CN102330062A - 一种氮化钛/镍纳米多层薄膜的制备方法 - Google Patents

一种氮化钛/镍纳米多层薄膜的制备方法 Download PDF

Info

Publication number
CN102330062A
CN102330062A CN201110316033A CN201110316033A CN102330062A CN 102330062 A CN102330062 A CN 102330062A CN 201110316033 A CN201110316033 A CN 201110316033A CN 201110316033 A CN201110316033 A CN 201110316033A CN 102330062 A CN102330062 A CN 102330062A
Authority
CN
China
Prior art keywords
target
matrix
multilayer film
titanium
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201110316033A
Other languages
English (en)
Other versions
CN102330062B (zh
Inventor
贺春林
张金林
王建明
刘岩
马国峰
李海松
娄德元
杨雪飞
才庆魁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang University
Original Assignee
Shenyang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang University filed Critical Shenyang University
Priority to CN 201110316033 priority Critical patent/CN102330062B/zh
Publication of CN102330062A publication Critical patent/CN102330062A/zh
Application granted granted Critical
Publication of CN102330062B publication Critical patent/CN102330062B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

一种氮化钛/镍纳米多层薄膜的制备方法,涉及陶瓷/金属纳米多层薄膜制备方法,包括以下制备步骤:选用钢材为基体,基体表面经砂纸研磨并抛光后,分别用丙酮、酒精和去离子水超声波清洗、烘干后装入真空室;用直流反应磁控共溅射镀膜系统,纯金属钛靶和纯金属镍靶同时对准上方中心处的基体,沉积多层薄膜前先将真空室抽真空至6.0×10-4帕,然后通入高纯氩气,在基体上沉积一层厚度为30~100纳米的金属钛层;通过计算机精确控制靶材上挡板的打开时间进行交替沉积TiN/Ni纳米多层薄膜;镀膜结束后样品随炉冷却至室温即可。该薄膜可应用于切削刀具、模具的表面或作为装饰薄膜应用于钟表、首饰等产品。

Description

一种氮化钛/镍纳米多层薄膜的制备方法
技术领域
 本发明涉及一种陶瓷/金属纳米多层薄膜制备方法,特别是涉及一种氮化钛/镍纳米多层薄膜的制备方法。
背景技术
高硬度多层薄膜,特别是氮化物多层薄膜体系,它们的高硬度在材料组合上的多样性和其性能上的可选择性,展示了这类薄膜在包括工具涂层和装饰涂层在内的各种表面强化和表面改性领域广阔的应用前景。
纯金属(如镍)具有良好的塑性,氮化物(如氮化钛)陶瓷具有高硬度,两者的结合能获得优越的力学性能。其原因有:一是由于金属与氮化物的晶体结构及滑移系的不同,对位错的移动和裂纹的扩展起阻碍作用,将引起硬度的升高;二是塑性良好的金属与高硬度的氮化物交替形成的层状结构,软金属可以减缓高硬度层的残余应力或剪切应力,对薄膜的韧性、结合强度和耐磨性有益。
真空技术沉积的薄膜不可避免的存在一些缺陷,且磁控溅射沉积的TiN薄膜为柱状结构,其生成的缺陷多为贯穿式缺陷。这类缺陷的存在使腐蚀介质与基体直接接触,大大降低薄膜的耐腐蚀性能。TiN层中增加金属层,能够阻止贯穿式缺陷的产生,提高薄膜的耐腐蚀性能。
陶瓷/金属纳米多层薄膜体系中研究最多的为TiN/Ti和CrN/Cr等,其多层薄膜在沉积过程中需要频繁的调节氮气分压,操作不便,且效率低。针对以上问题,本发明利用直流反应磁控共溅射镀膜系统,在不改变氮气分压的情况下,通过控制钛靶和镍靶挡板打开时间控制各单层薄膜的厚度来交替沉积TiN/Ni纳米多层薄膜,提高了精度的同时也提高了工作效率,为生产线连续作业提供了可能。
发明内容
本发明的目的在于提供一种氮化钛/镍纳米多层薄膜的制备方法,该方法为直流反应磁控共溅射方法,沉积高硬度、高韧性、高结合强度、耐磨、耐腐蚀的TiN/Ni纳米多层薄膜,制备的薄膜层状结构明显,无界面混淆现象,硬度达30吉帕,结合强度达150牛,韧性、耐磨性和耐腐蚀性能均优于TiN单层薄膜。
本发明的目的是通过以下技术方案实现的:
一种氮化钛/镍纳米多层薄膜的制备方法,包括以下制备步骤:
a 选用钢材为基体,基体表面经砂纸研磨并抛光后,分别用丙酮、酒精和去离子水超声波清洗、烘干后装入真空室准备镀膜;
b用直流反应磁控共溅射镀膜系统,纯金属钛靶和纯金属镍靶同时对准上方中心处的基体,沉积多层薄膜前先将真空室抽真空至6.0×10-4帕,然后通入高纯氩气,在基体上沉积一层厚度为30~100纳米的金属钛层;
c 通过计算机精确控制靶材上挡板的打开时间进行交替沉积TiN/Ni纳米多层薄膜;
d.镀膜结束后样品随炉冷却至室温即可.
所述的一种氮化钛/镍纳米多层薄膜的制备方法,其所述的沉积工艺条件为:钛靶功率40~100瓦,基体偏压0~-200伏,靶材与基体的距离6~12厘米,工作气压0.2~1.2帕,基体温度为室温~400摄氏度,基体自转速度为5~30 转每分钟。
所述的一种氮化钛/镍纳米多层薄膜的制备方法,其所述的镀膜工艺条件为:钛靶功率40~100瓦,镍靶功率15~50瓦;基体偏压0~-200伏,氮气分压3×10-3~1.1×10-1帕,靶材与基体的距离6~12厘米,工作气压0.2~1.2帕,基体温度为室温~400摄氏度,调制比为1:1~15:1,调制周期为2~150纳米,基体自转速度为5~30转每分钟。
本发明的优点与效果是:
本发明提供一种高硬度、高韧性、高结合强度、耐磨、耐腐蚀的TiN/Ni纳米多层薄膜的制备方法,由于采用直流反应磁控共溅射镀膜系统,不需要频繁的调节氮气分压,既提高了效率也提高了精度,为生产线作业提供了可能。金属镍层的加入,使薄膜硬度达30吉帕,结合强度达150牛,韧性、耐磨性和耐腐蚀性能均优于TiN单层膜。 
具体实施方式
下面结合实施例对本发明进行详细说明。
本发明系一种直流反应磁控共溅射方法沉积高硬度、高韧性、高结合强度、耐磨、耐腐蚀的TiN/Ni纳米多层薄膜及其制备方法。该薄膜可应用于切削刀具、模具的表面或作为装饰薄膜应用于钟表、首饰等产品,属于表面强化或表面改性领域。
本发明纳米多层薄膜的制备以纯金属钛靶(99.99%)和纯金属镍靶(99.99%)为靶材,先通入高纯氩气(99.999%)沉积金属钛层后通入高纯氮气(99.999%)并以高纯氮气为反应气体,通过控制钛靶和镍靶挡板打开时间控制各单层薄膜的厚度来交替沉积TiN/Ni纳米多层薄膜。所得薄膜具备如下性能:薄膜层状结构明显,无界面混淆现象,硬度达30吉帕,结合强度达150牛,韧性、耐磨性和耐腐蚀性能均优于TiN单层薄膜。
本发明制备方法包括以下步骤:
1 选用高速钢和不锈钢作为基体,基体表面经砂纸研磨并抛光至1.0微米后,分别用丙酮、酒精和去离子水超声波清洗15分钟,烘干后装入真空室准备镀膜。
2镀膜设备选用直流反应磁控共溅射镀膜系统,纯金属钛靶和纯金属镍靶同时对准上方中心处的基体,沉积多层薄膜前先将真空室抽真空至6.0×10-4帕,然后通入高纯氩气,在基体上沉积一层厚度为30~100纳米的金属钛层,以提高结合强度。具体沉积工艺为:钛靶功率40~100瓦,基体偏压0~-200伏,靶材与基体的距离6~12厘米,工作气压0.2~1.2帕,基体温度为室温~400摄氏度,基体自转速度为5~30 转每分钟。
3 通过计算机精确控制靶材上挡板的打开时间进行交替沉积TiN/Ni纳米多层薄膜。具体参数为:钛靶功率40~100瓦,镍靶功率15~50瓦。基体偏压0~-200伏,氮气分压3×10-3~1.1×10-1帕,靶材与基体的距离6~12厘米,工作气压0.2~1.2帕,基体温度为室温~400摄氏度,调制比为1:1~15:1,调制周期为2~150纳米,基体自转速度为5~30转每分钟。镀膜结束后样品随炉冷却至室温。
实施例1
1 选用高速钢和不锈钢作为基体,基体表面经砂纸研磨并抛光至1.0微米后,分别用丙酮、酒精和去离子水超声波清洗15分钟,烘干后装入真空室准备镀膜。
2镀膜设备选用直流反应磁控共溅射镀膜系统,纯金属钛靶和纯金属镍靶同时对准上方中心处的基体,沉积多层薄膜前先将真空室抽真空至6.0×10-4帕,然后通入氩气,在基体上沉积一层厚度为30纳米的金属钛层,以提高结合强度。具体沉积工艺为:钛靶功率60瓦,基体偏压-70伏,靶材与基体的距离6厘米,工作气压0.5帕,基体温度为300摄氏度,基体自转速度为15 转每分钟。
3 通过计算机精确控制靶材上挡板的打开时间进行交替沉积TiN/Ni纳米多层薄膜。具体参数为:钛靶功率60瓦,镍靶功率15瓦。基体偏压-70伏,氮气分压5×10-2帕,靶材与基体的距离6厘米,工作气压0.8帕,基体温度为300摄氏度,调制比为3:1,调制周期为10纳米,基体自转速度为15转每分钟。镀膜结束后样品随炉冷却至室温。
实施例2
1 选用高速钢和不锈钢作为基体,基体表面经砂纸研磨并抛光至1.0微米后,分别用丙酮、酒精和去离子水超声波清洗15分钟,烘干后装入真空室准备镀膜。
2镀膜设备选用直流反应磁控共溅射镀膜系统,纯金属钛靶和纯金属镍靶同时对准上方中心处的基体,沉积多层薄膜前先将真空室抽真空至6.0×10-4帕,然后通入氩气,在基体上沉积一层厚度为30纳米的金属钛层,以提高结合强度。具体沉积工艺为:钛靶功率40瓦,基体偏压-120伏,靶材与基体的距离6厘米,工作气压0.5帕,基体温度为150摄氏度,基体自转速度为20 转每分钟。
3 通过计算机精确控制靶材上挡板的打开时间进行交替沉积TiN/Ni纳米多层薄膜。具体参数为:钛靶功率40瓦,镍靶功率30瓦。基体偏压-120伏,氮气分压3×10-3帕,靶材与基体的距离6厘米,工作气压0.8帕,基体温度为150摄氏度,调制比为5:1,调制周期为30纳米,基体自转速度为20转每分钟。镀膜结束后样品随炉冷却至室温。
实施例3
1 选用高速钢和不锈钢作为基体,基体表面经砂纸研磨并抛光至1.0微米后,分别用丙酮、酒精和去离子水超声波清洗15分钟,烘干后装入真空室准备镀膜。
2镀膜设备选用直流反应磁控共溅射镀膜系统,纯金属钛靶和纯金属镍靶同时对准上方中心处的基体,沉积多层薄膜前先将真空室抽真空至6.0×10-4帕,然后通入氩气,在基体上沉积一层厚度为100纳米的金属钛层,以提高结合强度。具体沉积工艺为:钛靶功率80瓦,基体偏压-200伏,靶材与基体的距离10厘米,工作气压0.8帕,基体温度为400摄氏度,基体自转速度为30 转每分钟。
3 通过计算机精确控制靶材上挡板的打开时间进行交替沉积TiN/Ni纳米多层薄膜。具体参数为:钛靶功率80瓦,镍靶功率40瓦。基体偏压-200伏,氮气分压1.1×10-1帕,靶材与基体的距离10厘米,工作气压1.2帕,基体温度为400摄氏度,调制比为15:1,调制周期为100纳米,基体自转速度为30转每分钟。镀膜结束后样品随炉冷却至室温。

Claims (3)

1.一种氮化钛/镍纳米多层薄膜的制备方法,其特征在于,包括以下制备步骤:
a 选用钢材为基体,基体表面经砂纸研磨并抛光后,分别用丙酮、酒精和去离子水超声波清洗、烘干后装入真空室准备镀膜;
b用直流反应磁控共溅射镀膜系统,纯金属钛靶和纯金属镍靶同时对准上方中心处的基体,沉积多层薄膜前先将真空室抽真空至6.0×10-4帕,然后通入高纯氩气,在基体上沉积一层厚度为30~100纳米的金属钛层;
c 通过计算机精确控制靶材上挡板的打开时间进行交替沉积TiN/Ni纳米多层薄膜;
d.镀膜结束后样品随炉冷却至室温即可。
2.根据权利要求1所述的一种氮化钛/镍纳米多层薄膜的制备方法,其特征在于,所述的沉积工艺条件为:钛靶功率40~100瓦,基体偏压0~-200伏,靶材与基体的距离6~12厘米,工作气压0.2~1.2帕,基体温度为室温~400摄氏度,基体自转速度为5~30 转每分钟。
3.根据权利要求1所述的一种氮化钛/镍纳米多层薄膜的制备方法,其特征在于,所述的镀膜工艺条件为:钛靶功率40~100瓦,镍靶功率15~50瓦;基体偏压0~-200伏,氮气分压3×10-3~1.1×10-1帕,靶材与基体的距离6~12厘米,工作气压0.2~1.2帕,基体温度为室温~400摄氏度,调制比为1:1~15:1,调制周期为2~150纳米,基体自转速度为5~30转每分钟。
CN 201110316033 2011-10-18 2011-10-18 一种氮化钛/镍纳米多层薄膜的制备方法 Expired - Fee Related CN102330062B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110316033 CN102330062B (zh) 2011-10-18 2011-10-18 一种氮化钛/镍纳米多层薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110316033 CN102330062B (zh) 2011-10-18 2011-10-18 一种氮化钛/镍纳米多层薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN102330062A true CN102330062A (zh) 2012-01-25
CN102330062B CN102330062B (zh) 2013-01-02

Family

ID=45482022

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110316033 Expired - Fee Related CN102330062B (zh) 2011-10-18 2011-10-18 一种氮化钛/镍纳米多层薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN102330062B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104730298A (zh) * 2015-03-19 2015-06-24 西安福科材料科技有限公司 用于电子测试探针的耐磨导电多层复合薄膜及其工业制备方法
CN106175996A (zh) * 2016-06-30 2016-12-07 天津医科大学 表面具有富银纳米多层膜修饰的椎间融合器及制备方法
CN107227440A (zh) * 2017-03-04 2017-10-03 安徽智联投资集团有限公司 一种两相复合纳米涂层
CN110565056A (zh) * 2019-09-19 2019-12-13 广东工业大学 一种5g金属/陶瓷复合电路板及其制备方法
CN112111717A (zh) * 2020-09-01 2020-12-22 星弧涂层新材料科技(苏州)股份有限公司 轴瓦复合涂层加工方法及基于pvd技术的轴瓦复合涂层
CN114717515A (zh) * 2022-04-06 2022-07-08 北京理工大学 一种硬质涂层增韧结构及韧性评估方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1074489A (zh) * 1992-01-14 1993-07-21 大同酸素株式会社 氮化镍合金的方法
JPH07331410A (ja) * 1994-06-02 1995-12-19 Kobe Steel Ltd 耐酸化性および耐摩耗性に優れた硬質皮膜
CN1740380A (zh) * 2004-08-23 2006-03-01 胡学儒 金属-陶瓷复合材料制造方法
CN101413101A (zh) * 2008-11-26 2009-04-22 哈尔滨工业大学 一种金属/陶瓷微叠层材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1074489A (zh) * 1992-01-14 1993-07-21 大同酸素株式会社 氮化镍合金的方法
JPH07331410A (ja) * 1994-06-02 1995-12-19 Kobe Steel Ltd 耐酸化性および耐摩耗性に優れた硬質皮膜
CN1740380A (zh) * 2004-08-23 2006-03-01 胡学儒 金属-陶瓷复合材料制造方法
CN101413101A (zh) * 2008-11-26 2009-04-22 哈尔滨工业大学 一种金属/陶瓷微叠层材料及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104730298A (zh) * 2015-03-19 2015-06-24 西安福科材料科技有限公司 用于电子测试探针的耐磨导电多层复合薄膜及其工业制备方法
CN104730298B (zh) * 2015-03-19 2017-12-12 西安福科材料科技有限公司 用于电子测试探针的耐磨导电多层复合薄膜及其工业制备方法
CN106175996A (zh) * 2016-06-30 2016-12-07 天津医科大学 表面具有富银纳米多层膜修饰的椎间融合器及制备方法
CN107227440A (zh) * 2017-03-04 2017-10-03 安徽智联投资集团有限公司 一种两相复合纳米涂层
CN110565056A (zh) * 2019-09-19 2019-12-13 广东工业大学 一种5g金属/陶瓷复合电路板及其制备方法
WO2021051442A1 (zh) * 2019-09-19 2021-03-25 广东工业大学 一种5g金属/陶瓷复合电路板及其制备方法
CN112111717A (zh) * 2020-09-01 2020-12-22 星弧涂层新材料科技(苏州)股份有限公司 轴瓦复合涂层加工方法及基于pvd技术的轴瓦复合涂层
CN114717515A (zh) * 2022-04-06 2022-07-08 北京理工大学 一种硬质涂层增韧结构及韧性评估方法

Also Published As

Publication number Publication date
CN102330062B (zh) 2013-01-02

Similar Documents

Publication Publication Date Title
CN102653855B (zh) 耐磨损和抗氧化的TiAlSiN纳米复合超硬涂层制备方法
CN102330062B (zh) 一种氮化钛/镍纳米多层薄膜的制备方法
CN109161841B (zh) 一种AlCrN/AlCrSiN超硬纳米复合多层涂层及其制备方法和应用
CN101798678B (zh) 一种磁控溅射技术制备的新型超硬TiB2/c-BN纳米多层薄膜
CN103668095B (zh) 一种高功率脉冲等离子体增强复合磁控溅射沉积装置及其使用方法
CN102011091B (zh) 高硬度高弹性模量CrAlN保护涂层及其制备方法
CN104928638A (zh) 一种AlCrSiN基多层纳米复合刀具涂层及其制备方法
CN103757597B (zh) 一种TiN/CrAlSiN纳米复合多层涂层及其制备方法
CN107130222A (zh) 高功率脉冲磁控溅射CrAlSiN纳米复合涂层及其制备方法
CN109402564B (zh) 一种AlCrSiN和AlCrSiON双层纳米复合涂层及其制备方法
CN108251797B (zh) 一种钛合金切削刀具用TiAlN/CrN多层涂层及其制备方法
CN102021513B (zh) 一种基体表面的高韧性抗氧化减磨涂层及其制备方法
CN108977775B (zh) 一种TiAlSiN涂层刀具制备工艺
CN104325738B (zh) 一种冷轧圆盘飞剪的硬质涂层及其制备方法
CN110453190B (zh) 一种AlCrSiN/Mo自润滑薄膜的复合磁控溅射制备方法
CN102776474B (zh) 用于基底表面处理的纳米复合涂层及其制备方法和装置
CN103510061A (zh) 一种高硬度、高弹性模量TiSiN保护涂层的制备方法
CN107190233A (zh) 一种具有超高硬度的Si掺杂纳米复合涂层的制备工艺
CN102650030A (zh) TiMoN硬质纳米结构薄膜及制备方法
CN108251800A (zh) 一种Cu-Al梯度薄膜材料及其制备方法
CN100408719C (zh) 一种氧化铬复合涂层的制备方法
CN102345091A (zh) 涂层、具有该涂层的被覆件及该被覆件的制备方法
CN102337508B (zh) 一种氮化钛/氮化铝/镍纳米多层薄膜的制备方法
CN110042343B (zh) 一种多周期结构的二硼化钛基涂层及其制备方法和应用
CN201971890U (zh) 一种提高金属合金基体硬度和抗腐蚀性能的涂层结构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130102

Termination date: 20131018