CN102653855A - 耐磨损和抗氧化的TiAlSiN纳米复合超硬涂层制备方法 - Google Patents

耐磨损和抗氧化的TiAlSiN纳米复合超硬涂层制备方法 Download PDF

Info

Publication number
CN102653855A
CN102653855A CN2012101392650A CN201210139265A CN102653855A CN 102653855 A CN102653855 A CN 102653855A CN 2012101392650 A CN2012101392650 A CN 2012101392650A CN 201210139265 A CN201210139265 A CN 201210139265A CN 102653855 A CN102653855 A CN 102653855A
Authority
CN
China
Prior art keywords
target
coating
tialsin
arc
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012101392650A
Other languages
English (en)
Other versions
CN102653855B (zh
Inventor
马胜利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN 201210139265 priority Critical patent/CN102653855B/zh
Publication of CN102653855A publication Critical patent/CN102653855A/zh
Application granted granted Critical
Publication of CN102653855B publication Critical patent/CN102653855B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种耐磨损和抗氧化的纳米复合TiAlSiN超硬涂层的制备方法,将基体预处理后放入电弧与磁控溅射复合镀膜设备中,以柱弧Ti靶作为Ti源,通过柱弧电源电流控制柱弧Ti靶的溅射率;以平面Si靶、Al靶作为相应元素的来源,平面Si靶和Al靶以对靶的方式安置在炉体内壁上,通过调整中频脉冲电源的功率控制靶的溅射率;采用高纯Ar作为主要离化气体,保证有效的辉光放电过程;采用高纯N2作为反应气体,使其离化并与Ti、Si、Al元素结合,在基体表面沉积形成TiAlSiN涂层,所制备的TiAlSiN涂层厚度为3.5微米,涂层显微硬度40GPa,摩擦系数约为0.7,TiAlSiN涂层抗氧化温度可以达到1000℃,具有优良的抗氧化性能和耐磨损性能。

Description

耐磨损和抗氧化的TiAlSiN纳米复合超硬涂层制备方法
技术领域
本发明属于涂层材料制备领域,进一步涉及一种耐磨损和抗氧化的TiAlSiN纳米复合超硬涂层的制备方法,该方法制备的TiAlSiN涂层,抗氧化温度可以达到1000℃,硬度40GPa,摩擦系数约0.7,特别适合于在高速干切削刀具和高温成型模具领域应用。
背景技术
硬质涂层具有高硬度、抗氧化、耐磨损等优异性能,在刀具、模具及机械耐磨件上具有广泛应用前景。过去的二十多年中,以过渡族金属的氮化物和碳化物(如TiN、TiC、CrN、TiAlN等)为代表的两元或三元组分的硬质涂层一直应用于工具、模具表面的涂覆处理,显著提高了工具、模具的加工效率和使用寿命。
当前,以数控机床为基础的先进制造技术正向高速、干切削方向发展,此时刀具涂层的使用温度要求在800℃以上,硬度大于30GPa,以保证刀具在高速干切削条件下,仍然具有良好的红硬性、耐磨性和抗氧化性能。因此,TiN、TiC、CrN等传统硬质涂层已无法满足刀具的使用要求,于是开发高性能硬质涂层就成为改善高速切削刀具的使用寿命和生产效率的急需攻克的技术难题。在此背景下,国外近年发展的纳米复合超硬涂层取得了明显的应用效果。所谓纳米复合超硬涂层是指纳米尺寸的晶相均匀镶嵌于非晶骨架基体中形成的微观复合结构,如图1所示。与传统硬质涂层不同,由于纳米复合结构特有的组织协调性,使此类涂层显示出很高的硬度(≥40GPa)、良好的高温抗氧化性能(≥800℃)等,在严酷服役条件下的高速干切削刀具和高温成型模具领域具有巨大的应用潜力。
TiSiN是早期纳米复合超硬涂层的典型代表,其硬度在40GPa以上,但高温抗氧化温度只能达到800℃。近年来,为进一步提高TiSiN超硬涂层的抗氧化温度,国外开始在TiSiN涂层中加入高温性能优异的Al元素,获得了具有纳米复合结构的TiAlSiN超硬涂层,它的抗氧化温度可以提高到1000℃以上。
纳米复合超硬涂层制备方法现今主要分为三类,一是磁控溅射沉积技术,该方法具有成分调控和结构优化方便,以及膜层致密和表面光洁度高等优点,目前主要应用在装饰工件和部分工模具上。但磁控溅射的主要缺点是涂层结合强度不高,沉积速率较慢,难以满足严酷服役条件下的工件表面强化要求。二是电弧离子镀沉积技术,电弧离子镀具有沉积速率快、结合强度高等优点,目前主要应用在各种基体材料的刀具和模具上。但电弧离子镀涂层中的液滴由于制备原理本身的限制,始终无法彻底消除,导致涂层结构较为疏松,表面粗糙度差等。三是以脉冲直流PCVD为代表的等离子体辅助化学气相沉积,该方法建立在化学气相沉积基础上,因此,涂层具有较高的结合强度和良好的综合使用性能,但主要不足是沉积温度较高,涂层中的Cl含量无法完全消除而影响涂层腐蚀性能和力学性能。目前该技术主要应用在硬质合金基体的刀具和模具上。
如上所述,现今国内外纳米复合超硬涂层的制备均是采用单一的磁控溅射、电弧离子镀或脉冲直流PCVD技术。针对上述几种方法的缺点,申请人开发出一种采用电弧与磁控溅射复合镀膜技术(Hybrid Arc-MagnetronSputtering Deposition,HAMSD),制备TiAlSiN纳米复合超硬涂层的新方法。该方法通过引入电弧放电到磁控溅射沉积涂层过程中,通过电弧离子镀先在基体表面制备一层TiN过渡层,显著提高了涂层与基体的结合强度,随后,TiAlSiN涂层由电弧沉积和磁控溅射沉积复合完成。这一独特的复合沉积工艺既保证了涂层结合强度的提高,又保证了涂层沉积速率、涂层致密性和抗氧化性能的提高。
发明内容
基于上述传统硬质涂层性能的不足,以及现有纳米复合超硬涂层制备技术的缺点,本发明的目的在于,提供一种耐磨损和抗氧化性能优异的TiAlSiN纳米复合超硬涂层制备的新方法,该方法制备的TiAlSiN涂层材料,应用于高速切削刀具和高温使用的模具表面涂覆处理后,有望显著提高它们的使用寿命和加工效率。
为了达到上述目的,本发明采取如下的解决方案:
一种耐磨损和抗氧化的纳米复合TiAlSiN超硬涂层的制备方法,其特征在于,该方法包括下列步骤:
1)将基体预处理后放入电弧与磁控溅射复合镀膜设备中的转架杆上,该转架杆随转架台转动,或者自转,以保证镀膜过程的均匀性;
2)以柱弧Ti靶作为Ti源,通过柱弧电源电流控制柱弧Ti靶的溅射率;以平面Si靶、Al靶作为相应元素的来源,平面Si靶和Al靶以对靶的方式安置在炉体内壁上,通过调整中频脉冲电源的功率控制靶的溅射率;采用高纯Ar作为主要离化气体,保证有效的辉光放电过程;采用高纯N2作为反应气体,使其离化并与Ti、Si、Al元素结合,在基体表面沉积形成TiAlSiN涂层;
3)制备工艺条件:
A)工件等离子体清洗:
工件装入真空炉后,通入10ml/min的Ar到真空室,当真空室气压达到6Pa时,开偏压至-1000V对真空室工件表面进行轰击清洗,持续20min;然后开柱弧Ti靶,柱弧电流60A,利用电弧进一步对工件表面轰击清洗,持续5min;
B)过渡层制备:
工件清洗完成后,调节Ar流量到20ml/min,将真空室气压调至0.3Pa,开启柱弧Ti靶,柱弧电流为60A,调整偏压到-500V,然后通入流量为10ml/min的N2,在工件表面镀制一层约1微米厚的TiN过渡层,持续20min;
C)TiAlSiN涂层制备:
将偏压调整为-100V,按Ar和N2流量比1:2向真空室通入Ar和N2混合气体,调整真空室气压为0.3Pa,柱弧Ti靶电流保持60A,打开Si靶、Al靶的控制电源,逐渐将Si靶、Al靶的电源功率分别调至3kW、5kW,在TiN过渡层上进行TiAlSiN涂层制备,镀膜过程中真空室温度为200℃,镀膜时间140min,即可在基体表面上获得TiAlSiN纳米复合超硬涂层。
经测定,采用本发明方法制备的TiAlSiN涂层,厚度为3.5微米,化学成分含量为Ti:25at.%,Al:16at.%,Si:11at.%,N:48at.%。涂层显微硬度40GPa,在室温干摩擦和对副为GCr15条件下,销盘实验测出的TiAlSiN涂层的摩擦系数约为0.7,表明涂层具有优良的耐磨损性能。
将所制备的TiAlSiN涂层在空气炉中加热到1000℃,保温1小时,冷却到室温后,外观检测没有发现涂层表面有氧化,或开裂及脱落现象,通过X射线衍射晶体结构微观检测,TiAlSiN涂层表面没有出现任何形式的氧化产物,证实TiAlSiN涂层抗氧化温度可以达到1000℃,表明涂层具有优良的抗氧化性能。
附图说明
图1为纳米复合超硬涂层材料微观结构示意图。
图2为电弧与磁控溅射复合镀膜(HAMSD)设备结构示意图。
图3为纳米复合TiAlSiN超硬涂层截面结构形貌。
图4为纳米复合TiAlSiN超硬涂层表面形貌。
图5为纳米复合TiAlSiN超硬涂层摩擦系数曲线。
以下结合附图和发明人给出的实施例对本发明作进一步的详细说明。
具体实施方式
本实施例给出一种采用电弧与磁控溅射复合镀膜技术(HAMSD),在高速钢表面制备TiAlSiN纳米复合超硬涂层的方法,参见图1、2、3、4、5。需要说明的是,本发明的方法制备的耐磨损和抗氧化的TiAlSiN纳米复合超硬涂层,可以在任何刀具、模具选用的材料上进行,并不限于该实施例。
本实施例的具体制备过程是:
(1)采用经1170℃淬火,550℃回火后的硬度为HRC=60的高速钢基体作为样品,经表面除油、抛光后浸入丙酮中超声波清洗,酒精脱水;
(2)将预处理好的样品作为基体材料放入电弧与磁控溅射复合镀膜设备中。如图2所示,电弧与磁控溅射复合镀膜设备至少包括真空室1、转台架2、偏压3、转架杆4、平面Si靶和平面Al靶5、永磁体6、柱弧Ti靶7、加热器8、泵组9,样品置于转架杆4上,转架杆4可以随转台架2转动,也可以自转,这样就保证了镀膜过程的均匀性。
(3)采用φ60×495mm柱弧Ti靶7作为Ti源,有效提高膜基结合强度,通过柱弧电源电流控制柱弧Ti靶7的溅射率;靶材采用尺寸为435×95×10mm的平面Si靶、435×95×10mm的平面Al靶5作为相应元素的来源,如图2所示,采用平面对靶的方式将平面Si靶和Al靶安置在炉体内壁上,并通过调整中频脉冲电源的功率控制上述平面Si靶和Al靶的溅射率;采用高纯Ar作为主要离化气体,保证有效的辉光放电过程;采用高纯N2作为反应气体,使其离化并与各靶中的Ti、Si、Al元素结合,在高速钢基体表面沉积形成TiAlSiN涂层。
(4)TiAlSiN涂层的优化工艺条件为:
A)工件等离子体清洗:
工件装入真空炉后,通入10ml/min的Ar到真空室,当真空室气压达到6Pa时,开偏压至-1000V对真空室工件表面进行轰击清洗,持续20min;然后开柱弧Ti靶,柱弧电流60A,利用电弧进一步对工件表面轰击清洗,持续5min;
B)过渡层制备:
工件清洗完成后,调节Ar流量到20ml/min,将真空室气压调至0.3Pa,开启柱弧Ti靶,柱弧电流为60A,调整偏压到-500V,然后通入流量为10ml/min的N2,在基体表面镀制一层约1微米厚的TiN过渡层,持续20min;
C)TiAlSiN涂层制备:
将偏压调整为-100V,按Ar和N2流量比1:2向真空室通入Ar和N2混合气体,调整真空室气压为0.3Pa,柱弧Ti靶电流保持60A,打开Si靶、Al靶的控制电源,逐渐将Si靶、Al靶的电源功率分别调至3kW、5kW,在TiN过渡层上进行TiAlSiN涂层制备,镀膜过程中真空室温度为200℃,镀膜时间140min。
在上述工艺条件下,即可获得纳米复合结构的TiAlSiN超硬涂层。
经测定,本实施例制备的TiAlSiN涂层厚度为3.5微米,化学成分含量为Ti:25at.%,Al:16at.%,Si:11at.%,N:48at.%。涂层显微硬度40GPa,在室温干摩擦和对副为GCr15条件下,通过销盘实验对TiAlSiN涂层摩擦磨损性能的试验,测出的TiAlSiN涂层的摩擦系数约为0.7,表明涂层具有优良的耐磨损性能。
将所制备的TiAlSiN涂层在空气炉中加热到1000℃,保温1小时,冷却到室温后,外观检测没有发现涂层表面有氧化,或开裂及脱落现象,通过X射线衍射晶体结构微观检测,TiAlSiN涂层表面没有出现任何形式的氧化产物,证实TiAlSiN涂层抗氧化温度可以达到1000℃,表明涂层具有优良的抗氧化性能。

Claims (2)

1.一种耐磨损和抗氧化的纳米复合TiAlSiN超硬涂层的制备方法,其特征在于,该方法包括下列步骤:
1)将基体预处理后放入电弧与磁控溅射复合镀膜设备中的转架杆上,该转架杆随转架台转动,或者自转,以保证镀膜过程的均匀性;
2)以柱弧Ti靶作为Ti源,通过柱弧电源电流控制柱弧Ti靶的溅射率;以平面Si靶、Al靶作为相应元素的来源,平面Si靶和Al靶以对靶的方式安置在炉体内壁上,通过调整中频脉冲电源的功率控制靶的溅射率;采用高纯Ar作为主要离化气体,保证有效的辉光放电过程;采用高纯N2作为反应气体,使其离化并与Ti、Si、Al元素结合,在基体表面沉积形成TiAlSiN涂层;
3)制备工艺条件:
A)工件等离子体清洗:
工件装入真空炉后,通入10ml/min的Ar到真空室,当真空室气压达到6Pa时,开偏压至-1000V对真空室工件表面进行轰击清洗,持续20min;然后开柱弧Ti靶,柱弧电流60A,利用电弧进一步对工件表面轰击清洗,持续5min;
B)过渡层制备:
工件清洗完成后,调节Ar流量到20ml/min,将真空室气压调至0.3Pa,开启柱弧Ti靶,柱弧电流为60A,调整偏压到-500V,然后通入流量为10ml/min的N2,在工件表面镀制一层1微米厚的TiN过渡层,持续20min;
C)TiAlSiN涂层制备:
将偏压调整为-100V,按Ar和N2流量比1:2向真空室通入Ar和N2混合气体,调整真空室气压为0.3Pa,柱弧Ti靶电流保持60A,打开Si靶、Al靶的控制电源,逐渐将Si靶、Al靶的电源功率分别调至3kW、5kW,在TiN过渡层上进行TiAlSiN涂层制备,镀膜过程中真空室温度为200℃,镀膜时间140min,即可在基体表面上获得TiAlSiN纳米复合超硬涂层。
2.如权利要求1所述的方法,其特征在于,所述的预处理包括表面除油、抛光后浸入丙酮中超声波清洗和酒精脱水。
CN 201210139265 2012-05-05 2012-05-05 耐磨损和抗氧化的TiAlSiN纳米复合超硬涂层制备方法 Expired - Fee Related CN102653855B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201210139265 CN102653855B (zh) 2012-05-05 2012-05-05 耐磨损和抗氧化的TiAlSiN纳米复合超硬涂层制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201210139265 CN102653855B (zh) 2012-05-05 2012-05-05 耐磨损和抗氧化的TiAlSiN纳米复合超硬涂层制备方法

Publications (2)

Publication Number Publication Date
CN102653855A true CN102653855A (zh) 2012-09-05
CN102653855B CN102653855B (zh) 2013-09-11

Family

ID=46729583

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201210139265 Expired - Fee Related CN102653855B (zh) 2012-05-05 2012-05-05 耐磨损和抗氧化的TiAlSiN纳米复合超硬涂层制备方法

Country Status (1)

Country Link
CN (1) CN102653855B (zh)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102912298A (zh) * 2012-10-29 2013-02-06 西安浩元涂层技术有限公司 具有抗腐蚀和减摩性能的掺Cr的DLC涂层及制备方法
CN102925862A (zh) * 2012-10-29 2013-02-13 西安浩元涂层技术有限公司 一种掺Ti的类金刚石涂层的制备方法
CN103741100A (zh) * 2014-01-16 2014-04-23 常州普威特涂层有限公司 一种含高硅pvd硬质涂层工艺
CN103774096A (zh) * 2013-11-18 2014-05-07 四川大学 一种抗氧化复合硬质涂层的制备方法
CN104862652A (zh) * 2015-05-11 2015-08-26 上海应用技术学院 一种TiAlSiN超硬梯度涂层的制备方法
CN104894512A (zh) * 2015-06-24 2015-09-09 洛阳理工学院 一种低摩擦系数的CrTiAlCN耐磨镀层及其制备方法
WO2015188353A1 (zh) * 2014-06-12 2015-12-17 深圳市大富精工有限公司 一种真空镀膜设备
CN105256273A (zh) * 2015-11-08 2016-01-20 宜昌后皇真空科技有限公司 一种氮硼钛/氮硅铝钛纳米复合多层涂层刀具及其制备方法
CN105316629A (zh) * 2015-11-19 2016-02-10 上海应用技术学院 一种超硬纳微米多层复合涂层及其制备方法
CN106399952A (zh) * 2016-05-31 2017-02-15 西安浩元航空科技有限公司 热压铸模具表面涂层的制备方法
CN106480417A (zh) * 2015-08-28 2017-03-08 刘涛 一种TiAlSiN-AlTiN复合涂层及制备工艺
CN108977775A (zh) * 2018-07-18 2018-12-11 南京理工大学 一种TiAlSiN涂层刀具制备工艺
CN108981941A (zh) * 2018-05-08 2018-12-11 深圳万佳互动科技有限公司 一种防腐蚀热电偶
CN109182983A (zh) * 2018-09-21 2019-01-11 西安浩元航空科技有限公司 一种用于硬质合金旋转锉表面制备TiAlSiN涂层的方法
CN110066935A (zh) * 2018-01-23 2019-07-30 清华大学 泡沫金属制备装置及制备方法
CN111041420A (zh) * 2019-12-27 2020-04-21 采埃孚汽车科技(张家港)有限公司 一种拉刀刀具及其制备方法
CN111733385A (zh) * 2020-06-03 2020-10-02 广东电网有限责任公司 一种Ti-TiN-TiSiAlN复合涂层及其制备方法和应用
CN113564537A (zh) * 2021-07-02 2021-10-29 西安浩元航空科技有限公司 一种用于采掘截割刀具表面制备超硬耐磨涂层的方法
CN114369800A (zh) * 2021-12-22 2022-04-19 广东工业大学 一种TiAlSiN、CrAlSiN纳米复合涂层的制备方法
CN114686821A (zh) * 2022-03-16 2022-07-01 浙江工业大学 一种耐磨TiSiCN纳米复合多层涂层及其制备方法
CN115074731A (zh) * 2022-05-10 2022-09-20 四川大学 一种多孔复合TiCN/TiAlXN耐磨抗氧化涂层及其制备方法、应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060183000A1 (en) * 2005-02-14 2006-08-17 Mitsubishi Materials Corporation Cutting tool made of surface-coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting operation of high hardness steel
CN101435071A (zh) * 2008-10-15 2009-05-20 西安交通大学 耐磨损和抗氧化TiAlSiCN薄膜的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060183000A1 (en) * 2005-02-14 2006-08-17 Mitsubishi Materials Corporation Cutting tool made of surface-coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting operation of high hardness steel
CN101435071A (zh) * 2008-10-15 2009-05-20 西安交通大学 耐磨损和抗氧化TiAlSiCN薄膜的制备方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
《ACTA METALLURGICA SINICA》 20020228 R. Cremer et al. "A Combinatorial Approach to the Oxidation Resistance of (TI,Al)N and Ti-Al-Si-N hard coatings" 第6-14页 1,2 第15卷, 第1期 *
《功能材料》 20051231 董云杉 等 "反应溅射Ti-Al-Si-N纳米晶复合薄膜的微结构与力学性能" 第44-46页 1,2 第36卷, 第1期 *
《材料热处理学报》 20091231 李学梅 等 "Ti-Si-Al-N纳米复合膜的组织与性能" 第144-148页 1,2 第30卷, 第6期 *
《科学通报》 20101130 王昕 等 "高温退火处理对TiAlSiN硬质薄膜的微观结构与硬度的影响分析" 第3245页左栏第1段 1,2 第55卷, 第33期 *
R. CREMER ET AL.: ""A Combinatorial Approach to the Oxidation Resistance of (TI,Al)N and Ti-Al-Si-N hard coatings"", 《ACTA METALLURGICA SINICA》 *
李学梅 等: ""Ti-Si-Al-N纳米复合膜的组织与性能"", 《材料热处理学报》 *
王昕 等: ""高温退火处理对TiAlSiN硬质薄膜的微观结构与硬度的影响分析"", 《科学通报》 *
董云杉 等: ""反应溅射Ti-Al-Si-N纳米晶复合薄膜的微结构与力学性能"", 《功能材料》 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102912298A (zh) * 2012-10-29 2013-02-06 西安浩元涂层技术有限公司 具有抗腐蚀和减摩性能的掺Cr的DLC涂层及制备方法
CN102925862A (zh) * 2012-10-29 2013-02-13 西安浩元涂层技术有限公司 一种掺Ti的类金刚石涂层的制备方法
CN102912298B (zh) * 2012-10-29 2014-02-26 西安浩元涂层技术有限公司 具有抗腐蚀和减摩性能的掺Cr的DLC涂层及制备方法
CN102925862B (zh) * 2012-10-29 2014-04-30 西安浩元涂层技术有限公司 一种掺Ti的类金刚石涂层的制备方法
CN103774096A (zh) * 2013-11-18 2014-05-07 四川大学 一种抗氧化复合硬质涂层的制备方法
CN103774096B (zh) * 2013-11-18 2015-12-30 四川大学 一种抗氧化复合硬质涂层的制备方法
CN103741100A (zh) * 2014-01-16 2014-04-23 常州普威特涂层有限公司 一种含高硅pvd硬质涂层工艺
CN103741100B (zh) * 2014-01-16 2016-01-13 常州普威特涂层有限公司 一种含高硅pvd硬质涂层工艺
WO2015188353A1 (zh) * 2014-06-12 2015-12-17 深圳市大富精工有限公司 一种真空镀膜设备
CN104862652A (zh) * 2015-05-11 2015-08-26 上海应用技术学院 一种TiAlSiN超硬梯度涂层的制备方法
CN104894512A (zh) * 2015-06-24 2015-09-09 洛阳理工学院 一种低摩擦系数的CrTiAlCN耐磨镀层及其制备方法
CN106480417A (zh) * 2015-08-28 2017-03-08 刘涛 一种TiAlSiN-AlTiN复合涂层及制备工艺
CN105256273A (zh) * 2015-11-08 2016-01-20 宜昌后皇真空科技有限公司 一种氮硼钛/氮硅铝钛纳米复合多层涂层刀具及其制备方法
CN105316629A (zh) * 2015-11-19 2016-02-10 上海应用技术学院 一种超硬纳微米多层复合涂层及其制备方法
CN106399952A (zh) * 2016-05-31 2017-02-15 西安浩元航空科技有限公司 热压铸模具表面涂层的制备方法
CN106399952B (zh) * 2016-05-31 2019-01-11 西安浩元航空科技有限公司 热压铸模具表面涂层的制备方法
CN110066935A (zh) * 2018-01-23 2019-07-30 清华大学 泡沫金属制备装置及制备方法
CN110066935B (zh) * 2018-01-23 2020-05-12 清华大学 泡沫金属制备装置及制备方法
CN108981941B (zh) * 2018-05-08 2020-07-28 唐山市开平区天诺热电偶厂 一种防腐蚀热电偶
CN108981941A (zh) * 2018-05-08 2018-12-11 深圳万佳互动科技有限公司 一种防腐蚀热电偶
CN108977775A (zh) * 2018-07-18 2018-12-11 南京理工大学 一种TiAlSiN涂层刀具制备工艺
CN109182983A (zh) * 2018-09-21 2019-01-11 西安浩元航空科技有限公司 一种用于硬质合金旋转锉表面制备TiAlSiN涂层的方法
CN111041420A (zh) * 2019-12-27 2020-04-21 采埃孚汽车科技(张家港)有限公司 一种拉刀刀具及其制备方法
CN111733385A (zh) * 2020-06-03 2020-10-02 广东电网有限责任公司 一种Ti-TiN-TiSiAlN复合涂层及其制备方法和应用
CN113564537A (zh) * 2021-07-02 2021-10-29 西安浩元航空科技有限公司 一种用于采掘截割刀具表面制备超硬耐磨涂层的方法
CN114369800A (zh) * 2021-12-22 2022-04-19 广东工业大学 一种TiAlSiN、CrAlSiN纳米复合涂层的制备方法
CN114686821A (zh) * 2022-03-16 2022-07-01 浙江工业大学 一种耐磨TiSiCN纳米复合多层涂层及其制备方法
CN115074731A (zh) * 2022-05-10 2022-09-20 四川大学 一种多孔复合TiCN/TiAlXN耐磨抗氧化涂层及其制备方法、应用

Also Published As

Publication number Publication date
CN102653855B (zh) 2013-09-11

Similar Documents

Publication Publication Date Title
CN102653855B (zh) 耐磨损和抗氧化的TiAlSiN纳米复合超硬涂层制备方法
CN102925862B (zh) 一种掺Ti的类金刚石涂层的制备方法
CN103668095B (zh) 一种高功率脉冲等离子体增强复合磁控溅射沉积装置及其使用方法
CN101435071B (zh) 耐磨损和抗氧化TiAlSiCN薄膜的制备方法
CN103451608B (zh) 一种掺钨的类金刚石涂层及其制备方法
CN101798678B (zh) 一种磁控溅射技术制备的新型超硬TiB2/c-BN纳米多层薄膜
CN102912298B (zh) 具有抗腐蚀和减摩性能的掺Cr的DLC涂层及制备方法
CN105296949B (zh) 一种具有超高硬度的纳米结构涂层及其制备方法
CN104928638A (zh) 一种AlCrSiN基多层纳米复合刀具涂层及其制备方法
CN107130222A (zh) 高功率脉冲磁控溅射CrAlSiN纳米复合涂层及其制备方法
CN108690956A (zh) 电弧离子镀-磁控溅射复合沉积高温耐磨减摩AlTiN纳米多层涂层及其制备方法和应用
CN103084600B (zh) 超硬TiN-TiSiN-CN多层交替复合梯度涂层硬质合金刀片及制备方法
CN101879794A (zh) CrTiAlSiN纳米复合涂层、沉积有该涂层的刀具及其制备方法
CN103212729B (zh) 一种具有CrAlTiN超晶格涂层的数控刀具及其制备方法
CN105603387A (zh) 氮化硼系复合涂层、具有该复合涂层的梯度超细硬质合金刀具及其制备方法
CN103143761B (zh) 一种AlTiN-MoN纳米多层复合涂层铣刀及其制备方法
CN104002516A (zh) 一种具有高硬度和低摩擦系数的CrAlN/MoS2多层涂层及其制备方法
CN102756514B (zh) 一种超厚超硬涂层及其制备方法
CN103029366A (zh) 一种含有NiCrN三元涂层的制品及制备方法
CN102899613A (zh) AlTiN高速切削刀具涂层的制备方法
CN107190243A (zh) 一种TiB2/AlTiN复合涂层及其制备方法与应用
CN104325738A (zh) 一种冷轧圆盘飞剪的硬质涂层及其制备方法
CN107190233A (zh) 一种具有超高硬度的Si掺杂纳米复合涂层的制备工艺
CN102330062A (zh) 一种氮化钛/镍纳米多层薄膜的制备方法
CN105463391A (zh) 一种纳米晶ZrB2超硬涂层及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130911

Termination date: 20140505