CN107130222A - 高功率脉冲磁控溅射CrAlSiN纳米复合涂层及其制备方法 - Google Patents

高功率脉冲磁控溅射CrAlSiN纳米复合涂层及其制备方法 Download PDF

Info

Publication number
CN107130222A
CN107130222A CN201710518517.3A CN201710518517A CN107130222A CN 107130222 A CN107130222 A CN 107130222A CN 201710518517 A CN201710518517 A CN 201710518517A CN 107130222 A CN107130222 A CN 107130222A
Authority
CN
China
Prior art keywords
cralsin
targets
coatings
nano
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710518517.3A
Other languages
English (en)
Other versions
CN107130222B (zh
Inventor
范其香
王铁钢
吴正环
王政权
刘艳梅
张涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology
Original Assignee
Tianjin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology filed Critical Tianjin University of Technology
Priority to CN201710518517.3A priority Critical patent/CN107130222B/zh
Publication of CN107130222A publication Critical patent/CN107130222A/zh
Application granted granted Critical
Publication of CN107130222B publication Critical patent/CN107130222B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides

Abstract

本发明涉及一种纳米复合涂层及其制备技术,具体地说是一种CrAlSiN纳米复合涂层的制备工艺。采用高功率脉冲与直流脉冲共溅射技术在金属或硬质合金基体上制备CrAlSiN纳米复合涂层。选用纯金属Cr、Al和Si(纯度均为99.99 wt.%)作为靶材,其中,高功率脉冲选用Cr靶,直流脉冲溅射选用Al靶和Si靶。镀膜前先通入Ar气,采用‑800 V偏压,对基片进行辉光清洗10~30 min。随后开启三个靶材,对基体和靶材表面进行轰击清洗,并逐渐降低偏压至‑30~100V。关闭Al靶和Si靶,沉积纯Cr过渡层10~40min。通入反应气体N2,并开启Al靶和Si靶,沉积CrAlSiN涂层120~360 min。本发明涉及的CrAlSiN纳米复合涂层综合性能好,制备工艺简单,成分可控,重复性好,容易工业化生产。

