CN114436647A - 低温共烧钛酸铋钠基介质陶瓷的制备方法 - Google Patents

低温共烧钛酸铋钠基介质陶瓷的制备方法 Download PDF

Info

Publication number
CN114436647A
CN114436647A CN202210107267.5A CN202210107267A CN114436647A CN 114436647 A CN114436647 A CN 114436647A CN 202210107267 A CN202210107267 A CN 202210107267A CN 114436647 A CN114436647 A CN 114436647A
Authority
CN
China
Prior art keywords
ceramic
temperature
wafer
bismuth titanate
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210107267.5A
Other languages
English (en)
Other versions
CN114436647B (zh
Inventor
任鹏荣
马宁
赵焓
万玉慧
王欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN202210107267.5A priority Critical patent/CN114436647B/zh
Publication of CN114436647A publication Critical patent/CN114436647A/zh
Application granted granted Critical
Publication of CN114436647B publication Critical patent/CN114436647B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开的低温共烧钛酸铋钠基介质陶瓷的制备方法,通过钽酸钠掺杂含有过量铋的钛酸铋钠陶瓷的制备以及对应最佳组分掺入烧结助剂的制备,通过将Bi2O3、Na2CO3、TiO2、和Ta2O5按照化学计量比称量混合、球磨干燥,以及Bi2O3、CuO、Li2CO3、ZnO和B2O3与80Bi0.51Na0.5TiO3‑20NaTaO3按照质量百分比称量混合、球磨干燥,然后将不同组分的混合粉末通过等静压技术挤压成片,最后在不同温度烧结即得。本发明解决了现有技术中陶瓷电容器在‑55℃~300℃的温度范围内介电损耗高,温度稳定性差,且内电极成本昂贵的问题。

Description

低温共烧钛酸铋钠基介质陶瓷的制备方法
技术领域
本发明属于铁电陶瓷制备技术领域,具体涉及低温共烧钛酸铋钠基介质陶瓷的制备方法。
背景技术
钛酸铋钠(Bi0.5Na0.5TiO3)由于优异的绝缘性和高的居里温度,以其为材料制作的电容器介电性能的关注逐渐增多,通过掺杂改性,提高在100℃~300℃高温段稳定性,但这与现有商用多层陶瓷电容器(MLCC)在-55℃~300℃使用温度范围不兼容;另一方面,由于钛酸铋钠基陶瓷烧结温度普遍高于1100℃,导致只能与价格昂贵的银钯合金内电极共烧制备多层陶瓷电容器,成本大大提高。
现有的文献“Temperature-stable dielectric and energy properties of (1-x)(0.94Bi0.5Na0.5TiO3-0.09BiAlO3)-xSrTiO3 ceramics.Journal of Alloys andcompounds.807(2019)151676”中公开了一种高温介电陶瓷的制备方法,BiAlO3的掺杂抑制了氧化物离子的导电,显著降低了高温下介电损耗,SrTiO3的掺杂提高了介电性能温度稳定性,在132.8℃~391.8℃的温度范围内介电损耗小于0.02,介电常数的温度稳定性(Δε'/ε'200℃)不超过±15%,但与现有的商用陶瓷电容器-55℃~200℃的温度范围相比,低温温度限过高,具有明显的差异;并且烧结温度在1150℃以上,对应的MLCC只能以价格昂贵的银钯合金作为内电极,大大提高了成本。
发明内容
本发明的目的是提供低温共烧钛酸铋钠基介质陶瓷的制备方法,解决了现有技术中现有商用陶瓷电容器的温度范围窄,温区范围内介电损耗高,温度稳定性差的问题。
