CN111018519B - 一种铌酸钠掺杂钛酸铋钠-铝酸铋陶瓷的制备方法 - Google Patents

一种铌酸钠掺杂钛酸铋钠-铝酸铋陶瓷的制备方法 Download PDF

Info

Publication number
CN111018519B
CN111018519B CN201911411367.1A CN201911411367A CN111018519B CN 111018519 B CN111018519 B CN 111018519B CN 201911411367 A CN201911411367 A CN 201911411367A CN 111018519 B CN111018519 B CN 111018519B
Authority
CN
China
Prior art keywords
ceramic
sodium
bismuth
wafer
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911411367.1A
Other languages
English (en)
Other versions
CN111018519A (zh
Inventor
任鹏荣
何娇娇
王欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201911411367.1A priority Critical patent/CN111018519B/zh
Publication of CN111018519A publication Critical patent/CN111018519A/zh
Application granted granted Critical
Publication of CN111018519B publication Critical patent/CN111018519B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明公开了一种铌酸钠掺杂钛酸铋钠‑铝酸铋陶瓷的制备方法,通过将Bi2O3、Na2CO3、TiO2、Al2O3和Nb2O5按照化学计量比称量混合、球磨干燥、然后将不同组分的混合粉末通过等静压技术挤压成片,最后在不同温度烧结即得。本发明解决了现有技术中陶瓷电容器在‑55℃~300℃的温度范围内介电损耗低的同时,介电常数温度稳定性差的问题。

Description

一种铌酸钠掺杂钛酸铋钠-铝酸铋陶瓷的制备方法
技术领域
本发明属于陶瓷材料制备技术领域,涉及一种铌酸钠掺杂钛酸铋钠-铝酸铋陶瓷的制备方法。
背景技术
钛酸铋钠(Bi0.5Na0.5TiO3)系列陶瓷自发现以来,大家普遍关注压电性能,对介电性能的关注较少,通过掺杂改性,提高在100℃~300℃高温段介电性能温度稳定性,但这与现有商用多层陶瓷电容器(MLCC)在-55℃~300℃使用温度范围不兼容。“High-temperature dielectrics based on(1-y)[(1-x)Bi0.5Na0.5TiO3-xBiAlO3]-yCaZrO3ternary system with stable permittivity and low dielectric loss in awide temperature range[J].Journal of the European Ceramic Society 39(2019)4160–4167”中公开了一种高温介电陶瓷的制备方法,BiAlO3的掺杂抑制了氧化物离子的导电,显著降低了高温下介电损耗,CaZrO3的掺杂提高了介电性能温度稳定性,在160℃~425℃的温度范围内介电损耗小于0.02,介电常数的温度稳定性(Δε'/ε'200℃)不超过±15%,但是与现有的商用陶瓷电容器-55℃~300℃的温度范围相比,低温温度限过高,具有明显的差异。因此,如何在提高钛酸铋钠基陶瓷介电常数,降低介电损耗的同时,提高温度稳定性,保证其与商用陶瓷电容器的温度兼容性,是一个重要的研究方向。
发明内容
本发明的目的是提供一种铌酸钠掺杂钛酸铋钠-铝酸铋陶瓷的制备方法,解决了现有商用陶瓷电容器的温度范围内介电损耗高,温度稳定性差的问题。
本发明所采用的技术方案是,一种铌酸钠掺杂钛酸铋钠-铝酸铋陶瓷的制备方法,其特征在于,具体步骤如下:
步骤1,按照化学计量比(1-x)(0.90Bi0.5Na0.5TiO3-0.10BiAlO3)-xNaNbO3(0.15≤x≤0.30)称量Bi2O3、Na2CO3、TiO2、Al2O3和Nb2O5,将0.90Bi0.5Na0.5TiO3-0.10BiAlO3记作BNT-BA,BNT-BA与NaNbO3的摩尔比为85:15~70:30;
步骤2,在球磨机中用酒精为介质,球磨干燥得到掺杂NaNbO3的0.90Bi0.5Na0.5TiO3-0.10BiAlO3粉体;
步骤3,将步骤2得到的粉体在冷等静压机中,压力成型成圆片;
步骤4,将步骤3成型后的圆片烧结成瓷;
步骤5,将步骤4烧结后的陶瓷片打磨、抛光后用无水乙醇洗涤,即得。
本发明的特点还在于,
步骤2中采用行星球磨机,以250~400r/min的转速球磨12~24h。
在步骤3中冷等静压机用200MPa的压力压5min,成为直径10mm,厚度1mm的圆片。
在步骤4中烧结1200℃~1300℃下保温1~5h。
步骤1中的Bi2O3、Na2CO3、TiO2、Al2O3和Nb2O5纯度均不小于98.5%。
本发明的有益效果是,本发明一种铌酸钠掺杂钛酸铋钠-铝酸铋陶瓷的制备方法,通过掺杂铌酸钠(NaNbO3,简称NN)拓宽钛酸铋钠介电陶瓷的温度范围,特别是低温使用温度范围的方法,从而满足其在-55℃~300℃的温度范围内介电损耗低(tanδ≤0.02)、介电常数温度稳定性好(Δε'/ε'200°≤±15%)的性能要求。本发明方法制备的钛酸铋钠-铝酸铋陶瓷温度稳定性能好、介电损耗低、温度兼容性强,利用固相合成法,通过成分设计引入铌酸钠,使得BNT陶瓷的内部极性状态发生变化,从而提升介电温度稳定性(-100~374℃)。该方法成本低、方法简单、可重复性好,所得材料介电性能优异。
附图说明
图1是本发明实施例1-4中制备的BNT-BA-100xNN陶瓷的X射线衍射图谱;
图2是本发明实施例4中所制陶瓷的介电温谱图。
具体实施方式
本发明一种铌酸钠掺杂钛酸铋钠-铝酸铋陶瓷的制备方法,将Bi2O3、Na2CO3、TiO2、Al2O3和Nb2O5按照化学计量比称量、混合球磨干燥,然后将不同组分的混合粉末通过等静压技术挤压成片,最后在不同温度烧结即可。
本发明一种铌酸钠掺杂钛酸铋钠-铝酸铋陶瓷的制备方法,具体实施步骤如下:
步骤1,按照化学计量比(1-x)(0.90Bi0.5Na0.5TiO3-0.10BiAlO3)-xNaNbO3(0.15≤x≤0.30)称量Bi2O3、Na2CO3、TiO2、Al2O3和Nb2O5,将0.90Bi0.5Na0.5TiO3-0.10BiAlO3记作BNT-BA,BNT-BA与NaNbO3的摩尔比为85:15~70:30;
步骤1中的Bi2O3、Na2CO3、TiO2、Al2O3和Nb2O5纯度均不小于98.5%。
步骤2,在球磨机中用酒精为介质,球磨干燥得到掺杂NaNbO3的0.90Bi0.5Na0.5TiO3-0.10BiAlO3粉体;
步骤2中采用行星球磨机,以250~400r/min的转速球磨12~24h。
步骤3,将步骤2得到的粉体在冷等静压机中,压力成型成圆片;
在步骤3中冷等静压机用200MPa的压力压5min,成为直径10mm,厚度1mm的圆片。
步骤4,将步骤3成型后的圆片烧结成瓷;
在步骤4中烧结1200℃~1300℃下保温1~5h。
步骤5,将步骤4烧结后的陶瓷片打磨、抛光后用无水乙醇洗涤,即得。
下面结合附图和具体实施方式对本发明进行详细说明。
实施例1
步骤1,称取纯度为98.5%的Bi2O37.7508g、Na2CO32.0123g、TiO24.4366g、Al2O30.3083g和Nb2O51.4187g,使得BNT-BA与NaNbO3的摩尔比为85:15;
步骤2,在行星球磨机中用80ml酒精为介质,以250r/min的转速球磨12h,干燥得到掺杂NaNbO3的0.90Bi0.5Na0.5TiO3-0.10BiAlO3粉体;
步骤3,将干燥粉体在冷等静压机中,用200MPa的压力压5min成为直径10mm,厚度1mm的圆片;
步骤4,将成型后的圆片在1250℃下保温2h烧结成瓷;
步骤5,将烧结后的陶瓷片打磨、抛光后用无水乙醇洗涤,然后被银极测试其介电性能。
图1中(a)是实施例1中陶瓷粉体的X射线衍射图谱,从图中可以看出,样品呈单一的钙钛矿相,无第二相出现。
实施例2
步骤1,称取纯度为98.6%的Bi2O37.3921g、Na2CO32.1444g、TiO24.2312g、Al2O30.2941g和Nb2O51.9167g,使得BNT-BA与NaNbO3的摩尔比为80:20。
步骤2,在行星球磨机中用80ml酒精为介质,以260r/min的转速球磨12h,干燥得到掺杂NaNbO3的0.90Bi0.5Na0.5TiO3-0.10BiAlO3粉体。
步骤3,将干燥粉体在冷等静压机中,用200MPa的压力压5min成为直径10mm,厚度1mm的圆片。
步骤4,将成型后的圆片在1250℃下保温2h烧结成瓷。
步骤5,将烧结后的陶瓷片打磨、抛光后用无水乙醇洗涤,然后被银极测试其介电性能。
图1中(b)是实施例2中陶瓷粉体的X射线衍射图谱,从图中可以看出,样品呈单一的钙钛矿相,无第二相出现。
实施例3
步骤1,称取纯度为98.7%的Bi2O37.0227g、Na2CO32.2798g、TiO24.0198g、Al2O30.2794g和Nb2O52.4279g,使得BNT-BA与NaNbO3的摩尔比为75:25。
步骤2,在行星球磨机中用80ml酒精为介质,以270r/min的转速球磨12h,干燥得到掺杂NaNbO3的0.90Bi0.5Na0.5TiO3-0.10BiAlO3粉体。
步骤3,将干燥粉体在冷等静压机中,用200MPa的压力压5min成为直径10mm,厚度1mm的圆片。
步骤4,将成型后的圆片在1250℃下保温2h烧结成瓷。
步骤5,将烧结后的陶瓷片打磨、抛光后用无水乙醇洗涤,然后被银极测试其介电性能。
图1中(c)是实施例3中陶瓷粉体的X射线衍射图谱,从图中可以看出,样品呈单一的钙钛矿相,无第二相出现。
实施例4
步骤1,称取纯度为98.5%的Bi2O36.6438g、Na2CO32.41902g、TiO23.8029g、Al2O30.2643g和Nb2O52.9532g,使得BNT-BA与NaNbO3的摩尔比为70:30。
步骤2,在行星球磨机中用80ml酒精为介质,以450r/min的转速球磨12h,干燥得到掺杂NaNbO3的0.90Bi0.5Na0.5TiO3-0.10BiAlO3粉体。
步骤3,将干燥粉体在冷等静压机中,用200MPa的压力压5min成为直径10mm,厚度1mm的圆片。
步骤4,将成型后的圆片在1250℃下保温2h烧结成瓷。
步骤5,将烧结后的陶瓷片打磨、抛光后用无水乙醇洗涤,然后被银极测试其介电性能。
图1中(d)是实施例4中陶瓷粉体的X射线衍射图谱,从图中可以看出,样品呈单一的钙钛矿相,无第二相出现。图2是本实施例4中陶瓷在频率为1kHz下的介电温谱曲线图,从图中可以看出,温度稳定性(-100~374℃)最好。
本发明制备出的BNT-BA与NaNbO3的摩尔比为70:30的陶瓷,即实施例4的温度稳定性(-100~374℃)最佳且损耗(tanε≤0.02)最低。
本发明一种铌酸钠掺杂钛酸铋钠-铝酸铋陶瓷的制备方法,通过将Bi2O3、Na2CO3、TiO2、Al2O3和Nb2O5按照化学计量比称量混合、球磨干燥,然后将不同组分的混合粉末通过等静压技术挤压成片,最后在不同温度烧结即得。获得了介电性能温度稳定性好,介电损耗低,温度兼容性好的钛酸铋钠基陶瓷,在宽温电容器领域的实际应用方面提供了一个很好的参考。

Claims (5)

1.一种铌酸钠掺杂钛酸铋钠-铝酸铋陶瓷的制备方法,其特征在于,具体步骤如下:
步骤1,按照化学计量比(1-x)(0.90Bi0.5Na0.5TiO3-0.10BiAlO3)-xNaNbO3(0.15≤x≤0.30)称量Bi2O3、Na2CO3、TiO2、Al2O3和Nb2O5,将0.90Bi0.5Na0.5TiO3-0.10BiAlO3记作BNT-BA,BNT-BA与NaNbO3的摩尔比为85:15~70:30;
步骤2,在球磨机中用酒精为介质,球磨干燥得到掺杂NaNbO3的0.90Bi0.5Na0.5TiO3-0.10BiAlO3粉体;
步骤3,将步骤2得到的粉体在冷等静压机中,压力成型成圆片;
步骤4,将步骤3成型后的圆片烧结成瓷;
步骤5,将步骤4烧结后的陶瓷片打磨、抛光后用无水乙醇洗涤,即得。
2.根据权利要求1所述的一种铌酸钠掺杂钛酸铋钠-铝酸铋陶瓷的制备方法,其特征在于,所述步骤2中采用行星球磨机,以250~400r/min的转速球磨12~24h。
3.根据权利要求1所述的一种铌酸钠掺杂钛酸铋钠-铝酸铋陶瓷的制备方法,其特征在于,所述在步骤3中冷等静压机用200MPa的压力压5min,成为直径10mm,厚度1mm的圆片。
4.根据权利要求1所述的一种铌酸钠掺杂钛酸铋钠-铝酸铋陶瓷的制备方法,其特征在于,所述在步骤4中烧结1200℃~1300℃下保温1~5h。
5.根据权利要求1所述的一种铌酸钠掺杂钛酸铋钠-铝酸铋陶瓷的制备方法,其特征在于,所述步骤1中的Bi2O3、Na2CO3、TiO2、Al2O3和Nb2O5纯度均不小于98.5%。
CN201911411367.1A 2019-12-31 2019-12-31 一种铌酸钠掺杂钛酸铋钠-铝酸铋陶瓷的制备方法 Active CN111018519B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911411367.1A CN111018519B (zh) 2019-12-31 2019-12-31 一种铌酸钠掺杂钛酸铋钠-铝酸铋陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911411367.1A CN111018519B (zh) 2019-12-31 2019-12-31 一种铌酸钠掺杂钛酸铋钠-铝酸铋陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN111018519A CN111018519A (zh) 2020-04-17
CN111018519B true CN111018519B (zh) 2022-01-07

Family

ID=70197623

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911411367.1A Active CN111018519B (zh) 2019-12-31 2019-12-31 一种铌酸钠掺杂钛酸铋钠-铝酸铋陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN111018519B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109761604A (zh) * 2019-03-07 2019-05-17 西安工业大学 一种钛酸铋钠基高温介电陶瓷及其制备方法
CN114716243B (zh) * 2022-04-12 2023-05-23 华南理工大学 一种高温稳定型钛酸铋钠-钛酸锶基介电储能陶瓷材料及其制备与应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101024574A (zh) * 2007-01-30 2007-08-29 合肥工业大学 铋基钙钛矿替代的铌酸钾钠系无铅压电陶瓷及其制备方法
CN101200370A (zh) * 2007-10-18 2008-06-18 桂林电子科技大学 一种三元系钛酸铋钠基无铅压电陶瓷
CN102173784A (zh) * 2011-01-21 2011-09-07 天津大学 溶胶包覆法制备钛酸铋钠-钛酸钡复合介质陶瓷的方法
KR101333792B1 (ko) * 2012-06-05 2013-11-29 한국세라믹기술원 비스무스 기반의 무연 압전 세라믹스 및 그 제조방법
CN104058741A (zh) * 2014-07-07 2014-09-24 武汉理工大学 一种超宽温稳定的介质陶瓷及其制备方法
US20150129792A1 (en) * 2013-11-13 2015-05-14 Tdk Corporation Piezoelectric composition and piezoelectric element
CN105174944A (zh) * 2015-09-18 2015-12-23 北京工业大学 一种超宽温高稳定无铅电容器陶瓷介电材料及其制备方法
CN105732025A (zh) * 2016-01-20 2016-07-06 武汉理工大学 一种钛酸铋钠基x9r型多层陶瓷电容器材料及其器件制备方法
CN109761604A (zh) * 2019-03-07 2019-05-17 西安工业大学 一种钛酸铋钠基高温介电陶瓷及其制备方法
CN110540423A (zh) * 2019-08-19 2019-12-06 同济大学 钛酸铋钠基高储能密度和功率密度陶瓷及制备方法和应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101024574A (zh) * 2007-01-30 2007-08-29 合肥工业大学 铋基钙钛矿替代的铌酸钾钠系无铅压电陶瓷及其制备方法
CN101200370A (zh) * 2007-10-18 2008-06-18 桂林电子科技大学 一种三元系钛酸铋钠基无铅压电陶瓷
CN102173784A (zh) * 2011-01-21 2011-09-07 天津大学 溶胶包覆法制备钛酸铋钠-钛酸钡复合介质陶瓷的方法
KR101333792B1 (ko) * 2012-06-05 2013-11-29 한국세라믹기술원 비스무스 기반의 무연 압전 세라믹스 및 그 제조방법
US20150129792A1 (en) * 2013-11-13 2015-05-14 Tdk Corporation Piezoelectric composition and piezoelectric element
CN104058741A (zh) * 2014-07-07 2014-09-24 武汉理工大学 一种超宽温稳定的介质陶瓷及其制备方法
CN105174944A (zh) * 2015-09-18 2015-12-23 北京工业大学 一种超宽温高稳定无铅电容器陶瓷介电材料及其制备方法
CN105732025A (zh) * 2016-01-20 2016-07-06 武汉理工大学 一种钛酸铋钠基x9r型多层陶瓷电容器材料及其器件制备方法
CN109761604A (zh) * 2019-03-07 2019-05-17 西安工业大学 一种钛酸铋钠基高温介电陶瓷及其制备方法
CN110540423A (zh) * 2019-08-19 2019-12-06 同济大学 钛酸铋钠基高储能密度和功率密度陶瓷及制备方法和应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
(1-x)Na0.5Bi0.5TiO3-xNaNbO3系无铅压电陶瓷的机电性能;李月明等;《硅酸盐学报》;20050326;第366-369+385页 *
Enhanced pyroelectric properties in (Bi0.5Na0.5)TiO3-BiAlO3-NaNbO3 ternary system lead-free ceramics;Peng, P等;《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》;20180930;第101卷(第9期);第4044-4052页 *
Fabrication and Electrical Properties of (Bi1/2Na1/2)TiO3-BiAlO3 Ferroelectric Ceramics;Watanabe, Y等;《ELECTROCERAMICS IN JAPAN XI》;20091231;第388卷;第229-232页 *
High-temperature dielectrics based on (1-y)[(1-x)Bi0.5Na0.5TiO3-xBiAlO(3)]-yCaZrO(3) ternary system with stable permittivity and low dielectric loss in a wide temperature range;Ren, PR等;《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》;20191130;第39卷(第14期);第4160-4167页 *
Ultrawide Temperature Range with Stable Permittivity and Low Dielectric Loss in (1-x)[0.90Na0.5Bi0.5TiO3-0.10BiAlO3]-xNaNbO3System;Ren, PR等;《ADVANCED ELECTRONIC MATERIALS》;20200630;第6卷(第7期);第1-9页 *
钛酸铋钠基陶瓷的组分调控与介电性能温度稳定性研究;何娇娇;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20210115;第B015-742页 *

Also Published As

Publication number Publication date
CN111018519A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
EP1130004B1 (en) Manufacturing method for oxide having perovskite structure
Wu et al. Effect of Bi2O3 additive on the microstructure and dielectric properties of BaTiO3-based ceramics sintered at lower temperature
CN102050484B (zh) 六方晶系钛酸钡粉末、其制造方法、电介质陶瓷组合物和电子部件
CN111018519B (zh) 一种铌酸钠掺杂钛酸铋钠-铝酸铋陶瓷的制备方法
CN108147813B (zh) 一种高压电系数钛酸铋钠基无铅压电陶瓷及其制备方法
CN102093052A (zh) 一种钛酸钡基表面氧化层型陶瓷电容器介质材料及其制备方法
CN110015894B (zh) 一种高温下介电稳定的钛酸铋钠基陶瓷及其制备方法和应用
CN110128127B (zh) 一种具有高压电性能及高温稳定性的铁酸铋-钛酸钡基无铅压电陶瓷及其制备方法
CN105272233A (zh) 一种陶瓷电容器用介质材料及其制备方法
KR20100133905A (ko) 유전물질용 소결체 및 이의 제조 방법
CN105732025A (zh) 一种钛酸铋钠基x9r型多层陶瓷电容器材料及其器件制备方法
CN111410530B (zh) 一种抗还原BaTiO3基介质陶瓷及其制备方法
CN113831121A (zh) 一种高击穿场强的复相巨介电陶瓷材料及其制备方法
CN116573936A (zh) 一种阴离子改性的压电陶瓷及其制备方法
CN110981469A (zh) 一种钛酸铋钠基高温压电陶瓷的制备方法
CN111620689A (zh) 一种不同a位元素的类钙钛矿型高温热敏电阻材料及其制备方法
CN109516799B (zh) 一种具有高温度稳定性的高介陶瓷电容器材料及其制备方法
CN113045307B (zh) 一种高介电低损耗钛酸钡基陶瓷及其制备方法
KR101905143B1 (ko) 비강유전 고유전체 및 그 제조방법
CN113620702A (zh) 一种Yb3+掺杂的巨介电常数低损耗陶瓷及其制备方法
CN110903085B (zh) TiO2基微波陶瓷基板材料及制备方法和应用
CN107500755A (zh) 一种低温烧结的mlcc用陶瓷介质材料及其制备方法
CN106116575A (zh) 一种高d33亚微米级Al3+掺杂铌酸钾钠无铅压电陶瓷的热压烧结方法
CN115385688A (zh) 一种锆钛酸锶钡基介电陶瓷材料及其制备方法
CN114478006A (zh) 一种KNNS-BNZ+CuO压电陶瓷材料及其制备方法、应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant