CN114381127B - 适用于直写式3d打印的单组份硅胶介质、制备方法及应用 - Google Patents

适用于直写式3d打印的单组份硅胶介质、制备方法及应用 Download PDF

Info

Publication number
CN114381127B
CN114381127B CN202210069440.7A CN202210069440A CN114381127B CN 114381127 B CN114381127 B CN 114381127B CN 202210069440 A CN202210069440 A CN 202210069440A CN 114381127 B CN114381127 B CN 114381127B
Authority
CN
China
Prior art keywords
mixture
silica gel
gel medium
component silica
polysiloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210069440.7A
Other languages
English (en)
Other versions
CN114381127A (zh
Inventor
李深
严俊秋
朱晓艳
陈小朋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corevoxel Hangzhou Technology Development Co ltd
Original Assignee
Corevoxel Hangzhou Technology Development Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corevoxel Hangzhou Technology Development Co ltd filed Critical Corevoxel Hangzhou Technology Development Co ltd
Priority to CN202210069440.7A priority Critical patent/CN114381127B/zh
Publication of CN114381127A publication Critical patent/CN114381127A/zh
Application granted granted Critical
Publication of CN114381127B publication Critical patent/CN114381127B/zh
Priority to PCT/CN2022/139958 priority patent/WO2023138279A1/zh
Priority to EP22902505.1A priority patent/EP4245808A4/en
Priority to KR1020237044422A priority patent/KR20240011182A/ko
Priority to JP2023579175A priority patent/JP2024523511A/ja
Priority to TW111150883A priority patent/TWI847467B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明提供一种适用于直写式3D打印的单组份硅胶介质、制备方法及应用,所述单组份硅胶介质的粘度为200~1000Pa·s,在室温下存放超30天粘度变化值≤10%,该单组分硅胶介质的制备方法为:首先将混合含碳双键的聚硅氧烷、增粘剂以及铂金催化剂得到第一混合料;升温所述第一混合料保持第一时长,加入阻聚剂保持第二时长得到第二混合料;降温所述第二混合料,混合所述第二混合料和含氢聚硅氧烷得到第三混合料;混合所述第三混合料和无机纳米填料得到第四混合料;对所述第四混合料依次进行真空脱泡、加压过滤。特别适用于直写式3D打印领域的微米级别线条的高精度打印。