本发明所采用的技术方案是,低温共烧钛酸铋钠基介质陶瓷的制备方法,具体按照以下步骤进行实施:
步骤1,按照化学计量比(1-x)Bi0.51Na0.5TiO3-xNaTaO3,x=0.2~0.35,称量Bi2O3、Na2CO3、TiO2和Ta2O5,将Bi0.51Na0.5TiO3记为B0.51NT,B0.51NT与NaTaO3的摩尔比为80:20~65:35;
步骤2,在球磨机中用酒精为介质,球磨干燥并在800℃~900℃煅烧2h得到掺杂NaTaO3的Bi0.51Na0.5TiO3粉体;
步骤3,将步骤2得到的粉体在冷等静压机中,压力成型成圆片,将成型后的圆片烧结成瓷,将烧结后的陶瓷片打磨、抛光后用无水乙醇洗涤,通过银极测试陶瓷的介电性能,确定步骤1中具有最佳介电性能的组分x;
本发明的特点还在于,
根据步骤3得到介电性能组分x取值,通过以下操作确定步骤1中具有最佳介电性能的组分x;
步骤3.1,通过步骤3确定步骤1中组分x取值,称量步骤2中所得到的陶瓷粉体10~20g,再分别称取Bi2O3、CuO、Li2CO3、ZnO和B2O3作为助烧剂加入陶瓷粉体中,得到混合粉体;
步骤3.2,在球磨机中用酒精为介质,球磨干燥得到陶瓷/助烧剂混合粉体;
步骤3.3,将步骤3.2得到的粉体在冷等静压机中,压力成型成圆片;将成型后的圆片烧结成瓷;将烧结后的陶瓷片打磨、抛光后用无水乙醇洗涤,即得。
在步骤3中冷等静压机用200MPa的压力压5min,成为直径10mm,厚度1mm的圆片,烧结1100℃~1200℃下保温1~5h。
使用银极测试时,银电极烧成在850℃~950℃下保温20~60min,得到介电性能组分x取值。
步骤3.1中助烧剂Bi2O3、CuO、Li2CO3、ZnO和B2O3占混合粉体的质量百分比分别为0.2%、0.2%、0.15%、0.4%和0.07%。
步骤3.3中冷等静压机用200MPa的压力压5min,成为直径10mm,厚度1mm的圆片;烧结900℃~950℃下保温1~5h。
步骤2和步骤3.2中采用行星球磨机,均以250~400r/min的转速球磨12~24h。
步骤1中的Bi2O3、Na2CO3、TiO2、和Ta2O5纯度均不小于98.5%。
步骤3.1中Bi2O3、CuO、Li2CO3、ZnO和B2O3纯度均不小于98.5%。
本发明的有益效果是:本发明以氧化铋、碳酸锂、氧化锌、三氧化二硼和氧化铜,它们按一定比例混合作为烧结助剂掺杂钛酸铋钠-钽酸钠陶瓷制备,通过选取最优组分,通过烧结结助剂的加入来降低钛酸铋钠-钽酸钠陶瓷的烧结温度,从而使以其为材料制备的多层陶瓷电容器,用银作为内电极的制备方法,解决了钛酸铋钠基多层陶瓷电容器使用银钯合金作为内电极成本高的问题。钛酸铋钠陶瓷电容器介电常数提高,具有低介电损耗和宽的温度稳定性,降低烧结温度,使其MLCC可以与银作为内电极共烧。
附图说明
图1是本发明实施例1-4分别制备的(1-x)B0.51NT-xNaTaO3陶瓷的X射线衍射图谱;
图2是本发明实施例1-4分别所制陶瓷的介电温谱图;
图3是本发明实施例5中所制陶瓷的介电温谱图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明通过钽酸钠掺杂含有过量铋的钛酸铋钠陶瓷以及烧结助剂掺入对应最佳组分的陶瓷制备,将Bi2O3、Na2CO3、TiO2、Ta2O5按照化学计量比称重、混合球磨干燥,然后将不同组分的混合粉末通过等静压技术挤压成片,最后在不同温度烧结即可。
本发明提供低温共烧钛酸铋钠基介质陶瓷的制备方法,具体按照以下步骤进行实施:
步骤1,按照化学计量比(1-x)Bi0.51Na0.5TiO3-xNaTaO3,x=0.2~0.35,称量Bi2O3、Na2CO3、TiO2和Ta2O5,将Bi0.51Na0.5TiO3记为B0.51NT,B0.51NT与NaTaO3的摩尔比为80:20~65:35;步骤1中的Bi2O3、Na2CO3、TiO2、和Ta2O5纯度均不小于98.5%。
步骤2,在球磨机中用酒精为介质,球磨干燥并在800℃~900℃煅烧2h得到掺杂NaTaO3的Bi0.51Na0.5TiO3粉体;步骤2中采用行星球磨机,以250~400r/min的转速球磨12~24h。
步骤3,将步骤2得到的粉体在冷等静压机中,压力成型成圆片,将成型后的圆片烧结成瓷,将烧结后的陶瓷片打磨、抛光后用无水乙醇洗涤,通过银极测试陶瓷的介电性能,确定步骤1中介电性能的组分x,即得。
在步骤3中冷等静压机用200MPa的压力压5min,成为直径10mm,厚度1mm的圆片,烧结1100℃~1200℃下保温1~5h。
使用银极测试时,银电极烧成在850℃~950℃下保温20~60min,得到介电性能组分x取值,通过以下操作确定步骤1中具有最佳介电性能的组分x;
步骤3.1,通过银极测试确定步骤1中组分x取值,称量步骤2中所得到的陶瓷粉体10~20g,再分别称取Bi2O3、CuO、Li2CO3、ZnO和B2O3作为助烧剂加入陶瓷粉体中,得到混合粉体;助烧剂Bi2O3、CuO、Li2CO3、ZnO和B2O3占混合粉体的质量百分比分别为0.2%、0.2%、0.15%、0.4%和0.07%;Bi2O3、CuO、Li2CO3、ZnO和B2O3纯度均不小于98.5%。
步骤3.2,在球磨机中用酒精为介质,球磨干燥得到陶瓷/助烧剂混合粉体;采用行星球磨机,以250~400r/min的转速球磨12~24h。
步骤3.3,将步骤3.2得到的粉体在冷等静压机中,压力成型成圆片;将成型后的圆片烧结成瓷;将烧结后的陶瓷片打磨、抛光后用无水乙醇洗涤,即得。冷等静压机用200MPa的压力压5min,成为直径10mm,厚度1mm的圆片;烧结900℃~950℃下保温1~5h。
本发明低温共烧钛酸铋钠基介质陶瓷的制备方法,通过将Bi2O3、Na2CO3、TiO2、和Ta2O5按照化学计量比称量混合、球磨干燥,以及Bi2O3、CuO、Li2CO3、ZnO和B2O3与80Bi0.51Na0.5TiO3-20NaTaO3按照质量百分比称量混合、球磨干燥,然后将不同组分的混合粉末通过等静压技术挤压成片,最后在不同温度烧结即得,获得了介电性能温度稳定性好,介电损耗低,温度兼容性好,烧结温度低的钛酸铋钠基陶瓷,在宽温及低成本内电极电容器领域的实际应用方面提供了一个很好的参考。
实施例1
步骤1,称取纯度为99%的Bi2O38.67161g、纯度为99.8%的Na2CO32.8775g、纯度为98.5%的TiO25.88798g和纯度为99.99%的Ta2O53.982914g,使得B0.51NT与Ta2O5的摩尔比为80:20;
步骤2,在行星球磨机中用80ml酒精为介质,以250r/min的转速球磨12h,粉体干燥后在800℃煅烧2h得到掺杂NaTaO3的Bi0.51Na0.5TiO3粉体;
步骤3,将粉体在冷等静压机中,用200MPa的压力压5min成为直径10mm,厚度1mm的圆片;将成型后的圆片在1140℃下保温2h烧结成瓷;将烧结后的陶瓷片打磨、抛光后用无水乙醇洗涤,然后被银极测试其介电性能,测得的组分80Bi0.51Na0.5TiO3-20NaTaO3陶瓷具有室温介电常数为877,以及-93~398℃同时满足温度范围内介电损耗低(tanδ≤0.02)和介电常数温度稳定(Δε'/ε'200°≤±15%)的优异介电性能,因而被选为掺杂烧结助剂的组分。
图1中(a)为实施例1中陶瓷粉体的X射线衍射图谱,从图1中(a)可看出,样品呈单一的钙钛矿相,无第二相出现。如图2所示,本实施例1中陶瓷在频率为1kHz下的介电常数曲线图,本实施例1中陶瓷室温下具有最高的介电常数(ε'25℃=877)和优异的温度稳定性(-93~398℃)同时满足介电损耗低(tanδ≤0.02)和介电常数温度稳定(Δε'/ε'200°≤±15%)。
实施例2
步骤1,称取纯度为99%的Bi2O38.06131g、纯度为99.8%的Na2CO32.972207g、纯度为98.5%的TiO25.47359g和纯度为99.99%的Ta2O54.936803g,使得B0.51NT与Ta2O5的摩尔比为75:25;
步骤2,在行星球磨机中用80ml酒精为介质,以250r/min的转速球磨12h,粉体干燥后在850℃煅烧2h得到掺杂NaTaO3的Bi0.51Na0.5TiO3粉体;
步骤3,将粉体在冷等静压机中,用200MPa的压力压5min成为直径10mm,厚度1mm的圆片;将成型后的圆片在1140℃下保温2h烧结成瓷;将烧结后的陶瓷片打磨、抛光后用无水乙醇洗涤,然后被银极测试其介电性能。
图1中(b)是实施例2中陶瓷粉体的X射线衍射图谱,从图中可以看出,样品呈单一的钙钛矿相,无第二相出现。如图2所示,本实施例2中陶瓷在频率为1kHz下的介电常数曲线图,本实施例2中陶瓷室温下具有介电常数(ε'25℃=711)和优异的温度稳定性(-100~400℃)同时满足介电损耗低(tanδ≤0.02)和介电常数温度稳定(Δε'/ε'200°≤±15%)。
实施例3
步骤1,称取纯度为99%的Bi2O37.46119g、纯度为99.8%的Na2CO33.06533g、纯度为98.5%的TiO25.066112g和纯度为99.99%的Ta2O55.87479g,使得B0.51NT与Ta2O5的摩尔比为70:30;
步骤2,在行星球磨机中用80ml酒精为介质,以250r/min的转速球磨12h,粉体干燥后在900℃煅烧2h得到掺杂NaTaO3的Bi0.51Na0.5TiO3粉体;
步骤3,将粉体在冷等静压机中,用200MPa的压力压5min成为直径10mm,厚度1mm的圆片;将成型后的圆片在1140℃下保温2h烧结成瓷;将烧结后的陶瓷片打磨、抛光后用无水乙醇洗涤,然后被银极测试其介电性能。
图1中(c)是实施例3中陶瓷粉体的X射线衍射图谱,从图中可以看出,样品呈单一的钙钛矿相,无第二相出现。如图2所示,本实施例3中陶瓷在频率为1kHz下的介电常数曲线图,本实施例3中陶瓷室温下具有介电常数(ε'25℃=648)和优异的温度稳定性(-100~400℃)同时满足介电损耗低(tanδ≤0.02)和介电常数温度稳定(Δε'/ε'200°≤±15%)。
实施例4
步骤1,称取纯度为99%的Bi2O36.87098g、纯度为99.8%的Na2CO33.15692g、纯度为98.5%的TiO24.665365g和纯度为99.99%的Ta2O56.7972736g,使得B0.51NT与Ta2O5的摩尔比为65:35;
步骤2,在行星球磨机中用80ml酒精为介质,以250r/min的转速球磨12h,粉体干燥后在900℃煅烧2h得到掺杂NaTaO3的Bi0.51Na0.5TiO3粉体;
步骤3,将粉体在冷等静压机中,用200MPa的压力压5min成为直径10mm,厚度1mm的圆片;将成型后的圆片在1140℃下保温2h烧结成瓷;将烧结后的陶瓷片打磨、抛光后用无水乙醇洗涤,然后被银极测试其介电性能。
图1中(d)是实施例4中陶瓷粉体的X射线衍射图谱,从图中可以看出,样品呈单一的钙钛矿相,无第二相出现。如图2所示,本实施例4中陶瓷在频率为1kHz下的介电常数曲线图,本实施例4中陶瓷室温下具有介电常数(ε'25℃=502)和优异的温度稳定性(-100~400℃)同时满足介电损耗低(tanδ≤0.02)和介电常数温度稳定(Δε'/ε'200°≤±15%)。
实施例5
步骤1,称取纯度为99%的Bi2O38.67161g、纯度为99.8%的Na2CO32.8775g、纯度为98.5%的TiO25.88798g和纯度为99.99%的Ta2O53.982914g,使得B0.51NT与Ta2O5的摩尔比为80:20;
步骤2,在行星球磨机中用80ml酒精为介质,以250r/min的转速球磨12h,粉体干燥后在800℃煅烧2h得到80Bi0.51Na0.5TiO3-20NaTaO3粉体;
步骤3,称取80Bi0.51Na0.5TiO3-20NaTaO3粉体15g,以此质量为基准,称取纯度为99%的Bi2O30.03g、CuO0.03g、Li2CO30.0225g、ZnO0.06g和B2O30.0105g,使得Bi2O3、CuO、Li2CO3、ZnO和B2O3占80Bi0.51Na0.5TiO3-20NaTaO3的质量百分比为分别为0.2%、0.2%、0.15%、0.4%和0.07%;
将上述粉体加入行星球磨机中,用80ml酒精为介质,以250r/min的转速球磨12h,干燥得到掺Bi2O3、CuO、Li2CO3、ZnO和B2O3的80Bi0.51Na0.5TiO3-20NaTaO3粉体;
将干燥粉体在冷等静压机中,用200MPa的压力压5min成为直径10mm,厚度1mm的圆片;将成型后的圆片在910℃下保温2h烧结成瓷;将烧结后的陶瓷片打磨、抛光后用无水乙醇洗涤,然后被银极测试其介电性能。
图3是本实施例5中掺杂烧结助剂陶瓷的介电温谱曲线图,可看出在910℃烧结陶瓷片的情况下,实施例5中的陶瓷仍然具有优异的介电性能,在-86~337℃温度范围内仍然同时满足介电损耗低(tanδ≤0.02)和介电常数温度稳定(Δε'/ε'200°≤±15%)。
本发明制备出的B0.51NT与NaTaO3的摩尔比为80:20的陶瓷以及其掺入了烧结助剂的陶瓷,即实施例1的最高的介电常数(ε'25℃=877),优异的温度温度稳定性,-93~398℃温度范围内同时满足介电损耗低(tanδ≤0.02)和介电常数温度稳定(Δε'/ε'200°≤±15%);加入了烧结助剂后,低的烧结温度910℃,以及此温度下陶瓷片优异的介电温度稳定性,-86~337℃温度范围内仍然同时满足介电损耗低(tanδ≤0.02)和介电常数温度稳定(Δε'/ε'200°≤±15%)。
本发明通过掺杂钽酸钠拓宽了含有过量铋的钛酸铋钠介电陶瓷的温度范围,从而满足其在-55℃~300℃的温度范围内介电损耗低(tanδ≤0.02)、介电常数温度稳定性好(Δε'/ε'200°≤±15%)的性能要求;其次又通过向最佳陶瓷组分中加入烧结助剂,将最佳组分陶瓷的烧结温度降到了纯银的熔点以下,并且仍然满足在-55℃~300℃的温度范围内介电损耗低(tanδ≤0.02)、介电常数温度稳定性好(Δε'/ε'200°≤±15%)的性能要求,使其可以用银作为内电极制作MLCC。本发明方法制备的含有过量铋的钽酸钠-钛酸铋钠陶瓷温度稳定性能好、介电损耗低、温度兼容性强,通过引入烧结助剂,使得BNT陶瓷的烧结机理发生了变化,降低了陶瓷烧结温度。该方法成本低、方法简单、可重复性好,所得材料介电性能优异。

Claims (9)

1.低温共烧钛酸铋钠基介质陶瓷的制备方法,其特征在于,具体按照以下步骤进行实施:
步骤1,按照化学计量比(1-x)Bi0.51Na0.5TiO3-xNaTaO3,x=0.2~0.35,称量Bi2O3、Na2CO3、TiO2和Ta2O5,将Bi0.51Na0.5TiO3记为B0.51NT,B0.51NT与NaTaO3的摩尔比为80:20~65:35;
步骤2,在球磨机中用酒精为介质,球磨干燥并在800℃~900℃煅烧2h得到掺杂NaTaO3的Bi0.51Na0.5TiO3粉体;
步骤3,将步骤2得到的粉体在冷等静压机中,压力成型成圆片,将成型后的圆片烧结成瓷,将烧结后的陶瓷片打磨、抛光后用无水乙醇洗涤,通过银极测试陶瓷的介电性能,通过银极测试陶瓷的介电性能,确定步骤1中具有最佳介电性能的组分x,即得。
2.根据权利要求1所述的低温共烧钛酸铋钠基介质陶瓷的制备方法,其特征在于,根据所述步骤3得到介电性能组分x取值,通过以下操作确定步骤1中具有最佳介电性能的组分x;
步骤3.1,通过步骤3确定步骤1中组分x取值,称量步骤2中所得到的陶瓷粉体10~20g,再分别称取Bi2O3、CuO、Li2CO3、ZnO和B2O3作为助烧剂加入陶瓷粉体中,得到混合粉体;
步骤3.2,在球磨机中用酒精为介质,球磨干燥得到陶瓷/助烧剂混合粉体;
步骤3.3,将步骤3.2得到的粉体在冷等静压机中,压力成型成圆片;将成型后的圆片烧结成瓷;将烧结后的陶瓷片打磨、抛光后用无水乙醇洗涤,即得。
3.根据权利要求1所述的低温共烧钛酸铋钠基介质陶瓷的制备方法,其特征在于,在所述步骤3中冷等静压机用200MPa的压力压5min,成为直径10mm,厚度1mm的圆片,烧结1100℃~1200℃下保温1~5h。
4.根据权利要求1所述的低温共烧钛酸铋钠基介质陶瓷的制备方法,其特征在于,使用银极测试时,银电极烧成在850℃~950℃下保温20~60min,得到介电性能组分x取值。
5.根据权利要求2所述的低温共烧钛酸铋钠基介质陶瓷的制备方法,其特征在于,所述步骤3.1中助烧剂Bi2O3、CuO、Li2CO3、ZnO和B2O3占混合粉体的质量百分比分别为0.2%、0.2%、0.15%、0.4%和0.07%。
6.根据权利要求2所述的低温共烧钛酸铋钠基介质陶瓷的制备方法,其特征在于,步骤3.3中冷等静压机用200MPa的压力压5min,成为直径10mm,厚度1mm的圆片;烧结900℃~950℃下保温1~5h。
7.根据权利要求2所述的低温共烧钛酸铋钠基介质陶瓷的制备方法,其特征在于,步骤2和步骤3.2中采用行星球磨机,均以250~400r/min的转速球磨12~24h。
8.根据权利要求1所述的低温共烧钛酸铋钠基介质陶瓷的制备方法,其特征在于,步骤1中的Bi2O3、Na2CO3、TiO2、和Ta2O5纯度均不小于98.5%。
9.根据权利要求2所述的低温共烧钛酸铋钠基介质陶瓷的制备方法,其特征在于,步骤3.1中Bi2O3、CuO、Li2CO3、ZnO和B2O3纯度均不小于98.5%。
CN202210107267.5A 2022-01-28 2022-01-28 低温共烧钛酸铋钠基介质陶瓷的制备方法 Active CN114436647B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210107267.5A CN114436647B (zh) 2022-01-28 2022-01-28 低温共烧钛酸铋钠基介质陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210107267.5A CN114436647B (zh) 2022-01-28 2022-01-28 低温共烧钛酸铋钠基介质陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN114436647A true CN114436647A (zh) 2022-05-06
CN114436647B CN114436647B (zh) 2023-07-25

Family

ID=81371922

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210107267.5A Active CN114436647B (zh) 2022-01-28 2022-01-28 低温共烧钛酸铋钠基介质陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN114436647B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5637542A (en) * 1995-10-04 1997-06-10 Nikon Corporation Dielectric ceramic composition
CN102875159A (zh) * 2012-09-20 2013-01-16 广东风华高新科技股份有限公司 低温共烧介质陶瓷制备方法及其材料和烧结助剂
CN105732025A (zh) * 2016-01-20 2016-07-06 武汉理工大学 一种钛酸铋钠基x9r型多层陶瓷电容器材料及其器件制备方法
CN110436920A (zh) * 2019-08-26 2019-11-12 中南大学 一种钛酸铋钠-钽酸钠固溶陶瓷材料及其制备方法和应用
CN112811902A (zh) * 2021-01-11 2021-05-18 北京工业大学 一种高储能密度的钛酸铋钾基三元无铅铁电陶瓷材料及其制备
CN113185282A (zh) * 2021-04-20 2021-07-30 西安理工大学 一种高温稳定钛酸铋钠基储能电容材料及其制备方法
WO2021229919A1 (ja) * 2020-05-12 2021-11-18 株式会社村田製作所 誘電体組成物および積層セラミックコンデンサ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5637542A (en) * 1995-10-04 1997-06-10 Nikon Corporation Dielectric ceramic composition
CN102875159A (zh) * 2012-09-20 2013-01-16 广东风华高新科技股份有限公司 低温共烧介质陶瓷制备方法及其材料和烧结助剂
CN105732025A (zh) * 2016-01-20 2016-07-06 武汉理工大学 一种钛酸铋钠基x9r型多层陶瓷电容器材料及其器件制备方法
CN110436920A (zh) * 2019-08-26 2019-11-12 中南大学 一种钛酸铋钠-钽酸钠固溶陶瓷材料及其制备方法和应用
WO2021229919A1 (ja) * 2020-05-12 2021-11-18 株式会社村田製作所 誘電体組成物および積層セラミックコンデンサ
CN112811902A (zh) * 2021-01-11 2021-05-18 北京工业大学 一种高储能密度的钛酸铋钾基三元无铅铁电陶瓷材料及其制备
CN113185282A (zh) * 2021-04-20 2021-07-30 西安理工大学 一种高温稳定钛酸铋钠基储能电容材料及其制备方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHIA-CHING WU等: "Effects of NaNbO3 concentration on the relaxor and dielectric properties of the lead-free (Na0.5Bi0.5)TiO3 ceramics", 《CRYSTENGCOMM》, vol. 15, no. 44, 4 September 2013 (2013-09-04), pages 9097 - 9013 *
GREGORY YESNER等: "Development of a lead-free copper co-fired BNT-based piezoceramic sintered at low temperature", 《J.AM. CERAM. SOC.》 *
GREGORY YESNER等: "Development of a lead-free copper co-fired BNT-based piezoceramic sintered at low temperature", 《J.AM. CERAM. SOC.》, vol. 101, no. 12, 19 May 2018 (2018-05-19), pages 5316 *
QI XU等: "Ultra-Wide Temperature Stable Dielectrics Based on Bi0.5Na0.5TiO3–NaNbO3 System", 《J.AM. CERAM. SOC.》 *
QI XU等: "Ultra-Wide Temperature Stable Dielectrics Based on Bi0.5Na0.5TiO3–NaNbO3 System", 《J.AM. CERAM. SOC.》, vol. 98, no. 10, 30 June 2015 (2015-06-30), pages 3119 *
焦宝祥等, 华东理工大学出版社 *
焦宝祥等, 华东理工大学出版社, pages: 52 *

Also Published As

Publication number Publication date
CN114436647B (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
CN101033132B (zh) 中温烧结高温稳定型陶瓷电容器介质材料
JP5077362B2 (ja) 誘電体セラミック及び積層セラミックコンデンサ
EP2236478A1 (en) Dielectric Ceramic Composition
CN101786866B (zh) 一种抗还原性铜内电极高频低温烧结陶瓷介质材料
CN101367651B (zh) 一种高频低温烧结陶瓷介质材料及所得电容器的制备方法
US20090011921A1 (en) Dielectric Porcelain Composition and Method for Production Thereof
WO2004094338A1 (ja) 誘電体形成用無鉛ガラス、誘電体形成用ガラスセラミックス組成物、誘電体および積層誘電体製造方法
CN102050484B (zh) 六方晶系钛酸钡粉末、其制造方法、电介质陶瓷组合物和电子部件
CN102060521A (zh) 六方晶系钛酸钡粉末、其制造方法、电介质陶瓷组合物和电子部件
JP2000044341A (ja) 誘電体セラミック組成物
US8841226B2 (en) Dielectric ceramic composition
CN101172853A (zh) 一种用于温度稳定x9r型多层陶瓷电容器瓷料及其制备方法
JP2004504712A (ja) セラミック材料および該セラミック材料を有するコンデンサー
CN100424038C (zh) 一种低温烧结高频热稳定介质陶瓷及其制备方法
CN111635227B (zh) 一种高频陶瓷介质材料及其制备方法和多层陶瓷电容器
CN109721348B (zh) 低介电常数介电瓷粉组合物制备方法及其制成的电容器
CN111018519B (zh) 一种铌酸钠掺杂钛酸铋钠-铝酸铋陶瓷的制备方法
CN114436647A (zh) 低温共烧钛酸铋钠基介质陶瓷的制备方法
JP3909366B2 (ja) 低誘電率磁器組成物とその磁器組成物を用いた電子回路用基板の製造方法
WO2004103929A1 (ja) 誘電体磁器組成物、並びにその製造方法、それを用いた誘電体磁器及び積層セラミック部品
CN100372802C (zh) 高频热稳定的钛钡钕系陶瓷介质材料及多层片式陶瓷电容器
CN115010488B (zh) 一种低烧低介高q高稳定电容器用微波瓷料
WO2022244479A1 (ja) セラミックス材料及びコンデンサ
CN107739205A (zh) 一种钛酸钡核‑锶锆钙壳结构的陶瓷介质材料及其制备方法
KR100763284B1 (ko) 마이크로파 유전체 세라믹스 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant