGGGCTTCGTATGACTGGG;
反向引物SEQ ID No.5:CTCCCTTGAGCTTCCCTGC;
优选地,所述检测内参基因GAPDH的探针包括SEQ ID No.6:TTGGGCAGCCCTGGA所示的核苷酸序列;
优选地,所述探针的5’端修饰荧光染料,所述探针的3’端修饰淬灭剂;
优选地,所述探针的3’端还连接了MGB基团。
4.根据权利要求3所述的方法,其特征在于,所述样本DNA的浓度为5~100ng/μL;
优选地,所述PCR体系中特异性扩增SMN1的正向引物和反向引物的终浓度各自独立的为0.1~1μM;
优选地,所述PCR体系中特异性扩增所述内参基因GAPDH的正向引物和反向引物的终浓度各自独立的为0.1~1μM;
优选地,所述PCR体系中检测SMN1的探针和检测内参基因GAPDH的探针的终浓度各自独立的为0.1~1μM;
优选地,所述PCR体系中dNTP的终浓度为80~1.0μM;
优选地,所述PCR体系中DNA聚合酶的终浓度为0.02~0.1U/μL。
5.根据权利要求2-4任一项所述的方法,其特征在于,所述方法还包括使用质控试剂进行同步检测的步骤;
优选地,所述使用方法还包括判断SMN1基因的缺失情况的步骤;
所述判断SMN1基因的缺失情况的标准包括:
SMN1基因和内参基因GAPDH均为2个拷贝,所述SMN1基因为野生型;
SMN1基因的拷贝数为1个拷贝,内参基因GAPDH为2个拷贝,所述SMN1基因为杂合缺失型;
SMN1基因的拷贝数为零个拷贝,SMN1无扩增产物,所述SMN1基因为纯合缺失型。
6.一种用于靶基因拷贝数检测的试剂盒,其包括权利要求3-5中任一项所述的检测靶基因的引物探针组合和检测内参基因的引物探针组合,以及反应试剂和质控试剂。
7.根据权利要求6所述的试剂盒,其特征在于,所述反应试剂包括样本DNA抽提试剂和检测体系PCR反应液;
优选地,所述检测体系PCR反应液包括DNA聚合酶、酶缓冲液、MgCl2和dNTPs;
优选地,所述质控试剂包括SMN1零拷贝质控品、SMN1单拷贝质控品或SMN1两拷贝质控品;
优选地,所述SMN1零拷贝质控品为含有两拷贝内参基因GAPDH的质粒;
优选地,所述SMN1单拷贝质控品为含有单拷贝SMN1基因和两拷贝内参基因GAPDH的质粒;
优选地,所述SMN1两拷贝质控品为含有两拷贝SMN1基因和两拷贝内参基因GAPDH的质粒。
8.根据权利要求6或7所述的试剂盒以非疾病诊断和/或治疗为目的的使用方法,包括以下步骤:
(1)采集并处理样本DNA,将样本DNA、用于SMN1、内参基因GAPDH拷贝数检测的引物探针组合加入检测体系PCR反应液中,混合,得到PCR体系;所述PCR体系中所述样本DNA的浓度为5~100ng/μL,特异性扩增SMN1的正向引物和反向引物的终浓度各自独立的为0.1~1μM,特异性扩增所述内参基因GAPDH的正向引物和反向引物的终浓度各自独立的为0.1~1μM,检测SMN1的探针和检测内参基因GAPDH的探针的终浓度各自独立的为0.1~1μM,所述PCR体系中dNTP的终浓度为80~1.0μM,所述PCR体系中DNA聚合酶的终浓度为0.02~0.1U/μL;
使用质控试剂进行同步检测;
(2)对PCR体系进行扩增,获得SMN1和GAPDH的扩增曲线;
所述PCR扩增的程序包括:
预变性:93~96℃孵育3~7min;
变性:93~96℃孵育25~35s;
退火和延伸:50~55℃孵育85~95s,70~74℃孵育25~35s,循环38~42次;
保温:0~4℃保存;
(3)利用SMN1和GAPDH的扩增曲线的ΔRn值,进行SMN1基因拷贝数分析,判断SMN1基因的缺失情况。
9.根据权利要求8所述的以非疾病诊断和/或治疗为目的的使用方法,其特征在于,所述判断SMN1基因的缺失情况的标准包括:
SMN1和内参基因GAPDH的扩增曲线ΔRn间的比值C处于正常水平,在0.85-1.15范围,所述SMN1基因为野生型;
SMN1和内参基因GAPDH的扩增曲线ΔRn间的比值C显著性降低,在0.3-0.7范围,所述SMN1基因为杂合缺失型;
SMN1和内参基因GAPDH的扩增曲线ΔRn间的比值C为0,在-0.1-+0.1范围,所述SMN1基因为纯合缺失型。
10.一种用于人运动神经元存活基因SMN1拷贝数检测的系统,其特征在于,所述用于人运动神经元存活基因SMN1拷贝数检测的系统包括:
(1)样本制备模块:采集并处理样本DNA,将样本DNA、用于SMN1、内参基因GAPDH拷贝数检测的引物探针组合加入检测体系PCR反应液中,混合,配制PCR体系;
(2)检测模块:对PCR体系进行扩增检测,获得SMN1和GAPDH的扩增曲线;
(3)分析模块:计算SMN1和GAPDH的扩增曲线的ΔRn值的比值C,进行SMN1基因拷贝数分析。
CN202210286587.1A 2022-03-22 2022-03-22 一种用于靶基因拷贝数检测的方法 Active CN114457144B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210286587.1A CN114457144B (zh) 2022-03-22 2022-03-22 一种用于靶基因拷贝数检测的方法
PCT/CN2022/131962 WO2023179053A1 (zh) 2022-03-22 2022-11-15 一种用于靶基因拷贝数检测的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210286587.1A CN114457144B (zh) 2022-03-22 2022-03-22 一种用于靶基因拷贝数检测的方法

Publications (2)

Publication Number Publication Date
CN114457144A true CN114457144A (zh) 2022-05-10
CN114457144B CN114457144B (zh) 2023-06-30

Family

ID=81416457

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210286587.1A Active CN114457144B (zh) 2022-03-22 2022-03-22 一种用于靶基因拷贝数检测的方法

Country Status (2)

Country Link
CN (1) CN114457144B (zh)
WO (1) WO2023179053A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023179053A1 (zh) * 2022-03-22 2023-09-28 上海润达榕嘉生物科技有限公司 一种用于靶基因拷贝数检测的方法
CN117153249A (zh) * 2023-10-26 2023-12-01 北京华宇亿康生物工程技术有限公司 用于检测smn基因拷贝数变异的方法、设备和介质
CN117344008A (zh) * 2023-12-05 2024-01-05 北京华瀚基因科技有限公司 基于2-ΔΔCt法检测SMN1基因拷贝数的试剂盒

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170253921A1 (en) * 2014-10-13 2017-09-07 Life Technologies Corporation Methods, kits & compositions for determining gene copy numbers
CN107881214A (zh) * 2017-11-17 2018-04-06 首都儿科研究所 一种检测脊肌萎缩症相关的基因突变的方法
WO2019168261A1 (ko) * 2018-02-28 2019-09-06 (주)제노텍 정성적 또는 정량적 돌연변이 유전형 분석방법 및 이 방법을 수행하기 위한 실시간 pcr 키트

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102597272A (zh) * 2009-11-12 2012-07-18 艾索特里克斯遗传实验室有限责任公司 基因座的拷贝数分析
WO2018144228A1 (en) * 2017-01-31 2018-08-09 Counsyl, Inc. Systems and methods for quantitatively determining gene copy number
CN108048548A (zh) * 2017-11-07 2018-05-18 北京华瑞康源生物科技发展有限公司 人脊髓性肌萎缩症致病基因拷贝数检测荧光定量pcr试剂盒
AU2020104121A4 (en) * 2020-12-16 2021-03-04 Sichuan Agricultural University rapid batch determination method for the copy number of genome multicopy gene by PCR technology
CN114457144B (zh) * 2022-03-22 2023-06-30 上海润达榕嘉生物科技有限公司 一种用于靶基因拷贝数检测的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170253921A1 (en) * 2014-10-13 2017-09-07 Life Technologies Corporation Methods, kits & compositions for determining gene copy numbers
CN107881214A (zh) * 2017-11-17 2018-04-06 首都儿科研究所 一种检测脊肌萎缩症相关的基因突变的方法
WO2019168261A1 (ko) * 2018-02-28 2019-09-06 (주)제노텍 정성적 또는 정량적 돌연변이 유전형 분석방법 및 이 방법을 수행하기 위한 실시간 pcr 키트

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
卢丽萍等: "SMN1基因实时荧光定量分析在脊髓性肌萎缩携带者检测中的应用" *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023179053A1 (zh) * 2022-03-22 2023-09-28 上海润达榕嘉生物科技有限公司 一种用于靶基因拷贝数检测的方法
CN117153249A (zh) * 2023-10-26 2023-12-01 北京华宇亿康生物工程技术有限公司 用于检测smn基因拷贝数变异的方法、设备和介质
CN117153249B (zh) * 2023-10-26 2024-02-02 北京华宇亿康生物工程技术有限公司 用于检测smn基因拷贝数变异的方法、设备和介质
CN117344008A (zh) * 2023-12-05 2024-01-05 北京华瀚基因科技有限公司 基于2-ΔΔCt法检测SMN1基因拷贝数的试剂盒
CN117344008B (zh) * 2023-12-05 2024-03-08 北京华瀚基因科技有限公司 基于2-ΔΔCt法检测SMN1基因拷贝数的试剂盒

Also Published As

Publication number Publication date
WO2023179053A1 (zh) 2023-09-28
CN114457144B (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
CN114457144B (zh) 一种用于靶基因拷贝数检测的方法
CN108486231B (zh) 用于检测人类cyp2c19基因多态性的引物探针组合物、试剂盒及应用
CN107058538B (zh) 一种引物组合物及其组成的试剂盒和应用
CN114085903B (zh) 检测线粒体3243a>g突变的引物对探针组合产品及其试剂盒与检测方法
CN111235272B (zh) 一次性检测肺癌多重基因突变的组合物及其应用
CN111334573B (zh) 一种高血压用药基因检测试剂盒及使用方法
CN110846408A (zh) 用于检测ttn基因突变的引物组合及其应用
CN106498028B (zh) Egfr的t790m突变的诊断方法及试剂盒
WO2021239081A1 (zh) 一种能够用于检测npc1l1突变基因分型的试剂、试剂盒及其使用方法、应用
CN105950766B (zh) 一种用于检测hla-b*5801等位基因的引物组及试剂盒
Wong et al. A novel mutation in the mitochondrial tRNASer (AGY) gene associated with mitochondrial myopathy, encephalopathy, and complex I deficiency
CN112501306A (zh) 一种用于CpG岛甲基化表型检测的试剂盒及其应用
CN109762901B (zh) 用于富集低频dna突变的dna探针应用于多种突变的同时检测
CN116121358B (zh) 用于精神药物基因检测的组合物、试剂盒及使用方法
CN110863044A (zh) 用于检测vcl基因突变的引物组合及其应用
CN112553326B (zh) 检测新生儿黄疸ugt1a1基因型和gst基因缺失型的引物、探针及荧光pcr试剂盒
CN117987529A (zh) 一种用于人运动神经元存活基因smn1拷贝数检测的引物探针组合及应用
CN113846158B (zh) 同时检测三种慢性病易感基因的复合扩增试剂盒及其应用
CN102304589B (zh) 乙型肝炎病毒阿德福韦酯耐药核酸定量检测试剂盒、检测方法、引物及其探针
Zabnenkova et al. Heterozygous carrier rate for type I–IV proximal spinal muscular atrophy in Chuvashes, Udmurts, and residents of the Moscow region
CN117802223B (zh) 基于2-δδct方法检测smn1基因和smn2基因拷贝数的试剂盒及其使用方法
CN112695083B (zh) 一种检测高血压用药基因多态性的核酸组合物及试剂盒
CN106244709A (zh) 定性检测ApoE基因分型的焦磷酸测序引物对及试剂盒
CN116179679A (zh) Smn1基因的检测引物对、检测探针以及用于检测脊髓性肌萎缩症的试剂盒
CN114480616A (zh) 一种smn2基因拷贝数变异检测试剂盒

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Qian Xueqing

Inventor after: Qin Wei

Inventor after: Song Chenglin

Inventor before: Qian Xueqing

Inventor before: Qin Wei

GR01 Patent grant
GR01 Patent grant