Description

高功率脉冲磁控溅射CrAlSiN纳米复合涂层及其制备方法
技术领域
本发明涉及涂层制备技术,具体地说是一种采用新型高功率脉冲和直流脉冲共溅射技术制备出具有高硬度和高强度的CrAlSiN纳米复合涂层的制备工艺。
背景技术
刀具材料主要有高速钢、硬质合金和陶瓷刀具。高速钢具有较好的韧性,但其硬度低,加工高温合金时极易崩刃、寿命短暂,效率低。硬质合金具有较好的硬度、塑性、韧性、耐磨性等,是切削高温合金最为常用的材料。但在高温下工件中元素容易扩散到刀具材料粘结剂Co相中,削弱硬质相与粘接剂的结合强度,发生粘接磨损和扩散磨损。陶瓷刀具红硬性好于高速钢和硬质合金,但其韧性差、热导率低、易产生裂纹等问题,限制了其应用发展。采用涂层技术可使刀具获得优良的综合机械性能,有效提高切削刀具使用寿命、切削效率和加工表面质量,从而大幅度提高机械加工效率。研究表明:涂层刀具比未涂层刀具寿命提高2~5倍,切削速度提高20%~70%,加工精度提高0.5~1级,刀具消耗费用降低20%~50%。
在涂层发展初期,其成分主要为TiN、TiC等碳化物或氮化物。这类涂层在刀具上仍有较广泛的应用,但其断裂韧性低,且抗高温氧化性能较差,导致其无法满足一些先进加工技术要求。纳米复合涂层CrAlSiN具有超高硬度,好的韧性、耐磨性和耐高温性能,得到越来越多研究者的青睐。目前研究文献中报道的CrAlSiN纳米复合涂层大多采用传统的电弧离子镀或磁控溅射方法制备。高功率脉冲磁控溅射是最新发展起来并广受关注的一种物理气相沉积方法,它利用较高的脉冲峰值功率(约为传统磁控溅射的2~3个数量级)和较低的占空比(0.5%-10%),获得高的金属离化率(>50%),在获得优异的膜基结合力、控制涂层微结构、降低涂层内应力、控制涂层相结构等方面具有显著的技术优势。高功率脉冲技术制备出的涂层结构比传统磁控溅射组织更加致密,晶粒更加细小,从而表现出优异的综合性能。为此,本发明采用新型高功率脉冲技术结合传统的直流脉冲技术制备一种具有高硬度、高强度的CrAlSiN涂层,进一步提高CrAlSiN纳米复合涂层的综合性能和使役寿命。
发明内容
本发明的目的在于采用新型的高功率脉冲和直流脉冲共溅射技术制备出一种具有高硬度、高强度的CrAlSiN纳米复合涂层,并获得稳定的制备工艺。
本发明的技术方案为:
采用高功率脉冲和直流脉冲共溅射技术在金属或硬质合金基体上沉积CrAlSiN纳米复合涂层。采用纯Cr金属、纯Al金属和纯Si金属作为靶材(纯度均为99.99 wt.%)。将高速钢或硬质合金基片先后采用酒精、丙酮、去离子水清洗后,氮气吹干,放在转架上,关闭炉门。采用机械泵和分子泵抽真空,待炉内真空优于1×10-3 Pa时,打开加热系统将炉腔加热至100~450 ºC;开启Ar气流量阀,气流量为30~300 sccm,调整节流阀使真空室压强为0.1~1 Pa;基片加-800V负偏压,辉光清洗10~30 min;开启Cr靶、Al靶和Si靶,靶材功率为0.4~2 KW,对靶材进行轰击清洗5~30 min;降低偏压至-10~100 V,关闭Al靶和Si靶,沉积纯Cr金属过渡层20~40 min,以提高涂层与基体之间的结合力。同时通入N2和Ar,其气流量为30~300 sccm,调整节流阀使真空室压强为0.1~0.8 Pa,控制N2/Ar比在0.3~3之间;同时开启Al靶和Si靶,靶材功率均为0.4~2 KW,沉积CrAlSiN涂层;沉积时间为120~360 min。沉积过程中,根据涂层的厚度和成分要求严格控制炉腔内的沉积压强、各个靶的功率、沉积时间等工艺参数。
沉积参数:
将预处理后的基片放进镀膜室转架上,转架公转速度为5~45 r/min,靶基距约为60-100 mm;采用机械泵和分子泵抽真空使真空室气压达到1×10-3 Pa以下,打开加热系统将炉腔加热至100~450 ºC;打开Ar气流量阀为30~300 sccm,调整真空室压强为0.1~1 Pa,基片加-800 V负偏压,进行辉光清洗10~30 min。开启Cr靶、Al靶和Si靶,靶材功率为0.4~2 KW,对靶材和基体进行轰击清洗;调整负偏压至-10~100 V,调整真空室压强为0.1~0.8 Pa,关闭Al靶和Si靶,沉积纯Cr金属层10~40 min;开启Al靶和Si靶,靶材功率为0.4~2 KW,同时通入N2和Ar气,流量阀值均为30~300 sccm,调整节流阀使真空室压强为0.1~0.8 Pa,控制N2/Ar比在0.3~3之间,沉积CrAlSiN涂层,时间为120~360 min。沉积时间的长短根据所需要的涂层厚度而定。
该CrAlSiN纳米复合涂层可应用于各种金属及硬质合金基体上;也可应用于陶瓷材料表面。
本发明的优点如下:
1. 本发明研制的CrAlSiN纳米复合涂层晶粒细小,结构致密,为单一的fcc-(Cr,Al)N相,Si元素以非晶相的形式存在于(Cr,Al)N相晶界处,阻止晶粒长大。
2. 本发明研制的CrAlSiN纳米复合涂层具有较高的硬度,通过调整工艺参数,可达40 GPa以上。
3. 本发明研制的CrAlSiN涂层具有很好的高温热稳定性能和耐蚀性能,可用于高速高精切削与干切削加工领域。
4. 本发明研制的CrAlSiN纳米复合涂层与基体具有良好的结合强度,制备工艺简单,重复性好,应用范围广,具有非常强的实用性。
附图说明
图1为采用高功率脉冲和直流脉冲共溅射技术制备的CrAlSiN纳米复合涂层的XRD衍射谱图;
图2为采用高功率脉冲和直流脉冲共溅射技术制备的CrAlSiN纳米复合涂层的表面形貌图;
图3为采用高功率脉冲和直流脉冲共溅射技术制备的CrAlSiN纳米复合涂层的截面形貌图。
具体实施方式
下面通过实例对本发明做进一步详细说明。
实施例1
本实施例为采用高功率脉冲和直流脉冲共溅射技术在抛光处理后的高速钢片上制备CrAlSiN纳米复合涂层,高速钢试样尺寸为25×30×1 mm。基片先后在丙酮、酒精和蒸馏水中各超声清洗20 min,然后用高纯N2吹干,再放置于高功率脉冲和直流脉冲共溅射镀膜仪中与靶材正对的试样架上,转架公转转速选为30 r/min,靶基距为80 mm。靶材分别选用纯金属Cr、Al和Si(纯度均为99.99 wt. %),工作气体和反应气体分别选用高纯Ar和N2(纯度均为99.999%)。
先将真空室的本底真空抽至1.0×10-3 Pa以上;打开加热系统,升温至300 ℃,待炉内真空度达到1.2×10-3 Pa时,打开Ar气流量阀,通入Ar气100 sccm至镀膜腔室内压强达到1 Pa,加-800 V负偏压,辉光清洗20 min。开启Cr靶、Al靶和Si靶电源,功率分别为1KW、0.6 KW、0.6KW,对试样和靶材表面进行轰击清洗;随后降低偏压至-50 V,并调整炉内压强至0.5 Pa,关闭Al靶和Si靶电源,沉积金属Cr过渡层,Cr靶功率依然为1KW,沉积时间为30min;开启Al靶和Si靶电源,功率分别为0.6 KW和0.6KW,同时通入Ar和N2气(纯度99.999%),流量分别为47 和94 sccm,保持氮氩流量比N2/Ar为2,通过调节节流阀大小,使工作气压为0.5 Pa,沉积CrAlSiN纳米复合涂层,镀膜时间持续180 min;沉积结束后,关闭靶材电源和气体流量阀、加热器电源,待炉内温度低于80 ℃时取出涂层。
图1为本发明工艺下制备的CrAlSiN纳米复合涂层的XRD衍射谱图,可以看出CrAlSiN涂层由面心立方结构的(Cr,Al)N涂层组成,没有发现其他相,涂层中Si以非晶相SixNy形式存在于(Cr,Al)N相晶界处。
图2为本发明工艺下制备的CrAlSiN纳米复合涂层的表面形貌图,涂层晶粒细小,结构十分致密。
图3为本发明工艺下制备的CrAlSiN纳米复合涂层的的截面形貌图,涂层组织结构致密均匀,过渡层厚度约为170 nm。EDS测试涂层截面平均成分为43.42 at.% Cr 11.44at.% Al, 11.60 at.% Si和41.58 at.% N。涂层厚度约为1.4 μm,硬度约为33.3 GPa,弹性模量为425.81 GPa。
实施例2
本实施例为在经抛光处理的硬质合金基片YG8上沉积CrAlSiN纳米复合涂层,试样尺寸为19×19×2 mm。基片先后在丙酮、酒精和蒸馏水中各超声清洗20 min,然后用高纯N2吹干,转架转速选为30 r/min,靶基距为80 mm。靶材分别选用纯金属Cr和Al(纯度均为wt.99.9%),工作气体和反应气体分别选用Ar和N2(纯度均为99.999%)。本实施例中沉积CrAlSiN纳米复合涂层过程中,Cr靶、Al靶和Si靶电源,功率分别为1KW、1.0 KW、0.6KW,其他工艺参数与实施例1相同。
本发明工艺下制备的CrAlSiN涂层相组成和组织结构与实施案例1中涂层相同,同样由面心立方结构的(Cr,Al)N相组成,Si以非晶相的形式存在于(Cr,Al)N晶界处。EDS测试涂层截面平均元素成分为:27.50 at.% Cr 16.16 at.% Al, 10.64 at.% Si和45.70 at.%N。涂层厚度约为1.5 μm,硬度约为34.1 GPa,弹性模量为405.89 GPa。