Description

适用于直写式3D打印的单组份硅胶介质、制备方法及应用
技术领域
本发明涉及材料制备领域,特别涉及一种适用于直写式3D打印的单组份硅胶介质、制备方法及应用。
背景技术
3D打印作为一类新型的精密加工制造技术,其特点在于该类技术在制造过程中采用从无到有的顺序增材制造工艺,而传统的工艺采取的往往是逐渐减去多余材料从有到无的减材制造工艺。与传统的制造工艺相比,增材制造的3D打印技术具有更高的灵活性和实用性。其中,目前较为常见的3D打印技术有:熔融沉积((FDM)、立体光固化(DLP、CLIP或PolyJet)、选择性激光烧结(SLA、SLS)和三维打印成型(3DP)等,然而这些3D打印技术均无法使用硅胶类介质材料进行精密结构的打印。
直写式打印(direct ink writing,DIW)作为一种新兴3D打印技术,该技术通过从打印喷嘴中挤出具有剪切变稀性质的半固态墨水材料,并将墨水层层堆叠后构筑出预先设计的三维结构,目前已广泛应用在电子器件、结构材料、组织工程以及软机器人等领域,该类技术能够很好地契合硅胶类介质材料,对产品进行相应的精密加工。
现有技术也有研究硅胶类打印介质的技术,比如CN105643939B和CN107674429A分别公开了一种3D打印硅胶及其打印方法,然而其采用的是单组份的硅胶材料,存在储存周期短、打印时容易因为增粘、凝胶或颗粒粗大导致打印喷头堵塞的风险。CN106313505A和CN107638231A公开了一种双组份混合硅胶3D打印机及其打印方法,其并无公开双组份混合硅胶的具体技术细节,且采用的环形加热片在打印时温度高达100-400℃,如此高温容易导致打印喷头因内部硅胶的高温凝胶而堵塞。
总结而言,目前市面上并无能很好适配于直写式3D打印的硅胶类材料,进而限制了3D打印技术的市场推广和应用。
发明内容
本发明的目的在于提供一种适用于直写式3D打印的单组份硅胶介质、制备方法及应用,该单组份硅胶介质兼备高粘度和高稳定性,可适用于微米级别线条的高精度打印。
为实现以上目的,第一实施例,本方案提供一种适用于直写式3D打印工艺的单组份硅胶介质,所述单组份硅胶介质的粘度为200~1000Pa·s,在室温下存放超30天粘度变化值≤10%。
在一些实施例中,该单组分硅胶组分在25℃时的锥入度均为120-280×0.1mm。
该适用于直写式3D打印工艺的单组份硅胶介质由以下制备方法制备得到:S1:混合含碳双键的聚硅氧烷、增粘剂以及铂金催化剂得到第一混合料;S2:升温所述第一混合料保持第一时长,加入阻聚剂保持第二时长得到第二混合料;S3:降温所述第二混合料,混合所述第二混合料和含氢聚硅氧烷得到第三混合料;S4:混合所述第三混合料和无机纳米填料得到第四混合料;S5:对所述第四混合料依次进行真空脱泡、加压过滤,得到单组份硅胶介质。
第二实施例,本方案提供一种适用于直写式3D打印工艺的单组份硅胶介质的制备方法,包括以下步骤:
S1:混合含碳双键的聚硅氧烷、增粘剂以及铂金催化剂得到第一混合料;
S2:升温所述第一混合料保持第一时长,加入阻聚剂保持第二时长得到第二混合料。
S3:降温所述第二混合料,混合所述第二混合料和含氢聚硅氧烷得到第三混合料;
S4:混合所述第三混合料和无机纳米填料得到第四混合料;
S5:对所述第四混合料依次进行真空脱泡、加压过滤,得到单组份硅胶介质。
在步骤S1当中,混合含碳双键的聚硅氧烷和增粘剂在铂金催化剂的作用下,置于合适温度下发生交联反应首先形成一定的网络状交联体,进而步骤S1得到的第一混合料为网络状交联体,这样的好处在于:得到的第一混合料本身已经有一定的网络框架进而可以保证在打印时能够有很好的保形性,从而可以保证打印出的线不会流平而坍塌,从而可以得到高宽比>0.5的图形。
在该交联反应中,混合含碳双键的聚硅氧烷为主要的成分,在用量比例上聚硅氧烷、增粘剂以及铂金催化剂的用量符合以下条件:聚硅氧烷用量为催化剂用量的200-2000份,聚硅氧烷用量为增粘剂用量的2-10倍。在一些实施例中,聚硅氧烷:增粘剂:催化剂的比例为:100:10~50:0.05~0.5。优选的,聚硅氧烷:增粘剂:催化剂的比例为:100:30:0.1;聚硅氧烷:增粘剂:催化剂的比例为:100:20:0.3。
所述含碳双键的聚硅氧烷为乙烯基聚硅氧烷、甲基乙烯基聚硅氧烷、甲基苯基乙烯基聚硅氧烷中的至少一种。若所述含碳双键的聚硅氧烷选用乙烯基聚硅氧烷,其中乙烯基聚硅氧烷中的乙烯基在聚硅氧烷分子链的α、ω位或中间位置,乙烯基聚硅氧烷的粘度为50-500Pa·s,乙烯基含量为0.05-l0 mol%,所述的乙烯基聚硅氧烷每个分子中含有2个以上与硅原子相连的乙烯基官能团,分子量在(40~100)×104
所用的铂金催化剂为:氯铂酸或者是氯铂酸与链烯烃、环烷烃、醇、酯、酮、醚形成的络合物中的至少一种,优选为铂金属含量为0.1-5%的Speier铂金催化剂或Karstedt铂金催化剂,所述催化剂添加到介质材料中质量分数为0.1~0.5%。
增粘剂为:HO-Si(CH3)2O[Si(CH3)2O]nSi(CH3)2-OH,n=3~8,六甲基环三硅氧烷(D3),八甲基环四硅氧烷(D4),十甲基环五硅氧烷(D5),二甲基硅氧烷混合环体(DMC)中的一种或多种。
在步骤S2当中,第一混合料升温至50-80℃,第一混合料稳定在50~80℃的任一温度处理第一时长的目的在于使增粘剂和含碳双键的聚硅氧烷发生一定的交联反应,来提升材料的交联度,从而提升最终材料的整体粘度和保形性,第一时长为30-180分钟,可以是40/50/60/70/80/90/100/110min;第一混合料也可稳定在60/70℃。
在步骤S2中加入阻聚剂可以有效抑制抑制铂金催化剂的活性,使第一混合料停止进一步交联的发生,得到一类室温稳定的材料,进而提高最终得到的单组份硅胶介质的稳定性。由于阻聚剂的存在,室温下该硅胶介质不再聚合,只有在较高的温度下,使阻聚剂挥发后,铂金催化剂恢复催化活性后,才可以进一步聚合,最终实现热固化。也就是说,第二混合料相较于第一混合料添加了阻聚剂进而保证硅胶介质在具有高保形性的前提下还能在室温下保持高稳定性。
阻聚剂为碳数<15个的炔醇,优选为1-乙炔基-1-环己醇、2-甲基-3-丁炔-2-醇、炔丙醇、3-丁炔-1-醇、3,5-二甲基-1-己炔-3-醇中的一种或多种,所述抑制剂添加到介质材料中质量分数为0.1~2%。
在步骤S3当中,加入含氢聚硅氧烷的作用在于可以提升材料固化的聚合度以及最终固化后的硬度,且在步骤S3步骤中加入含氢聚硅氧烷也可保证铂金催化剂对于含氢聚硅氧烷的催化性能会更高。
在本方案的实施例中,所述含氢聚硅氧烷的用量为所述含碳双键的聚硅氧烷的用量的1-10倍。也就是说,所述含碳双键的聚硅氧烷:含氢聚硅氧烷的比例为100:10~100。在一些优选实施例中,所述含碳双键的聚硅氧烷:含氢聚硅氧烷的比例为1:2。
所述含氢聚硅氧烷为甲基含氢聚硅氧烷、甲基苯基含氢聚硅氧烷、甲基含氢硅树脂、苯基含氢硅树脂中的至少一种,其中含氢聚硅氧烷的粘度为50-500Pa·s,含氢量为0.1-1mol%;所述含氢聚硅氧烷每个分子中含有2个以上与硅原子相连的氢原子,分子量在(40~100)×104
在步骤S3中,降温所述第二混合料温度至20-40℃,可以是25/30/35℃。
在步骤S4当中,往第三混合料中添加无机纳米填料的目的在于:提升材料的剪切应力,使打印过程中的出料稳定性提升。
其中无机纳米填料为二氧化硅、硅酸钙、碳酸钙、二氧化钛、炭黑、石墨烯、氧化锌中的一种或几种,尺寸为1~500nm。
本方案提供的混合手段采用球磨、研磨或机械搅拌中的一种或几种,只要保证混合材料可混合均匀即可。
第三实施例,本方案提供了一种根据上述制备方法制备得到的单组份硅胶介质的应用,应用于直写式3D打印中,此时打印的线宽在1~200μm,适用于高宽比大于0.5的线条打印。
相较现有技术,本技术方案具有以下特点和有益效果:
1.该单组份硅胶介质本身的粘度属性可高达200~1000Pa·s之间,可保证打印后的产品保形性强,产品在固化过程中不容易出现线条坍塌的现象,进而满足微米级别线条的高精度打印,打印的线宽在1~200μm,适用于高宽比大于0.5的线条打印。且不同于传统的介质材料通过填充微米尺寸颗粒的填充粒子来提升材料粘度的情况,本方案的单组份硅胶介质本身的粘度较高,进而减小出现堵塞喷头的风险。
2.该单组份硅胶介质长时间存放稳定性良好,可在室温下存在超过30天粘度变化值≤10%,在25℃时的锥入度均为120-280×0.1mm,30天内变化值≤10%,可满足3D打印的长期打印,进而使得该单组份硅胶介质可兼备高粘度和高稳定性。
3.本方案在制备单组份硅胶介质的过程中加入铂金催化剂,铂金催化剂在合适的温度下对介质材料进行交联化处理,随后同步引入阻聚剂来抑制单体的进一步聚合固化,从而保证材料的粘度以及存放时稳定性,同时可实现高温全固化,固化后的邵氏硬度在30A以上。
附图说明
图1是对应实施例1的打印结果示意图。
图2是对应实施例1的打印线宽的三维结构图。
图3是对应实施例2的打印结果示意图。
图4是对应实施例2的打印线宽的三维结构图。
图5是对应实施例3的打印结果示意图。
图6是对应实施例3的打印线宽的三维结构图。
图7是对应对照组1的打印结果示意图。
图8是对应对照组1的打印线宽的三维结构图。
图9是对应对照组2的打印结果示意图。
图10是对应对照组2的打印线宽的三维结构图。
图11是对应对照组5的打印结果示意图。
图12是对应对照组5的打印线宽的三维结构图。
图13是本方案的适用于直写式3D打印工艺的单组份硅胶介质的制备方法的流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。
以下用特定实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效。应理解本发明的保护范围不局限于下述特定的具体实施方案;还应当理解,本发明实施例中使用的术语是为了描述特定的具体实施方案,而不是为了限制本发明的保护范围。下列实施例中未注明具体条件的试验方法,通常按照常规方法,或者按照各制造商所建议的条件。
实施例一:单组份硅胶介质的制备(粘度为200Pa·s):
(1)将100g粘度为50Pa·s、乙烯基含量为0.05mo1%,分子量为40×104的乙烯基聚硅氧烷、0.2gKarstedt铂金催化剂,六甲基环三硅氧烷(D3)20g,加入搅拌釜中混合均匀,
(2)升温至70℃,反应30min,加入0.2g1-乙炔基-1-环己醇,混合均匀,反应30min;
(3)降至30℃,加入60g粘度为50Pa·s,氢含量为0.1mo1%,分子量为40×104的含氢聚硅氧烷,混合均匀,高速搅拌30min;
(4)加入20g 20~30nm的疏水型气相二氧化硅,混合均匀,移出至三辊机研磨至尺寸<5μm,
(5)转移入搅拌釜中在真空度为<0.1MPa的条件下常温搅拌2小时,最后经加压过滤,得到粘度为200Pa·s的单组份硅胶介质。
性能测试:
该单组份硅胶介质的粘度通过粘度计进行测量,粘度为200Pa·s。采用锥入度计(25℃,0.1mm)测试30天的锥入度,其值分别为276(初始值),278(30天后值),材料显示出很好的储存稳定性。
应用测试:如图1和图2所示,本实施例采用内径10μm的陶瓷针头,在打印速度为70mm/s时仍能打印出具有良好高宽比的线宽,具体数值为:高7μm,宽11μm,采用邵A硬度计测试固化后材料硬度为30。
实施例二:单组份硅胶介质的制备(粘度为500Pa·s):
(1)将100g粘度为100Pa·s、乙烯基含量为5mo1%,分子量为100×104的甲基乙烯基聚硅氧烷、0.5gKarstedt铂金催化剂,30gHO-Si(CH3)2O[Si(CH3)2O]3Si(CH3)2-OH,加入搅拌釜中混合均匀,
(2)升温至70℃,反应100min,加入1g炔丙醇,混合均匀,反应50min;
(3)降至30℃,加入40g粘度为100Pa·s,氢含量为0.5mo1%,分子量为70×104的含氢聚硅氧烷,混合均匀,高速搅拌60min;
(4)加入30g~100nm的二氧化钛,混合均匀,移出至三辊机研磨至尺寸<10μm,
(5)转移入搅拌釜中在真空度为<0.1MPa的条件下常温搅拌2小时,最后经加压过滤,得到粘度为500Pa·s的单组份硅胶介质。
性能测试:
该单组份硅胶介质的粘度通过粘度计进行测量,粘度为500Pa·s。采用锥入度计(25℃,0.1mm)测试30天的锥入度,其值分别为178(初始值),180(30天后值),材料显示出很好的储存稳定性。
应用测试:如图3和图4所示,本实施例采用内径50μm的陶瓷针头,在打印速度为70mm/s时仍能打印出具有良好高宽比的线宽,具体数值为:高40μm,宽55μm,采用邵A硬度计测试固化后材料硬度为56。
实施例三:单组份硅胶介质的制备(粘度为1000Pa·s):
(1)将100g粘度为500Pa·s、乙烯基含量为10mo1%,分子量为70×104的甲基苯基乙烯基聚硅氧烷、1gKarstedt铂金催化剂,二甲基硅氧烷混合环体(DMC)40g,加入搅拌釜中混合均匀,
(2)升温至80℃,反应180min,加入4g3-丁炔-1-醇,混合均匀,反应180min;
(3)降至30℃,加入20g粘度为500Pa·s,氢含量为1mo1%,分子量为100×104的含氢聚硅氧烷,混合均匀,高速搅拌60min;
(4)加入40g10~20nm的炭黑,混合均匀,移出至行星球磨机研磨至尺寸<20μm,
(5)转移入搅拌釜中在真空度为<0.1MPa的条件下常温搅拌2小时,最后经加压过滤,得到粘度为1000Pa·s的单组份硅胶介质。
性能测试:
该单组份硅胶介质的粘度通过粘度计进行测量,粘度为1000Pa·s。采用锥入度计(25℃,0.1mm)测试30天的锥入度,其值分别为120(初始值),119(30天后值),材料显示出很好的储存稳定性。
应用测试:如图5和图6所示,本实施例采用内径100μm的陶瓷针头,在打印速度为70mm/s时仍能打印出具有良好高宽比的线宽,具体数值为:高90μm,宽105μm,采用邵A硬度计测试固化后材料硬度为56。
对照组1:同实施例1的用量,方法过程不同之处在于:
(1)将100g粘度为50Pa·s、乙烯基含量为0.05mo1%,分子量为40×104的乙烯基聚硅氧烷、0.2gKarstedt铂金催化剂,六甲基环三硅氧烷(D3)20g,0.2g1-乙炔基-1-环己醇,60g粘度为50Pa·s,氢含量为0.1mo1%,分子量为40×104的含氢聚硅氧烷,20g20~30nm的疏水型气相二氧化硅混合后移出至三辊机研磨至尺寸<5μm,
(2)转移入搅拌釜中在真空度为<0.1MPa的条件下常温搅拌2小时,最后经加压过滤,得到粘度为200Pa·s的单组份硅胶介质。
不经历加热步骤,将所有原料混合均匀后移出至三辊机研磨。
最终材料性能:
材料粘度:150Pa·s,采用锥入度计(25℃,0.1mm)测试30天的锥入度,其值分别为308(初始值),158(30天后值),材料长时间放置,硬度逐渐变大,储存稳定性差。如图7和图8所示,本对比例采用内径10μm的陶瓷针头,在打印速度为70mm/s时打印的线保形性差,具体数值为:高4μm,宽12μm,采用邵A硬度计测试固化后材料硬度为16。
通过该对照组1和实施例1的比对可知:本方案先用催化剂诱导含碳双键的聚硅氧烷和增粘剂交联,再添加阻聚剂的方案得到的单组份硅胶介质的粘度更高,室温稳定性更高,应用于3D打印的线宽比更好。
对照组2:
同实施例1的操作步骤,将步骤(1)的增粘剂六甲基环三硅氧烷(D3)去除
最终材料性能:
材料粘度:80Pa·s,采用锥入度计(25℃,0.1mm)测试30天的锥入度,其值分别为356(初始值),268(30天后值),材料长时间放置,硬度逐渐变大,储存稳定性差。如图9到图10所示,本对比例采用内径10μm的陶瓷针头,在打印速度为70mm/s时打印的线保形性差,具体数值为:高2μm,宽16μm,采用邵A硬度计测试固化后材料硬度为8。
通过该对照组2和实施例1的比对可知:本方案采用的增粘剂可协助含碳双键的聚硅氧烷实现交联形成网络状交联体,进而提高单组份硅胶介质的粘度的同时提高其稳定性,另外增粘剂的添加对于打印线宽也有非常大的影响。
对照组3:
同实施例1的操作步骤,将步骤(2)的阻聚剂1-乙炔基-1-环己醇去除最终材料性能:
材料粘度:270Pa·s,采用锥入度计(25℃,0.1mm)测试30天的锥入度,其值分别为246(初始值),30min后硬度达到140,材料储存稳定性差。采用邵A硬度计测试固化后材料硬度为46。
对照组4
同实施例1的操作步骤,将步骤(1)的铂金催化剂Karstedt铂金催化剂去除。
材料粘度:80Pa·s,采用锥入度计(25℃,0.1mm)测试其值分别为428(初始值),430(30天后值),材料长时间放置稳定。由于无铂金催化剂,材料无法固化。
对比例5
(1)将100g粘度为50Pa·s、乙烯基含量为0.05mo1%,分子量为40×104的乙烯基聚硅氧烷和0.2gKarstedt铂金催化剂,混合均匀;
(2)移出至三辊机研磨至尺寸<5μm,转移入搅拌釜中在真空度为<0.1MPa的条件下常温搅拌2小时,最后经加压过滤,得单组份硅胶的组份A。
(3)将60g粘度为50Pa·s,氢含量为0.1mo1%,分子量为40×104的含氢聚硅氧烷、0.2g 1-乙炔基-1-环己醇和20g 20~30nm的疏水型气相二氧化硅,混合均匀;
(4)移出至三辊机研磨至尺寸<5μm,转移入搅拌釜中在真空度为<0.1MPa的条件下常温搅拌2小时,最后经加压过滤,得单组份硅胶的组份B。
将单组份硅胶的组份A和组份B以1:1的比例混合,采用锥入度计(25℃,0.1mm)测试锥入度,其值分别为296(初始值),168(12h后值),材料储存稳定性差。如图11到图12所示,本对比例采用内径10μm的陶瓷针头,在打印速度为70mm/s时打印的线保形性差,具体数值为:高5μm,宽14μm,采用邵A硬度计测试固化后材料硬度为24。
汇总以上实施例和对照组的单组份硅胶介质的性能测试如下表:
Figure BDA0003481465660000131
通过该表也可以清楚地看到本方案提供的实施例1到实施例3的双硅胶介质材料的性能表现良好,本方案提供的制备方法尤其独到有益之处。
本发明不局限于上述最佳实施方式,任何人在本发明的启示下都可得出其他各种形式的产品,但不论在其形状或结构上作任何变化,凡是具有与本申请相同或相近似的技术方案,均落在本发明的保护范围之内。

Claims (9)

1.一种适用于直写式3D打印工艺的单组份硅胶介质,其特征在于,所述单组份硅胶介质的粘度为200~1000Pa·s,在室温下存放超30天粘度变化值≤10%,其制备方法包括混合含碳双键的聚硅氧烷和增粘剂在铂金催化剂的作用下,置于合适温度下发生交联反应形成一定的网络状交联体,加入阻聚剂停止进一步交联的发生,其中所述增粘剂为:HO-Si(CH3)2O[Si(CH3)2O]nSi(CH3)2-OH,n=3~8,六甲基环三硅氧烷(D3),八甲基环四硅氧烷(D4),十甲基环五硅氧烷(D5),二甲基硅氧烷混合环体(DMC)中的一种或多种。
2.根据权利要求1所述的适用于直写式3D打印工艺的单组份硅胶介质,其特征在于,由以下方法制备得到:
S1:混合含碳双键的聚硅氧烷、增粘剂以及铂金催化剂得到第一混合料;
S2:升温所述第一混合料保持第一时长,加入阻聚剂保持第二时长得到第二
混合料;
S3:降温所述第二混合料,混合所述第二混合料和含氢聚硅氧烷得到第三混合料;
S4:混合所述第三混合料和无机纳米填料得到第四混合料;
S5:对所述第四混合料依次进行真空脱泡、加压过滤,得到单组份硅胶介
质。
3.一种适用于直写式3D打印工艺的单组份硅胶介质的制备方法,其特征在于,包括以下步骤:
S1:混合含碳双键的聚硅氧烷、增粘剂以及铂金催化剂得到第一混合料,其中所述增粘剂为:HO-Si(CH3)2O[Si(CH3)2O]nSi(CH3)2-OH,n=3~8,六甲基环三硅氧烷(D3),八甲基环四硅氧烷(D4),十甲基环五硅氧烷(D5),二甲基硅氧烷混合环体(DMC)中的一种或多种;
S2:升温所述第一混合料保持第一时长,加入阻聚剂保持第二时长得到第二混合料;
S3:降温所述第二混合料,混合所述第二混合料和含氢聚硅氧烷得到第三混合料;
S4:混合所述第三混合料和无机纳米填料得到第四混合料;
S5:对所述第四混合料依次进行真空脱泡、加压过滤,得到单组份硅胶介质。
4.根据权利要求3所述的适用于直写式3D打印工艺的单组份硅胶介质的制备方法,其特征在于,所述含碳双键的聚硅氧烷为乙烯基聚硅氧烷、甲基乙烯基聚硅氧烷、甲基苯基乙烯基聚硅氧烷中的至少一种。
5.根据权利要求3所述的适用于直写式3D打印工艺的单组份硅胶介质的制备方法,其特征在于,所述含氢聚硅氧烷为甲基含氢聚硅氧烷、甲基苯基含氢聚硅氧烷、甲基含氢硅树脂、苯基含氢硅树脂中的至少一种。
6.根据权利要求3所述的适用于直写式3D打印工艺的单组份硅胶介质的制备方法,其特征在于,所述铂金催化剂为:氯铂酸或者是氯铂酸与链烯烃、环烷烃、醇、酯、酮、醚形成的络合物中的至少一种。
7.根据权利要求3所述的适用于直写式3D打印工艺的单组份硅胶介质的制备方法,其特征在于,所述阻聚剂为碳数<15个的炔醇。
8.根据权利要求3所述的适用于直写式3D打印工艺的单组份硅胶介质的制备方法,其特征在于,步骤S2中所述第一混合料升温至50-80℃,步骤S3中第二混合料降温至50℃以下。
9.一种单组份硅胶介质的应用,其特征在于,将根据权利要求1到2任一所述的适用于直写式3D打印工艺的单组份硅胶介质应用于直写式3D打印,打印的线宽在1~200μm,适用于高宽比大于0.5的线条打印。
CN202210069440.7A 2022-01-21 2022-01-21 适用于直写式3d打印的单组份硅胶介质、制备方法及应用 Active CN114381127B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202210069440.7A CN114381127B (zh) 2022-01-21 2022-01-21 适用于直写式3d打印的单组份硅胶介质、制备方法及应用
PCT/CN2022/139958 WO2023138279A1 (zh) 2022-01-21 2022-12-19 适用于直写式 3d 打印的单组份硅胶介质、制备方法及应用
EP22902505.1A EP4245808A4 (en) 2022-01-21 2022-12-19 SINGLE-COMPONENT SILICA GEL MEDIUM SUITABLE FOR DIRECT INK WRITING TYPE 3D PRINTING, PREPARATION METHOD THEREFOR AND USE THEREOF
KR1020237044422A KR20240011182A (ko) 2022-01-21 2022-12-19 직접 인쇄 방식 3d 프린팅에 적용되는 1액형 실리콘 매체, 그 제조방법 및 응용
JP2023579175A JP2024523511A (ja) 2022-01-21 2022-12-19 直接書込み式3dプリントに適用される単一成分シリコーンゴム媒体、製造方法及び応用
TW111150883A TWI847467B (zh) 2022-01-21 2022-12-30 適用於直寫式3d列印的單組份矽膠介質、製備方法及應用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210069440.7A CN114381127B (zh) 2022-01-21 2022-01-21 适用于直写式3d打印的单组份硅胶介质、制备方法及应用

Publications (2)

Publication Number Publication Date
CN114381127A CN114381127A (zh) 2022-04-22
CN114381127B true CN114381127B (zh) 2022-10-18

Family

ID=81204010

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210069440.7A Active CN114381127B (zh) 2022-01-21 2022-01-21 适用于直写式3d打印的单组份硅胶介质、制备方法及应用

Country Status (5)

Country Link
EP (1) EP4245808A4 (zh)
JP (1) JP2024523511A (zh)
KR (1) KR20240011182A (zh)
CN (1) CN114381127B (zh)
WO (1) WO2023138279A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114381127B (zh) * 2022-01-21 2022-10-18 芯体素(杭州)科技发展有限公司 适用于直写式3d打印的单组份硅胶介质、制备方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107674429A (zh) * 2017-10-09 2018-02-09 中山大学惠州研究院 一种3d打印硅胶及其打印方法
CN110128833A (zh) * 2019-05-16 2019-08-16 华南理工大学 一种3d打印用双组分液体硅胶及其打印方法
WO2022008721A1 (en) * 2020-07-10 2022-01-13 Spectroplast Ag Method for preparing a 3d-printed silicone

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102702750A (zh) * 2012-06-11 2012-10-03 成都思立可科技有限公司 提高聚硅氧烷粘度的组合物和方法
JP6524802B2 (ja) * 2015-06-02 2019-06-05 三菱ケミカル株式会社 3dプリンター用フィラメント
KR101969257B1 (ko) * 2015-11-09 2019-04-15 와커 헤미 아게 탄도학적 방법에 의해 엘라스토머 성형품을 제조하기 위한 실리콘 조성물
KR102072037B1 (ko) * 2015-11-26 2020-01-31 와커 헤미 아게 탄도학적 생성 방법에 의해 엘라스토머 성형품을 제조하기 위한 고점도 실리콘 조성물
CN105643939B (zh) 2016-03-02 2017-09-19 深圳奇遇科技有限公司 硅胶3d打印机及硅胶产品打印方法
CN106313505B (zh) 2016-09-12 2019-02-19 宁波创导三维医疗科技有限公司 一种双组份混合硅胶3d打印机及其打印方法
CN107638231A (zh) 2017-06-22 2018-01-30 宁波创导三维医疗科技有限公司 胸部填充物及其制造方法
CN107793582B (zh) * 2017-09-28 2020-06-09 广州天赐高新材料股份有限公司 一种高增稠性有机硅凝胶及其制备方法
TW202010806A (zh) * 2018-09-03 2020-03-16 美商陶氏有機矽公司 低黏度組成物及使用該組成物之3d列印方法
JP7161615B2 (ja) * 2018-10-26 2022-10-26 エルケム・シリコーンズ・シャンハイ・カンパニー・リミテッド シリコーン組成物及びシリコーンエラストマー物品を付加造形するための方法
CN109810516A (zh) * 2018-12-29 2019-05-28 山东大学 一种用于diw3d打印的紫外光固化硅橡胶及其制备方法
EP4085089A4 (en) * 2019-12-31 2023-10-18 Elkem Silicones Shanghai Co., Ltd. METHOD FOR PRODUCING AN ELECTRICALLY CONDUCTIVE SILICONE ELASTOMER ARTICLE
WO2021134481A1 (en) * 2019-12-31 2021-07-08 Elkem Silicones Shanghai Co., Ltd. Soluble support materials for additive manufacturing
CN114437548B (zh) * 2022-01-21 2022-12-27 芯体素(杭州)科技发展有限公司 湿气热双重固化的直写式3d打印介质、制备方法及应用
CN114381127B (zh) * 2022-01-21 2022-10-18 芯体素(杭州)科技发展有限公司 适用于直写式3d打印的单组份硅胶介质、制备方法及应用
CN114350158B (zh) * 2022-02-09 2023-01-10 芯体素(杭州)科技发展有限公司 光热双重固化的复合直写式3d打印介质、制备方法及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107674429A (zh) * 2017-10-09 2018-02-09 中山大学惠州研究院 一种3d打印硅胶及其打印方法
CN110128833A (zh) * 2019-05-16 2019-08-16 华南理工大学 一种3d打印用双组分液体硅胶及其打印方法
WO2022008721A1 (en) * 2020-07-10 2022-01-13 Spectroplast Ag Method for preparing a 3d-printed silicone

Also Published As

Publication number Publication date
KR20240011182A (ko) 2024-01-25
TW202330795A (zh) 2023-08-01
EP4245808A4 (en) 2024-09-04
WO2023138279A1 (zh) 2023-07-27
EP4245808A1 (en) 2023-09-20
JP2024523511A (ja) 2024-06-28
CN114381127A (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
CN114350158B (zh) 光热双重固化的复合直写式3d打印介质、制备方法及应用
WO2020228363A1 (zh) 3d打印用双组分液体硅胶及其打印方法
CN114381127B (zh) 适用于直写式3d打印的单组份硅胶介质、制备方法及应用
CN102174309B (zh) 一种无溶剂型的有机硅压敏胶粘剂及其制备方法
CN101627077A (zh) 有机硅粘合剂组合物及其制备方法
CN112707402B (zh) 一种用于3d直写打印的氧化硅气凝胶墨水的制备方法
CN107602866B (zh) 一种氟硅表面活性剂及其制备方法
CN105726342A (zh) 一种双组分加成型硅橡胶印模材料及其制备方法和用途
CN103709605A (zh) 一种环氧树脂组合物、制备方法及塞孔铝基板
CN109456725A (zh) 一种家装用环保型硅烷改性聚醚密封胶及其制备方法
CN1074923A (zh) 具有控制剥离性能的硅氧烷压敏粘合剂
CN114437548B (zh) 湿气热双重固化的直写式3d打印介质、制备方法及应用
CN107488436B (zh) 一种含液态金属导热填料的双组份导热硅胶片
CN114901726A (zh) 制备导电硅酮弹性体制品的方法
CN113999531A (zh) 一种模具胶及其制备方法
CN112107491B (zh) 一种易混合高舒适度硅橡胶口腔印模材料及制备方法
CN112898782B (zh) 一种移印胶头用液体硅橡胶及其制备方法
CN114196209A (zh) 一种可加成固化的双组份高稳定性导热有机硅组合物及其制备方法
TWI847467B (zh) 適用於直寫式3d列印的單組份矽膠介質、製備方法及應用
CN103897195A (zh) 一种烷氧基封端的聚二甲基硅氧烷的制备方法
CN111019354A (zh) 一种低扯断永久变形的硅胶及其制备方法、使用方法
CN103834355B (zh) 一种有机硅压敏胶的制备与性能调节方法
CN114213920A (zh) 一种水性逆向光油及其制备方法
CN100365033C (zh) 高固含量醋酸乙烯-乙烯共聚物乳液的合成方法
CN114196210B (zh) 一种有机硅材料在3d打印中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant