CN114369800A - 一种TiAlSiN、CrAlSiN纳米复合涂层的制备方法 - Google Patents

一种TiAlSiN、CrAlSiN纳米复合涂层的制备方法 Download PDF

Info

Publication number
CN114369800A
CN114369800A CN202111580522.XA CN202111580522A CN114369800A CN 114369800 A CN114369800 A CN 114369800A CN 202111580522 A CN202111580522 A CN 202111580522A CN 114369800 A CN114369800 A CN 114369800A
Authority
CN
China
Prior art keywords
substrate
tialsin
magnetron sputtering
arc evaporation
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111580522.XA
Other languages
English (en)
Inventor
吴正涛
王启民
李海庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN202111580522.XA priority Critical patent/CN114369800A/zh
Publication of CN114369800A publication Critical patent/CN114369800A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种TiAlSiN、CrAlSiN纳米复合涂层的制备方法,包括以下步骤:S1:将WC‑Co基体进行机械研磨、抛光、清洗处理;S2:使用磁控溅射电源,在WC‑Co基体前溅射TiSi、CrSi靶;同时使用阴极电弧蒸发电源,在WC‑Co基体前电弧蒸发TiAl、CrAl靶,本发明基于PVD薄膜沉积等离子体特性研究理论,阴极电弧蒸发技术具有高离化特征而磁控溅射则离化率较低,使用磁控溅射电源,于基体前溅射TiSi、CrSi靶,利用磁控溅射方法获得硅沉积源,其Si+能量、离化率均较低,则其扩散能力较弱而利于其处于晶界或界面处,最终利于非晶SiNx界面相的生产;使用阴极电弧蒸发电源,于基体前电弧蒸发TiAl、CrAl靶,有利于实现Ti、Cr、Al的高离化,从而易于形成固溶体晶粒且力学性能优异。

Description

一种TiAlSiN、CrAlSiN纳米复合涂层的制备方法
技术领域
本发明涉及一种制备方法,特别涉及一种TiAlSiN、CrAlSiN纳米复合涂层的制备方法,属于纳米复合涂层技术领域。
背景技术
我国是全球最大、产业结构最为完整的制造业加工基地,在金属切削加工行业每年需要消耗大量切削刀具。随着我国在工业产业结构进一步优化,对优质精密金属切削加工的需求将不断上升。高效、高速、高精度切削加工成为现代加工技术的主要发展方向。在高速干式切削加工中,由于刀具和被加工材料表面发生剧烈摩擦,导致切削温度高达900℃-1200℃,因而刀具存在高温氧化、红硬性差、磨损严重等问题。于刀具表面沉积硬质涂层是实现高速干式切削加工的关键技术之一。
近年来,TiAlN、CrAlN硬质涂层因其优异力学性能、高温稳定性及耐磨损性能成为金属材料加工涂层的研究热点。研究发现,在高温服役环境下,高速铣削加工表现良好的如TiAlN涂层存在以下问题:
1、虽然具有时化强硬效应,高温、保护气氛或真空条件下TiAlN涂层力学性能较差,然而TiAlN涂层其空气环境下氧化起始温度低于800℃;
2、TiAlN涂层高温摩擦系数较大,易导致刀具产生切削力大、颤振及磨损严重等;
3、在TiAlN发生高温氧化的过程中,Al及Ti阳离子发生快速外扩散,导致在氮化物底层中产生孔洞结构。上述问题严重损害了TiAlN涂层的服役性能,如何进一步提高TiAlN涂层的机械性能等,对促进涂层刀具及金属加工行业的发展具有重要的理论意义和实际应用价值。
在TiAlN、CrAlN涂层中添加Si元素制备TiAlSiN、CrAlSiN纳米复合结构涂层,形成非晶SiNx界面相包裹氮化物纳米晶的纳米复合结构,可使得涂层兼具高硬度、强韧性、优异高温稳定性和红硬性。然而,研究发现,随着 Si元素的引入,易导致软质w-AlN(wurtzite-AlN)于TiAlSiN、CrAlSiN中析出,从而导致涂层力学、耐磨性能急剧下降,最终破坏涂层服役性能。如 Tanaka发现当原子比(Al+Si)/(Al+Ti+Si)≥0.61时,TiAlSiN中析出w-AlN(Surface and Coatings Technology 146(2001)215-221)。由于Si掺杂导致的w-AlN析出问题,正是目前金属加工行业市场上罕有TiAlSiN或 CrAlSiN涂层刀具产品的根本原因。
发明内容
本发明的目的在于提供一种TiAlSiN、CrAlSiN纳米复合涂层的制备方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:一种TiAlSiN、CrAlSiN纳米复合涂层的制备方法,包括以下步骤:
S1:将WC-Co基体进行机械研磨、抛光、清洗处理;
S2:使用磁控溅射电源,在WC-Co基体前溅射TiSi、CrSi靶;同时使用阴极电弧蒸发电源,在WC-Co基体前电弧蒸发TiAl、CrAl靶。
作为本发明的一种优选技术方案,所述步骤S2中,磁控溅射电源溅射 TiSi、CrSi靶,靶材中Si原子比含量为50%-100%。
作为本发明的一种优选技术方案,所述步骤S2中,磁控溅射TiSi、CrSi 靶的靶材平均功率密度为5-20W/cm2
作为本发明的一种优选技术方案,所述步骤S2中,阴极电弧蒸发电源蒸发TiAl、CrAl靶,靶材中Al原子比含量为0-70%。
作为本发明的一种优选技术方案,所述步骤S2中,阴极电弧蒸发TiAl、 CrAl靶的平均靶电流密度为0.5-2A/cm2
作为本发明的一种优选技术方案,所述步骤S2中,基体温度为200℃ -600℃,沉积腔室压力为0.3-2.0Pa,沉积过程中基体加载负偏压,压力为-30V —-150V。
与现有技术相比,本发明的有益效果是:
1.本发明一种TiAlSiN、CrAlSiN纳米复合涂层的制备方法,在TiAlN、 CrAlN涂层中添加Si元素制备TiAlSiN纳米复合结构涂层,使得涂层兼具高硬度、强韧性、优异高温稳定性和红硬性,其前提条件是形成非晶SiNx界面相包裹氮化物纳米晶的纳米复合结构,本发明基于PVD薄膜沉积等离子体特性研究理论,阴极电弧蒸发技术具有高离化特征而磁控溅射则离化率较低,使用磁控溅射电源,于基体前溅射TiSi、CrSi靶,利用磁控溅射方法获得硅沉积源,其Si+能量、离化率均较低,则其扩散能力较弱而利于其处于晶界或界面处,最终利于非晶SiNx界面相的生产;使用阴极电弧蒸发电源,于基体前电弧蒸发TiAl、CrAl靶,有利于实现Ti、Cr、Al的高离化,从而易于形成固溶体晶粒且力学性能优异,即得到具有非晶SiNx包覆TiAlN、CrAlN晶粒的结构特征的TiAlSiN、CrAlSiN纳米复合涂层。
附图说明
图1为磁控溅射、阴极电弧蒸发复合制备TiAlSiN、CrAlSiN纳米复合涂层的装置结构示意图;
图2为本发明制备TiAlSiN纳米复合涂层的XRD图;
图3为本发明制备CrAlSiN纳米复合涂层的XRD图;
图4所示为本发明制备TiAlSiN、CrAlSiN纳米复合涂层的硬度及弹性模量。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1-3,本发明提供了一种TiAlSiN、CrAlSiN纳米复合涂层的制备方法的技术方案:
一种TiAlSiN、CrAlSiN纳米复合涂层的制备方法,包括以下步骤:
S1:将WC-Co基体进行机械研磨、抛光、清洗处理;
S2:使用磁控溅射电源,在WC-Co基体前溅射TiSi、CrSi靶;同时使用阴极电弧蒸发电源,在WC-Co基体前电弧蒸发TiAl、CrAl靶。
步骤S2中,磁控溅射电源溅射TiSi、CrSi靶,靶材中Si原子比含量为 50%-100%;步骤S2中,磁控溅射TiSi、CrSi靶的靶材平均功率密度为5-20 W/cm2;步骤S2中,阴极电弧蒸发电源蒸发TiAl、CrAl靶,靶材中Al原子比含量为0-70%;步骤S2中,阴极电弧蒸发TiAl、CrAl靶的平均靶电流密度为 0.5-2A/cm2;步骤S2中,基体温度为200℃-600℃,沉积腔室压力为 0.3-2.0Pa,沉积过程中基体加载负偏压,压力为-30V—-150V。
实施例1
基体预处理
(1)对WC-Co基体进行机械研磨、抛光处理;
(2)溶剂清洗处理;先使用异丙醇超声清洗10min,再使用98%酒精溶液超声清洗10min,取出后再用超纯水超声清洗3min;
(3)辉光清洗处理;采用Ar气体离子源对基体进行清洗30min,环境压力为0.1Pa;基体偏压为-800V,频率240kHz。
磁控溅射、阴极电弧蒸发复合制备TiAlSiN纳米复合涂层;
(1)使用磁控溅射电源,于基体前溅射Ti50Si50靶;同时使用阴极电弧蒸发电源,于基体前电弧蒸发TiSi靶;
(2)磁控溅射Ti50Si50靶其靶材平均功率密度为5W/cm2,阴极电弧蒸发Ti靶其平均靶电流密度为0.5A/cm2;薄膜沉积过程中,维持基体温度为 600℃,通入工作气体,调节沉积腔室压力至2.0Pa,基体加载负偏压,大小为-150V,沉积得到TiAlSiN涂层。
实施例2
磁控溅射、阴极电弧蒸发复合制备TiAlSiN纳米复合涂层
(1)使用磁控溅射电源,于基体前溅射Ti50Si50靶;同时使用阴极电弧蒸发电源,于基体前电弧蒸发TiSi靶;
(2)磁控溅射Ti50Si50靶其靶材平均功率密度为20W/cm2,阴极电弧蒸发Ti靶其平均靶电流密度为2A/cm2;薄膜沉积过程中,维持基体温度为600 ℃,通入工作气体,调节沉积腔室压力至2.0Pa,基体加载负偏压,大小为-150V,沉积得到TiAlSiN涂层。
实施例3
磁控溅射、阴极电弧蒸发复合制备TiAlSiN纳米复合涂层
(1)使用磁控溅射电源,于基体前溅射TiSi靶;同时使用阴极电弧蒸发电源,于基体前电弧蒸发Ti30Al70靶;
(2)磁控溅射TiSi靶其靶材平均功率密度为5W/cm2,阴极电弧蒸发Ti30Al70靶其平均靶电流密度为0.5A/cm2;薄膜沉积过程中,维持基体温度为600℃,通入工作气体,调节沉积腔室压力至2.0Pa,基体加载负偏压,大小为-150V,沉积得到TiAlSiN涂层。
实施例4
磁控溅射、阴极电弧蒸发复合制备TiAlSiN纳米复合涂层
(1)使用磁控溅射电源,于基体前溅射TiSi靶;同时使用阴极电弧蒸发电源,于基体前电弧蒸发Ti30Al70靶;
(2)磁控溅射TiSi靶其靶材平均功率密度为20W/cm2,阴极电弧蒸发 Ti30Al70靶其平均靶电流密度为2A/cm2;薄膜沉积过程中,维持基体温度为 600℃,通入工作气体,调节沉积腔室压力至2.0Pa,基体加载负偏压,大小为-150V,沉积得到TiAlSiN涂层。
实施例5
磁控溅射、阴极电弧蒸发复合制备TiAlSiN纳米复合涂层
(1)使用磁控溅射电源,于基体前溅射TiSi靶;同时使用阴极电弧蒸发电源,于基体前电弧蒸发Ti30Al70靶;
(2)磁控溅射TiSi靶其靶材平均功率密度为20W/cm2,阴极电弧蒸发 Ti30Al70靶其平均靶电流密度为2A/cm2;薄膜沉积过程中,维持基体温度为 200℃,通入工作气体,调节沉积腔室压力至0.3Pa,基体加载负偏压,大小为-30V,沉积得到TiAlSiN涂层。
实施例6
磁控溅射、阴极电弧蒸发复合制备CrAlSiN纳米复合涂层
(1)使用磁控溅射电源,于基体前溅射Cr50Si50靶;同时使用阴极电弧蒸发电源,于基体前电弧蒸发CrSi靶;
(2)磁控溅射Cr50Si50靶其靶材平均功率密度为5W/cm2,阴极电弧蒸发Ti靶其平均靶电流密度为0.5A/cm2;薄膜沉积过程中,维持基体温度为 600℃,通入工作气体,调节沉积腔室压力至2.0Pa,基体加载负偏压,大小为-150V,沉积得到CrAlSiN涂层。
实施例7
磁控溅射、阴极电弧蒸发复合制备CrAlSiN纳米复合涂层
(1)使用磁控溅射电源,于基体前溅射Cr50Si50靶;同时使用阴极电弧蒸发电源,于基体前电弧蒸发CrSi靶;
(2)磁控溅射Cr50Si50靶其靶材平均功率密度为20W/cm2,阴极电弧蒸发Cr靶其平均靶电流密度为2A/cm2;薄膜沉积过程中,维持基体温度为600 ℃,通入工作气体,调节沉积腔室压力至2.0Pa,基体加载负偏压,大小为-150V,沉积得到CrAlSiN涂层。
实施例8
磁控溅射、阴极电弧蒸发复合制备CrAlSiN纳米复合涂层
(1)使用磁控溅射电源,于基体前溅射CrSi靶;同时使用阴极电弧蒸发电源,于基体前电弧蒸发Cr30Al70靶;
(2)磁控溅射CrSi靶其靶材平均功率密度为5W/cm2,阴极电弧蒸发 Cr30Al70靶其平均靶电流密度为0.5A/cm2;薄膜沉积过程中,维持基体温度为600℃,通入工作气体,调节沉积腔室压力至2.0Pa,基体加载负偏压,大小为-150V,沉积得到CrAlSiN涂层。
实施例9
磁控溅射、阴极电弧蒸发复合制备CrAlSiN纳米复合涂层
(1)使用磁控溅射电源,于基体前溅射CrSi靶;同时使用阴极电弧蒸发电源,于基体前电弧蒸发Cr30Al70靶;
(2)磁控溅射CrSi靶其靶材平均功率密度为20W/cm2,阴极电弧蒸发 Cr30Al70靶其平均靶电流密度为2A/cm2;薄膜沉积过程中,维持基体温度为 600℃,通入工作气体,调节沉积腔室压力至2.0Pa,基体加载负偏压,大小为-150V,沉积得到CrAlSiN涂层。
实施例10
磁控溅射、阴极电弧蒸发复合制备CrAlSiN纳米复合涂层
(1)使用磁控溅射电源,于基体前溅射CrSi靶;同时使用阴极电弧蒸发电源,于基体前电弧蒸发Cr30Al70靶;
(2)磁控溅射CrSi靶其靶材平均功率密度为20W/cm2,阴极电弧蒸发 Cr30Al70靶其平均靶电流密度为2A/cm2;薄膜沉积过程中,维持基体温度为 200℃,通入工作气体,调节沉积腔室压力至0.3Pa,基体加载负偏压,大小为-30V,沉积得到CrAlSiN涂层。
从图2可知:表明制备TiAlSiN纳米复合涂层(实施例1-5)具有c-TiN 晶相结构,未出现含Si化合物或单质Si晶相,表明Si以非晶SiNx形式存在于TiAlN晶粒界面处,即TiAlSiN为纳米复合结构涂层。
从图3可知:表明制备CrAlSiN纳米复合涂层(实施例6-10)具有c-CrN 晶相结构,未出现含Si化合物或单质Si晶相,表明Si以非晶SiNx形式存在于CrAlN晶粒界面处,即CrAlSiN为纳米复合结构涂层。
从图4可知:采用纳米压痕仪表征涂层硬度及弹性模量,测试方法依 ISO-14577执行,结果表明本发明复合沉积制备的TiAlSiN、CrAlSiN纳米复合涂层具有力学性能优异特性。
在本发明的描述中,需要理解的是,指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明中,除非另有明确的规定和限定,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (6)

1.一种TiAlSiN、CrAlSiN纳米复合涂层的制备方法,其特征在于,包括以下步骤:
S1:将WC-Co基体进行机械研磨、抛光、清洗处理;
S2:使用磁控溅射电源,在WC-Co基体前溅射TiSi、CrSi靶;同时使用阴极电弧蒸发电源,在WC-Co基体前电弧蒸发TiAl、CrAl靶。
2.根据权利要求1所述的一种TiAlSiN、CrAlSiN纳米复合涂层的制备方法,其特征在于:所述步骤S2中,磁控溅射电源溅射TiSi、CrSi靶,靶材中Si原子比含量为50%-100%。
3.根据权利要求1所述的一种TiAlSiN、CrAlSiN纳米复合涂层的制备方法,其特征在于:所述步骤S2中,磁控溅射TiSi、CrSi靶的靶材平均功率密度为5-20W/cm2
4.根据权利要求1所述的一种TiAlSiN、CrAlSiN纳米复合涂层的制备方法,其特征在于:所述步骤S2中,阴极电弧蒸发电源蒸发TiAl、CrAl靶,靶材中Al原子比含量为0-70%。
5.根据权利要求1所述的一种TiAlSiN、CrAlSiN纳米复合涂层的制备方法,其特征在于:所述步骤S2中,阴极电弧蒸发TiAl、CrAl靶的平均靶电流密度为0.5-2A/cm2
6.根据权利要求1所述的一种TiAlSiN、CrAlSiN纳米复合涂层的制备方法,其特征在于:所述步骤S2中,基体温度为200℃-600℃,沉积腔室压力为0.3-2.0Pa,沉积过程中基体加载负偏压,压力为-30V—-150V。
CN202111580522.XA 2021-12-22 2021-12-22 一种TiAlSiN、CrAlSiN纳米复合涂层的制备方法 Pending CN114369800A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111580522.XA CN114369800A (zh) 2021-12-22 2021-12-22 一种TiAlSiN、CrAlSiN纳米复合涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111580522.XA CN114369800A (zh) 2021-12-22 2021-12-22 一种TiAlSiN、CrAlSiN纳米复合涂层的制备方法

Publications (1)

Publication Number Publication Date
CN114369800A true CN114369800A (zh) 2022-04-19

Family

ID=81140251

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111580522.XA Pending CN114369800A (zh) 2021-12-22 2021-12-22 一种TiAlSiN、CrAlSiN纳米复合涂层的制备方法

Country Status (1)

Country Link
CN (1) CN114369800A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115044867A (zh) * 2022-05-30 2022-09-13 广东工业大学 一种TiAlWN涂层及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101012545A (zh) * 2006-02-03 2007-08-08 株式会社神户制钢所 硬质保护膜及其形成方法
CN102653855A (zh) * 2012-05-05 2012-09-05 马胜利 耐磨损和抗氧化的TiAlSiN纳米复合超硬涂层制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101012545A (zh) * 2006-02-03 2007-08-08 株式会社神户制钢所 硬质保护膜及其形成方法
CN102653855A (zh) * 2012-05-05 2012-09-05 马胜利 耐磨损和抗氧化的TiAlSiN纳米复合超硬涂层制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
董标;毛陶杰;陈汪林;蔡飞;王启民;李明喜;张世宏;: "Al/Cr原子比对AlCrTiSiN多元复合刀具涂层微观结构及切削性能的影响" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115044867A (zh) * 2022-05-30 2022-09-13 广东工业大学 一种TiAlWN涂层及其制备方法与应用
CN115044867B (zh) * 2022-05-30 2023-10-20 广东工业大学 一种TiAlWN涂层及其制备方法与应用

Similar Documents

Publication Publication Date Title
WO2019128904A1 (zh) 一种离子源增强的Si含量和晶粒尺寸梯度变化的AlCrSiN涂层
CN111349901B (zh) 一种切削刀具用耐高温氧化铝厚膜涂层的制备方法
CN110453190B (zh) 一种AlCrSiN/Mo自润滑薄膜的复合磁控溅射制备方法
CN111647851B (zh) 兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法
CN102230154A (zh) 一种物理气相沉积涂层的工艺方法
CN104532185B (zh) 一种非晶结构的CrAl(C,N)硬质涂层及其制备方法
CN102817008B (zh) Ag、Ti共掺杂DLC薄膜的制备方法
CN114000115B (zh) 一种Ti-B-N纳米复合涂层及其制备方法
CN111500998A (zh) 一种AlTiN/TiAlSiN梯度纳米复合结构涂层及其一体化制备方法与应用
CN112410728A (zh) 高Cr含量CrB2-Cr涂层的制备工艺
CN114369800A (zh) 一种TiAlSiN、CrAlSiN纳米复合涂层的制备方法
CN104060231A (zh) TaN-Ag硬质薄膜及制备方法
CN111304612B (zh) 具有高硬度和高抗氧化性能的CrAlN/AlN纳米多层涂层及其制备方法
CN107012424B (zh) 一种TiZrB2硬质涂层及其制备方法和应用
CN110607499A (zh) 一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法
CN114574786B (zh) 一种三元非晶合金薄膜及其制备方法
CN110484881A (zh) 一种致密二硼化钛涂层及其制备方法和应用
CN112689688A (zh) 一种钛合金和高温合金加工用的涂层刀具及其制备方法
CN114807845B (zh) 氮含量梯度递增的氮化钛铜涂层
CN111471973B (zh) 一种还原性气氛中制备Zr-B-N纳米复合涂层的工艺
CN111500990B (zh) 一种Zr-Ti-B-N纳米复合涂层及其制备方法
CN111647859B (zh) 一种还原性气氛中Zr-Ti-B-N纳米复合涂层的制备工艺
CN109898056B (zh) 一种基于pvd技术的块体金属/金属陶瓷纳米梯度材料及其制备方法和应用
CN108193178B (zh) 一种晶态wc硬质合金薄膜及其缓冲层技术室温生长方法
JP2004230515A (ja) 高機能加工用工具

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220419