Claims (9)

1.一种具有高硬度、高强度的CrAlSiN纳米复合涂层,其特征在于CrAlSiN涂层与基体之间有一层纯Cr金属过渡层,以提高涂层与基体之间的结合力,过渡层厚度为10~300 nm;CrAlSiN涂层总厚度为1~10 μm。
2.根据权利要求1所述的涂层成分,其特征在于:CrAlSiN涂层中Cr含量为10~45 at.%,Al含量为5~35 at.%, Si含量为5~15 at.%,N含量为40~55 at.%,涂层成分通过调节Cr靶、Al靶、Si靶的功率来控制。
3.根据权利要求1所述CrAlSiN涂层的组织结构,其特征在于:所述的CrAlSiN涂层为面心立方结构的(Cr,Al)N相,其中Si以非晶相SixNy的形式分布于(Cr,Al)N相晶界处,阻止(Cr,Al)N相长大,起到细化晶粒的作用。
4.根据权利要求1所述CrAlSiN涂层的制备工艺,其特征在于:采用高功率脉冲和直流脉冲共溅射技术在金属或硬质合金上沉积具有高硬度、高强度的CrAlSiN纳米复合涂层。
5.按照权利要求2所述的CrAlSiN纳米复合涂层的制备工艺,其特征在于:基体材料在丙酮、酒精、去离子水中超声清洗后,采用N2吹干,并放在旋转速度为5~45 r/min的转架上,基体材料与靶材距离约为60~120 mm。
6.按照权利要求2所述的CrAlSiN涂层的制备工艺,其特征在于:采用机械泵和分子泵抽真空,当真空室气压优于1×10-3 Pa时,打开加热系统将炉腔加热至100~450 ºC;待炉内真空度优于2×10-3 Pa时,开启Ar气流量阀,气流量为30~300 sccm,调整节流阀使真空室压强为0.1~1 Pa,基体加-800V负偏压,辉光清洗10~30 min;开启Cr靶、Al靶和Si靶,靶材功率均为0.4~2 KW,对基体和靶材进行轰击清洗;降低偏压至-10~100 V,关闭Al靶和Si靶电源,沉积纯Cr金属过渡层10~40 min。
7.按照权利要求2所述的CrAlSiN涂层的制备工艺,其特征在于:沉积CrAlSiN涂层时,同时通入N2和Ar,其气流量分别为30~300 sccm,调整节流阀使真空室压强为0.1~0.8 Pa,控制N2/Ar比在0.3~3之间;开启Cr靶、Al靶和Si靶,靶材功率均为0.4~2 KW,沉积CrAlSiN涂层;沉积时间为120~360 min。
8.根据权利要求1所述的CrAlSiN涂层的厚度,其特征在于:涂层厚度为1~10 μm,根据所需涂层厚度调整靶材功率、基材转速、涂层的沉积时间等工艺参数。
9.根据权利要求1所述的CrAlSiN涂层,其特征在于:所述CrAlSiN涂层硬度为20~50GPa,弹性模量为350~500 GPa,具有很好的抗高温氧化性能,与基体结合良好。
CN201710518517.3A 2017-06-30 2017-06-30 高功率脉冲磁控溅射CrAlSiN纳米复合涂层及其制备方法 Active CN107130222B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710518517.3A CN107130222B (zh) 2017-06-30 2017-06-30 高功率脉冲磁控溅射CrAlSiN纳米复合涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710518517.3A CN107130222B (zh) 2017-06-30 2017-06-30 高功率脉冲磁控溅射CrAlSiN纳米复合涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN107130222A true CN107130222A (zh) 2017-09-05
CN107130222B CN107130222B (zh) 2019-07-02

Family

ID=59736654

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710518517.3A Active CN107130222B (zh) 2017-06-30 2017-06-30 高功率脉冲磁控溅射CrAlSiN纳米复合涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN107130222B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107740053A (zh) * 2017-10-30 2018-02-27 广东工业大学 一种AlCrSiN/VSiN纳米多层涂层及其制备方法
CN107858647A (zh) * 2017-11-09 2018-03-30 天津职业技术师范大学 一种Al含量呈梯度变化的CrAlSiN纳米复合涂层及其制备方法
CN108486537A (zh) * 2018-03-09 2018-09-04 中国科学院宁波材料技术与工程研究所 一种用于锆合金的非晶防护涂层及其制备方法和应用
CN108796453A (zh) * 2018-05-30 2018-11-13 广东工业大学 一种高温耐磨的AlCrSiN纳米复合涂层及其制备方法
CN109402564A (zh) * 2018-11-14 2019-03-01 天津职业技术师范大学 一种AlCrSiN和AlCrSiON双层纳米复合涂层及其制备方法
CN110241387A (zh) * 2019-07-22 2019-09-17 河南科技大学 一种基于HIPIMS技术的CrAlN涂层制备方法
CN110257771A (zh) * 2019-06-28 2019-09-20 广州大学 一种高Al含量的c-CrAlSiN硬质涂层及其制备方法
CN110257789A (zh) * 2019-06-28 2019-09-20 广州大学 一种高Al含量的c-TiAlSiN硬质涂层及其制备方法
CN110453190A (zh) * 2019-09-23 2019-11-15 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种AlCrSiN/Mo自润滑薄膜的复合磁控溅射制备方法
CN111621752A (zh) * 2020-06-10 2020-09-04 天津职业技术师范大学(中国职业培训指导教师进修中心) AlCrSiN/AlCrN/AlCrON/AlCrN多层纳米复合涂层的制备工艺
CN112391593A (zh) * 2020-12-14 2021-02-23 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种高Cr含量、高弹性模量的CrB2-Cr涂层及其制备工艺
WO2021056855A1 (zh) * 2019-09-23 2021-04-01 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法
CN113322434A (zh) * 2021-06-04 2021-08-31 中国科学院宁波材料技术与工程研究所 一种纳米复合涂层及其制备方法与应用
CN114196918A (zh) * 2021-12-02 2022-03-18 浙江浙能技术研究院有限公司 一种电站高温螺栓防护涂层及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104928638A (zh) * 2015-05-21 2015-09-23 广东工业大学 一种AlCrSiN基多层纳米复合刀具涂层及其制备方法
CN105568230A (zh) * 2015-12-25 2016-05-11 珠海罗西尼表业有限公司 钢工件表面上功能梯度纳米多层涂层的制备方法和包含所述功能梯度纳米多层涂层的制品

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104928638A (zh) * 2015-05-21 2015-09-23 广东工业大学 一种AlCrSiN基多层纳米复合刀具涂层及其制备方法
CN105568230A (zh) * 2015-12-25 2016-05-11 珠海罗西尼表业有限公司 钢工件表面上功能梯度纳米多层涂层的制备方法和包含所述功能梯度纳米多层涂层的制品

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MIN SU KANG ET AL: "Synthesis and properties of Cr−Al−Si−N films deposited by hybrid coating system with high power impulse magnetron sputtering (HIPIMS) and DC pulse sputtering", 《TRANS. NONFERROUS MET. SOC. CHINA》 *
YOUNG SU HONG ETAL: "Effects of Cr interlayer on mechanical and tribological properties of Cr-Al-Si-N nanocomposite coating", 《TRANS. NONFERROUS MET.SOC. CHINA 》 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107740053A (zh) * 2017-10-30 2018-02-27 广东工业大学 一种AlCrSiN/VSiN纳米多层涂层及其制备方法
CN107858647B (zh) * 2017-11-09 2019-10-25 天津职业技术师范大学 一种Al含量呈梯度变化的CrAlSiN纳米复合涂层及其制备方法
CN107858647A (zh) * 2017-11-09 2018-03-30 天津职业技术师范大学 一种Al含量呈梯度变化的CrAlSiN纳米复合涂层及其制备方法
CN108486537A (zh) * 2018-03-09 2018-09-04 中国科学院宁波材料技术与工程研究所 一种用于锆合金的非晶防护涂层及其制备方法和应用
CN108486537B (zh) * 2018-03-09 2020-05-12 中国科学院宁波材料技术与工程研究所 一种用于锆合金的非晶防护涂层及其制备方法和应用
CN108796453A (zh) * 2018-05-30 2018-11-13 广东工业大学 一种高温耐磨的AlCrSiN纳米复合涂层及其制备方法
CN109402564A (zh) * 2018-11-14 2019-03-01 天津职业技术师范大学 一种AlCrSiN和AlCrSiON双层纳米复合涂层及其制备方法
CN109402564B (zh) * 2018-11-14 2020-07-24 天津职业技术师范大学 一种AlCrSiN和AlCrSiON双层纳米复合涂层及其制备方法
CN110257789B (zh) * 2019-06-28 2021-05-18 广州大学 一种高Al含量的c-TiAlSiN硬质涂层及其制备方法
CN110257789A (zh) * 2019-06-28 2019-09-20 广州大学 一种高Al含量的c-TiAlSiN硬质涂层及其制备方法
CN110257771A (zh) * 2019-06-28 2019-09-20 广州大学 一种高Al含量的c-CrAlSiN硬质涂层及其制备方法
CN110241387A (zh) * 2019-07-22 2019-09-17 河南科技大学 一种基于HIPIMS技术的CrAlN涂层制备方法
CN110453190A (zh) * 2019-09-23 2019-11-15 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种AlCrSiN/Mo自润滑薄膜的复合磁控溅射制备方法
WO2021056855A1 (zh) * 2019-09-23 2021-04-01 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法
CN110453190B (zh) * 2019-09-23 2021-06-15 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种AlCrSiN/Mo自润滑薄膜的复合磁控溅射制备方法
CN111621752A (zh) * 2020-06-10 2020-09-04 天津职业技术师范大学(中国职业培训指导教师进修中心) AlCrSiN/AlCrN/AlCrON/AlCrN多层纳米复合涂层的制备工艺
CN112391593A (zh) * 2020-12-14 2021-02-23 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种高Cr含量、高弹性模量的CrB2-Cr涂层及其制备工艺
CN112391593B (zh) * 2020-12-14 2022-12-23 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种高Cr含量、韧性好的CrB2-Cr涂层及其制备工艺
CN113322434A (zh) * 2021-06-04 2021-08-31 中国科学院宁波材料技术与工程研究所 一种纳米复合涂层及其制备方法与应用
CN113322434B (zh) * 2021-06-04 2022-04-19 中国科学院宁波材料技术与工程研究所 一种纳米复合涂层及其制备方法与应用
CN114196918A (zh) * 2021-12-02 2022-03-18 浙江浙能技术研究院有限公司 一种电站高温螺栓防护涂层及其制备方法

Also Published As

Publication number Publication date
CN107130222B (zh) 2019-07-02

Similar Documents

Publication Publication Date Title
CN107130222B (zh) 高功率脉冲磁控溅射CrAlSiN纳米复合涂层及其制备方法
CN106893986B (zh) 一种高硬度AlCrN纳米复合涂层及其制备工艺
CN109338300B (zh) 一种高熵合金氮化物涂层的高硬度材料及其制备方法
CN105908126B (zh) 一种高Al含量的AlTiN复合涂层及制备方法
JP2999346B2 (ja) 基体表面被覆方法及び被覆部材
CN105887012B (zh) 一种Zr-B-N纳米复合涂层制备工艺
CN106987816A (zh) 一种高铝含量超致密Al‑Cr‑Si‑N涂层制备工艺
CN104928638A (zh) 一种AlCrSiN基多层纳米复合刀具涂层及其制备方法
CN107916402B (zh) 一种AlCrTiSiCN涂层结构及其制备方法
CN111647851B (zh) 兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法
CN107858647A (zh) 一种Al含量呈梯度变化的CrAlSiN纳米复合涂层及其制备方法
CN110453190B (zh) 一种AlCrSiN/Mo自润滑薄膜的复合磁控溅射制备方法
CN107267916A (zh) 一种在硬质合金表面通过直流磁控溅射沉积w‑n硬质膜的方法
CN108677144A (zh) 一种制备铝氮共掺类金刚石复合薄膜的方法
CN110004409A (zh) 具有高硬度和高结合力的CrAlN纳米梯度涂层及其制备工艺
CN109402590A (zh) 一种磁控溅射制备高熵合金涂层的方法
CN103212729A (zh) 一种具有CrAlTiN超晶格涂层的数控刀具及其制备方法
CN111155064A (zh) 高功率脉冲磁控溅射制备TiAlSiN复合涂层的方法
JP5555835B2 (ja) 耐摩耗性にすぐれたターニング加工用表面被覆切削工具およびその製造方法
CN110670038A (zh) 具有自润滑和耐磨性能的AlCrN/MoS2纳米复合薄膜及其制备方法
CN108977775A (zh) 一种TiAlSiN涂层刀具制备工艺
CN105463391B (zh) 一种纳米晶ZrB2超硬涂层及制备方法
CN106893991B (zh) 一种Zr-B-O-N纳米复合涂层制备工艺
CN106868450A (zh) 一种利用调制高功率脉冲磁控溅射制备AlTiN硬质涂层的方法
CN112501553B (zh) 一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant