CN114409651B - 对塔崩具有荧光响应的一维有机半导体纳米材料及其制备方法和应用 - Google Patents

对塔崩具有荧光响应的一维有机半导体纳米材料及其制备方法和应用 Download PDF

Info

Publication number
CN114409651B
CN114409651B CN202210152853.1A CN202210152853A CN114409651B CN 114409651 B CN114409651 B CN 114409651B CN 202210152853 A CN202210152853 A CN 202210152853A CN 114409651 B CN114409651 B CN 114409651B
Authority
CN
China
Prior art keywords
organic semiconductor
tabun
nano material
dimensional organic
intermediate compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210152853.1A
Other languages
English (en)
Other versions
CN114409651A (zh
Inventor
张义斌
刘晓玲
严庆
孙林
邱先宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangtze Normal University
Original Assignee
Yangtze Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangtze Normal University filed Critical Yangtze Normal University
Priority to CN202210152853.1A priority Critical patent/CN114409651B/zh
Publication of CN114409651A publication Critical patent/CN114409651A/zh
Application granted granted Critical
Publication of CN114409651B publication Critical patent/CN114409651B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了对塔崩具有荧光响应的一维有机半导体纳米材料及其制备方法和应用,所述纳米材料由构筑分子通过π‑π堆积自组装呈带状纳米结构;所述构筑分子的结构式如下:

Description

对塔崩具有荧光响应的一维有机半导体纳米材料及其制备方 法和应用
技术领域
本发明涉及有机半导体纳米材料领域,特别的涉及一种对塔崩具有荧光响应的一维有机半导体纳米材料及其制备方法和应用。
背景技术
塔崩,学名为二甲基氰磷酸辣乙酯,是一种具有水果香味的无色液体,工业品有苦杏仁异味。在工业上有着极为重要的应用价值,常被用于许多化学品的初始原料,尤其是在农药、医药、塑料等产品的合成方面发挥了巨大的作用。然而,塔崩作为一种无色的剧毒性气体,通常是以呼吸道和皮肤渗透的方式侵入人体,并且在数小时内发挥其全部毒性,从而引起肺部严重损伤或窒息,严重的会导致死亡。因其剧毒特性,塔崩的泄露会对社会安全和人类健康造成重大灾难,因此对于此剧毒物质的分析检测极为重要。
目前,涉及到塔崩的检测多数为包括塔崩在内的神经毒剂类物质的检测。如发明专利CN113121589A公开了一种基于1,8-萘二甲酰亚胺的有机材料、有机-无机杂化纳米材料及制备方法和应用,以1,8-萘二甲酰亚胺作为有机发光材料,以不同有机识别基团修饰后能与神经毒剂和过氧化爆炸物进行特异性结合或反应,从而实现对二者的检测。发明专利CN110981821A公共了荧光探针及其用于检测神经毒剂的用途,该荧光探针是基于杂化局域-电荷转移激发态以及脱杂化机制可高效地检测神经毒剂。因此,目前仍然缺乏对塔崩具有高度选择性的荧光探针或传感器,受到类似物的干扰程度依然较大。所以如何实现对塔崩的特异性检测还存在很大的困难。
有机半导体纳米材料具有许多无机纳米材料不具备的优点,比如有机半导体纳米材料的结构可调控、可利用灵活的合成方法制备得到,材料的制造成本低,易于大面积加工,以及有机半导体纳米材料可以应用到柔性基底上等等。因此,尽管有机半导体纳米材料相对于无机纳米材料起步较晚,但近年来发展迅速。其中,由π共轭的有机分子作为构筑单元制备的一维有机半导体纳米材料,可以作为有效的荧光量子材料,实现对有毒有害物的高灵敏度、高选择性的检测。如发明专利CN104130257A公开了对有机胺类气体具有超灵敏荧光响应的一维有机半导体螺旋纳米线及其制备方法和应用。发明专利CN103709161A公开了对有机胺类气体具有荧光和光电导双响应的一维有机半导体纳米线及其制备方法和应用。因此,可以根据特殊的需求设计符合目的要求的分子结构以实现新型纳米材料对更多物质的特异性检测。
发明内容
针对上述现有技术的不足,本发明所要解决的技术问题是:提供了一种新型的对塔崩具有荧光响应的一维有机半导体纳米材料及其制备方法,丰富了现有纳米材料种类和选择性;本发明还提供了一维有机半导体纳米材料在塔崩检测中的应用,解决现有检测方法存在灵敏度和特异性不高,操作步骤复杂,成本高等问题。
为了解决上述技术问题,本发明采用了如下的技术方案:一种对塔崩具有荧光响应的一维有机半导体纳米材料,所述纳米材料是由构筑分子通过π-π堆积自组装呈带状纳米结构;所述构筑分子的结构式如下:
Figure BDA0003511276320000021
作为优选的,所述构筑分子的排列方式为J型分子排列。
作为优选的,所述π-π堆积的方向平行于有机半导体纳米的长轴方向。
作为优选的,所述构筑分子的合成路线如下:
Figure BDA0003511276320000022
具体包括以下步骤:
1)中间体化合物B的制备:
取化合物A置于咪唑中加热至130℃,然后加入十三烷-7-胺,反应1~2h,再依次加入无水乙醇和盐酸溶液,搅拌过夜,过滤产物收集固体,向得到的固体中加水冲洗至中性,减压旋蒸后得到中间体化合物B;
2)中间化合物D的制备:
将步骤1)得到的中间体化合物B与4-氨基苯硫酚置于咪唑中加热至130℃,反应1~2h,再依次加入无水乙醇和的盐酸溶液,搅拌过夜,然后过滤产物收集固体,将得到的固体经过柱层析分离后即得到中间化合物D;
3)一维有机半导体纳米材料构筑分子的制备:
将步骤2)得到的中间体化合物D与对硝基苯酰氯置于氯仿溶液中,再加入三乙胺后反应1~2h,搅拌过夜,然后分液萃取,将得到的固体经过柱层析分离后即得到所述构筑分子。
作为优选的,所述盐酸溶液的质量分数为36%。
作为优选的,所述化合物A与十三烷-7-胺的摩尔比为1:1~1:1.2;所述中间体化合物B与4-氨基苯硫酚的摩尔比为1:1~1:1.2;所述中间体化合物D与对硝基苯酰氯的摩尔比为1:1~1:1.2。
作为优选的,所述柱层析中洗脱剂为二氯甲烷/甲醇,所述二氯甲烷与甲醇的体积比为50:1~100:1。
本发明的另一个目的,还在于提供了一种对塔崩具有荧光响应的一维有机半导体纳米材料的制备方法,包括如下步骤:首先合成所述构筑分子,然后将其溶解于良性溶剂中,再加入不良溶剂,静置1~3天后,将反应产物中析出的絮状物吸出,待有机溶剂自然挥发后即得到所述一维有机半导体纳米材料。
作为优选的,所述良性溶剂为氯仿,所述不良溶剂为乙醇、乙醚、正己烷或正戊烷;所述良性溶剂与不良溶剂的体积比为1:5~1:20。
本发明的另一个目的,还在于提供了一种由上述对塔崩具有荧光响应的一维有机半导体纳米材料制成的多孔膜在用于检测塔崩毒气方面的应用。
作为优选的,所述检测塔崩毒气的方法包括以下步骤:
S1:将所述多孔膜均匀的涂敷在玻璃管内壁上,用波长为450nm的激发光源激发所述多孔膜,然后检测所述多孔膜在600~630nm处的荧光强度;
S2:将步骤S1处于激发状态的多孔膜与待测气体接触,再检测多孔膜在600~630nm处的荧光强度,当得到的荧光强度增强,则待检测气体中含有塔崩毒气;所述塔崩的检测浓度为ppm级别。
相比现有技术,本发明具有如下有益效果:
1、本发明涉及的一维有机半导体纳米材料是由对硝基苯基硫酯作为苝酰亚胺的端头自组装制备。该纳米材料在激发状态下,由于对硝基苯基硫酯基团的存在,使得发生分子内扭动,激发PET机制,抑制了分子荧光。当梭曼毒气与纳米材料接触后,塔崩毒气与对硝基苯基硫酯进行取代反应后,丙对硝基苯离去,分子扭动减少,增强纳米材料的分子荧光。因此,本发明采用对硝基苯基硫酯作为特异性识别基团,对梭曼毒气进行选择性识别。
2、本发明提供了一维有机半导体纳米材料的制备方法,其合成方法操作简单易控,原料廉价易得,制备得到的一维有机半导体纳米材料线具有高荧光量子产率、多孔和大表面积等特点。其中多孔、大表面积有利于塔崩毒气与材料的吸附扩散,提高了一维有机半导体纳米材料的检测灵敏度;高荧光量子产率有利于进一步的提高检测灵敏度,大大的降低了对塔崩毒气的最低检测限。
3、本发明提供了一维有机半导体纳米材料用于检测塔崩毒气的方法,操作简单,能对塔崩毒气进行快速和实时的检测,而对光气、梭曼、沙林毒气、氯气和芥子气等没有荧光响应,具有很好的抗干扰能力,实现了对塔崩毒气特异性和高灵敏度的检测,具有良好的应用前景。
附图说明
图1是本发明的一维有机半导体纳米材料的构筑分子MALDI-TOF质谱图。
图2是本发明的一维有机半导体纳米材料的扫描电镜图。
图3是本发明的一维有机半导体纳米材料与塔崩的反应荧光强度图。
图4是本发明的一维有机半导体纳米材料对塔崩的浓度反应荧光增强线性图。
图5是本发明的一维有机半导体纳米材料对塔崩毒气的特异选择性;A光气,B沙林毒气,C梭曼毒气,D氯气,E芥子气。
具体实施方式
面结合实施例对本发明作进一步的详细说明。下述实施例中所使用的实验方法如无特殊说明,均为常规方法。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
一、一种对塔崩具有荧光响应的一维有机半导体纳米材料的制备方法
一种对塔崩具有荧光响应的一维有机半导体纳米材料的合成工艺路线如下所示:
Figure BDA0003511276320000051
具体包括以下步骤:
1)中间体化合物B的制备:
取392mg化合物A置于10g咪唑中,加热至130℃,然后加入199mg十三烷-7-胺,反应1~2h,再依次加入100ml无水乙醇和100ml质量分数为36%的盐酸溶液,搅拌过夜,过滤产物收集固体,向得到的固体中加水冲洗至中性,减压旋蒸后得到中间体化合物B;
2)中间体化合物D的制备:
将287mg中间体化合物B与150mg4-氨基苯硫酚置于5g咪唑中,加热至130℃,反应1~2小时,再依次加入50ml无水乙醇和50ml质量分数为36%的盐酸溶液,搅拌过夜,过滤产物收集固体,再将粗产物以二氯甲烷/甲醇(v/v)=100:1洗脱剂进行柱层析纯化,得到130mg目标产物中间体化合物D。
1HNMR(δ=8.62(d,4H,J=8.0Hz),8.58(d,4H,J=8.0Hz),7.15(d,2H,J=8.73Hz),6.71(d,2H,J=8.8Hz),5.11(m,1H),2.18(m,2H),1.84(m,2H),1.18-1.20(m,16H),0.79(t,6H))。
3)一维有机半导体纳米材料构筑分子的制备:
将68mg中间体化合物D与100mg对硝基苯酰氯置于10mL氯仿中,加入0.5mL三乙胺室温过夜搅拌,分液萃取,再将粗产物以二氯甲烷/甲醇(v/v)=100:1洗脱剂进行柱层析纯化,得到30mg目标产物构筑分子。
1HNMR(δ=8.61(d,4H,J=8.0Hz),8.48(d,4H,J=8.0Hz),δ=8.32(d,2H,J=6.0Hz),8.17(d,2H,J=6.0Hz),7.11(d,2H,J=8.73Hz),6.65-6-72(m,3H),5.72(d,1H,J=6.0Hz),5.11(m,1H),2.18(m,2H),1.84(m,2H),1.18-1.20(m,16H),0.79(t,6H))。
4)一维有机半导体纳米材料的制备:
将步骤2)制得的构筑分子溶解于氯仿中,再加入乙醇,静置1~3天后,将反应产物中析出的絮状物吸出,待有机溶剂自然挥发后即得到所述一维有机半导体纳米材料。
将本实施例得到的构筑分子进行MALDI-TOF质谱检测,结果如图1所示。
从图中可以看出,测得分子量为829.2,与目标产物分子量829.3一致,且无其它杂质分子量。
综上,本发明得到的构筑分子的结构式如下所示:
Figure BDA0003511276320000061
将本实施例得到的一维有机半导体纳米材料在扫描电镜下观察其形貌,结果如图2所示。
从图中可以看出,本发明所形成的纳米材料为宽度15微米的均匀纳米带结构,其形态规则均匀,所述纳米带相互连接呈多孔的网状结构,其大比表面积有利于与待测气体的吸附扩散,提高了灵敏度。
二、一维有机半导体纳米材料在塔崩毒气检测上的应用。
将本发明得到的一维有机半导体纳米材料通过在不良溶剂中散开后自然蒸发形成多孔膜结构,再将所述多孔膜均匀的涂敷在玻璃管内壁上形成用于检测塔崩毒气的反应器。
1、用波长为450nm的激发光源激发反应器中所述多孔膜,然后检测所述多孔膜在600~630nm处的荧光强度;再将上述处于激发状态的多孔膜与10ppm级别的塔崩毒气接触后,即时检测多孔膜在600~630nm处在不同时间内的荧光强度,结果如图3所示。
从图中可以看出,与塔崩毒气接触前相比,多孔膜与塔崩毒气接触后荧光强度显著增强,响应速度快,灵敏度高。
2、用波长为450nm的激发光源激发反应器中所述多孔膜,然后检测所述多孔膜在600~630nm处的荧光强度;再将上述处于激发状态的多孔膜分别与10ppm、20ppm、30ppm、40ppm、50ppm、60ppm、70ppm、80ppm、90ppm和100ppm不同浓度的塔崩毒气气体接触后,检测并记录多孔膜在600~630nm处的荧光强度与接触前的荧光强度的差值,结果如图4所示。
从图中可以看出,随着塔崩毒气浓度的增加,荧光强度随之增加,且不同浓度的塔崩毒气与荧光增强具有良好的线性关系。可见,本发明线性范围宽,检测灵敏度高,能够实现对低浓度塔崩毒气的检测。
3、用波长为450nm的激发光源激发反应器中所述多孔膜,然后检测所述多孔膜在600~630nm处的荧光强度;再将上述处于激发状态的多孔膜与待测气体接触后,即时检测多孔膜在600~630nm处的荧光强度,其中,待测气体分别是浓度为100ppm的光气、100ppm的沙林毒气、100ppm的梭曼、100ppm的氯气和100ppm的芥子气,结果如图5所示。
从图中可以看出,本发明的多孔膜与光气、沙林毒气、梭曼、氯气或芥子气接触后其荧光强度基本不受影响,可忽略不计,即均无荧光响应。可见,本发明的纳米材料具有特异性选择性响应塔崩毒气。说明本发明的一维有机半导体纳米材料对塔崩毒气具有良好的选择性,不受其它气体的干扰。
以上所述仅为本发明的较佳实施例而已,并不以本发明为限制,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种对塔崩具有荧光响应的一维有机半导体纳米材料,其特征在于,所述纳米材料是由构筑分子通过π-π堆积自组装呈带状纳米结构;所述构筑分子的结构式如下:
Figure FDA0003924089370000011
2.一种如权利要求1所述的构筑分子的制备方法,其特征在于,其合成路线如下:
Figure FDA0003924089370000012
具体包括以下步骤:
1)中间体化合物B的制备:
取化合物A置于咪唑中加热至130℃,然后加入十三烷-7-胺,反应1~2h,再依次加入无水乙醇和盐酸溶液,搅拌过夜,过滤产物收集固体,向得到的固体中加水冲洗至中性,减压旋蒸后得到中间体化合物B;
2)中间化合物D的制备:
将步骤1)得到的中间体化合物B与4-氨基苯硫酚置于咪唑中加热至130℃,反应1~2h,再依次加入无水乙醇和的盐酸溶液,搅拌过夜,然后过滤产物收集固体,将得到的固体经过柱层析分离后即得到中间化合物D;
3)一维有机半导体纳米材料构筑分子的制备:
将步骤2)得到的中间体化合物D与对硝基苯酰氯置于氯仿溶液中,再加入三乙胺后反应1~2h,搅拌过夜,然后分液萃取,将得到的固体经过柱层析分离后即得到所述构筑分子。
3.根据权利要求2所述对沙林具有荧光响应的一维有机半导体纳米材料,其特征在于,所述盐酸溶液的质量分数为36%;所述柱层析中洗脱剂为二氯甲烷/甲醇,所述二氯甲烷与甲醇的体积比为50:1~100:1。
4.根据权利要求2所述对塔崩具有荧光响应的一维有机半导体纳米材料,其特征在于,所述化合物A与十三烷-7-胺的摩尔比为1:1~1:1.2;所述中间体化合物B与4-氨基苯硫酚的摩尔比为1:1~1:1.2;所述中间体化合物D与对硝基苯酰氯的摩尔比为1:1~1:1.2。
5.一种对塔崩具有荧光响应的一维有机半导体纳米材料的制备方法,其特征在于,包括如下步骤:首先合成权利要求1~4任一项所述构筑分子,然后将其溶解于良性溶剂中,再加入不良溶剂,静置1~3天后,将反应产物中析出的絮状物吸出,待有机溶剂自然挥发后即得到所述一维有机半导体纳米材料。
6.根据权利要求5所述对塔崩具有荧光响应的一维有机半导体纳米材料的制备方法,其特征在于,所述良性溶剂为氯仿,所述不良溶剂为乙醇、乙醚、正己烷或正戊烷;所述良性溶剂与不良溶剂的体积比为1:5~1:20。
7.一种由权利要求1所述对塔崩具有荧光响应的一维有机半导体纳米材料制成的多孔膜在用于检测塔崩毒气方面的应用。
8.根据权利要求7所述应用,其特征在于,所述检测塔崩毒气的方法包括以下步骤:
S1:将所述多孔膜均匀的涂敷在玻璃管内壁上,用波长为450nm的激发光源激发所述多孔膜,然后检测所述多孔膜在600~630nm处的荧光强度;
S2:将步骤S1处于激发状态的多孔膜与待测气体接触,再检测多孔膜在600~630nm处的荧光强度,当得到的荧光强度显著增强,则待检测气体中含有塔崩毒气;所述塔崩毒气的检测浓度为ppm级别。
CN202210152853.1A 2022-02-18 2022-02-18 对塔崩具有荧光响应的一维有机半导体纳米材料及其制备方法和应用 Active CN114409651B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210152853.1A CN114409651B (zh) 2022-02-18 2022-02-18 对塔崩具有荧光响应的一维有机半导体纳米材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210152853.1A CN114409651B (zh) 2022-02-18 2022-02-18 对塔崩具有荧光响应的一维有机半导体纳米材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114409651A CN114409651A (zh) 2022-04-29
CN114409651B true CN114409651B (zh) 2023-01-31

Family

ID=81261470

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210152853.1A Active CN114409651B (zh) 2022-02-18 2022-02-18 对塔崩具有荧光响应的一维有机半导体纳米材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114409651B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024073802A1 (en) * 2022-10-04 2024-04-11 The University Of Queensland Method of detection

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103936732B (zh) * 2014-04-17 2015-08-19 中国科学院化学研究所 1,7-二氰基修饰的苝酰亚胺的衍生物及其制备方法
CN108586456B (zh) * 2018-02-11 2019-11-08 长江师范学院 一维有机半导体纳米材料及其制备方法和应用
CN110903234B (zh) * 2019-11-07 2022-10-21 上海师范大学 一类可用于检测塔崩毒气模拟物dcnp的花半菁荧光探针及合成方法和应用

Also Published As

Publication number Publication date
CN114409651A (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
CN114516871B (zh) 一种苝酰亚胺衍生物纳米材料及其制备方法和应用
CN114524813B (zh) 对沙林具有荧光响应的一维有机半导体纳米材料及其制备方法和应用
CN114478526B (zh) 一种新型的一维有机半导体纳米材料及其制备方法和应用
CN114516872B (zh) 一种基于苝酰亚胺的纳米材料及其制备方法和应用
CN105130889B (zh) 喹啉修饰的柱芳烃及其制备和在含水体系中荧光检测cn‑的应用
KR100578747B1 (ko) 혼합 리간드에 의해 캡슐화된 금속 나노입자 화학 센서 및센서 어레이
CN114409651B (zh) 对塔崩具有荧光响应的一维有机半导体纳米材料及其制备方法和应用
CN108586456B (zh) 一维有机半导体纳米材料及其制备方法和应用
CN111187247A (zh) 一种微环境敏感型荧光探针的制备方法及其对hsa/bsa检测的应用
CN114409650B (zh) 对梭曼具有荧光响应的一维有机半导体纳米材料及其制备方法和应用
CN109575003B (zh) 一种吡啶三唑修饰的香豆素Cu2+荧光探针的制备方法
CN110330478B (zh) 萘二甲酰亚胺有机荧光凝胶化合物以及制备方法、有机凝胶及应用
CN108658881B (zh) 一种检测汞离子芴类荧光探针及其制备和应用
CN110724280A (zh) 具有热响应的超分子聚合物水凝胶及其金属凝胶的制备和应用
CN114249740B (zh) 一种丹参酮苯并咪唑型荧光探针及其制备方法和应用
CN108892679A (zh) 一种双罗丹明b传感器分子及其合成和荧光识别汞离子的应用
CN116041348A (zh) 一种对十氟化二硫具有增强荧光响应的纳米材料及其制备方法和应用
CN112083044B (zh) 一种多重氢键有机超分子纳米棒/氧化石墨烯复合物及其制备方法和应用
CN111689877B (zh) 一种高选择性检测汞离子荧光探针及其合成方法与应用
CN115960102B (zh) 用于高灵敏检测十氟化二硫的有机荧光材料及其制备方法和应用
CN110161000B (zh) 一种识别Hg2+、Ag+的联蒽衍生物荧光探针及其制备方法
CN107501104B (zh) 一种双信号turn-on输出的甲醛荧光纳米探针中间体及其制备与应用
CN110982086A (zh) 一种主客体组装的超分子聚合物及其制备和识别汞离子的应用
CN115819419A (zh) 一种荧光纳米材料及其制备方法和应用
KR101351268B1 (ko) 나선형 실리카 나노튜브복합체와 이의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant