CN110241387A - 一种基于HIPIMS技术的CrAlN涂层制备方法 - Google Patents

一种基于HIPIMS技术的CrAlN涂层制备方法 Download PDF

Info

Publication number
CN110241387A
CN110241387A CN201910663304.9A CN201910663304A CN110241387A CN 110241387 A CN110241387 A CN 110241387A CN 201910663304 A CN201910663304 A CN 201910663304A CN 110241387 A CN110241387 A CN 110241387A
Authority
CN
China
Prior art keywords
coating
craln
arc
craln coating
bipolar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910663304.9A
Other languages
English (en)
Inventor
唐坤
王广欣
朱宇杰
孙浩亮
海茵茨罗尔夫斯托克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Science and Technology
Original Assignee
Henan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Science and Technology filed Critical Henan University of Science and Technology
Priority to CN201910663304.9A priority Critical patent/CN110241387A/zh
Publication of CN110241387A publication Critical patent/CN110241387A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种基于HIPIMS技术的CrAlN涂层的制备方法,本发明采用高功率脉冲磁控溅射技术(High Power Impulse Magnetron Sputtering,HIPIMS),使用高能脉冲靶(High pulse power cathode)和双极脉冲靶(Bipolar pulsed sputtering cathodes)共溅射的方式,沉积(H+B)CrAlN涂层;同时采用第四代电弧离子镀技术(ARC evaporators)沉积ARC CrAlN涂层。通过划痕试验、X射线衍射、微观形貌观察、电化学腐蚀测试等分析涂层各方面的性能后发现,共溅射制备的(H+B)CrAlN涂层膜基结合力更强,临界载荷最高可达到62.4N;其表面晶粒更细小,缺陷少,断面组织致密;同时(H+B)方法制备的CrAlN涂层高温抗氧化性最佳;在涂层耐腐蚀性能方面共溅射制备的涂层比电弧离子镀制备的涂层更耐蚀。

Description

一种基于HIPIMS技术的CrAlN涂层制备方法
技术领域
本发明属于涂层材料技术领域,具体涉及一种基于HIPIMS技术的CrAlN涂层制备方法。
背景技术
21世纪以来,高性能材料及难加工材料应用越来越广泛,对加工这些材料使用的工具要求也越来越高,刀具、模具及各种机械零部件产品的质量和性能的提升逐渐成了机械加工行业关注的热点。提升刀具、模具性能较为经济有效的手段是对其表面改性。硬质合金涂层材料发展历程方面,研究热点从上世纪80年代TiN、90年代TiAlN、21世纪初CrN涂层,发展到近年来的CrAlN涂层。2006年Balzers公司推出了一种CrAlN系列涂层刀具拥有优异的综合性能,该涂层的实用范围很广,而且在中低转速时该涂层的加工效率和寿命明显优于目前大量使用的TiAlN系列涂层。但该涂层技术方案仍是商业秘密。
CrAlN涂层会形成亚稳态的三元固溶体CrAlN,它在硬度、韧性和抗氧化性等方面均有显著提高,在较高的服役温度下,表现出了良好的抗氧化与耐腐蚀性能。
硬质合金涂层制备方法上,HIPIMS技术近年来发展起来,目前成为研究的热点。国际上以瑞典Kouznetsov等人为首开辟了HIPIMS技术的先河。近年来Bobzin等采用HIPIMS技术沉积TiAlSiN纳米复合涂层,将涂层刀具切削寿命提高了近一倍,Hovsepian等将HIPIMS技术和传统直流磁控溅射技术相结合,共溅射沉积CrAlYN/CrN纳米超晶格涂层,得到的涂层组织致密,大大改善了涂层的结合力;国内多采用传统的多弧离子镀和直流磁控溅射方法沉积硬质合金薄膜,但膜基之间结合力较差,涂层易剥落失效,电弧离子镀技术有高金属离化率和强膜基结合力的优点,但是在沉积过程中容易产生的大量宏观颗粒堆积,造成涂层表面粗糙,且涂层的内应力高。国内对HIPIMS技术的研究集中出现在2010年之后,并且侧重于HIPIMS理论基础性研究,对于涂层结构、工艺的讨论较少。
发明内容
本发明为解决上述问题,提供一种基于HIPIMS技术的CrAlN涂层的制备方法,采用高能脉冲靶(High pulse power cathode)和双极脉冲靶(Bipolar pulsed sputteringcathodes)共溅射的方法,旨在提高涂层的膜基结合力、硬度和表面致密度,为产业化提供参考,具体步骤为:
步骤S1:将高速钢基片表面处理干净;
步骤S2:镀膜过程在有效镀膜空间为φ600mm×600mm的立圆柱体真空室内进行,真空室内配备第四代电弧离化源阴极电弧系统,双极脉冲电源系统Bipolar 4020以及高能脉冲磁控电源Highpulse 4002,CrAlN涂层采用合金CrAl靶;
步骤S3:将高速钢基片装夹在转速为2pm的转架上,开始沉积前本底真空为5×10-4Pa,沉积温度为400℃;真空室内通入纯Ar控制在2Pa的气氛环境下,在-1000V偏压条件下轰击10min;
步骤S4:以一层合金金属层以及一层陶瓷层相互叠加的方式沉积,每一层沉积时间控制为10min,共沉积10层;电弧离子镀靶电流为120A,基体偏压为-40V,沉积合金金属层时不通入氮气,陶瓷层沉积时氮气流量为700sccm;磁控溅射沉积Bipolar靶溅射功率为8kW,Highpulse靶溅射功率为8kW,基体偏压为-60V,陶瓷层沉积时氮气流量为100sccm;
进一步的,所述高速钢基片规格为φ30mm×4mm,基片平均硬度在63HRC。
进一步的,所述高速钢基片表面先进行镜面抛光处理,在丙酮溶液和工业用无水乙醇试剂超声清洗,并在干燥箱内烘干。
进一步的,所述真空室内配备第四代电弧离化源阴极电弧系统数量为6套,双极脉冲电源系统Bipolar 4020以及高能脉冲磁控电源Highpulse 4002各一套。
进一步的,所述合金CrAl靶的纯度为99.95%,Cr和Al两种元素原子比为3∶7。
本发明采用高功率脉冲磁控溅射技术(High Power Impulse MagnetronSputtering,HIPIMS),使用高能脉冲靶(High pulse power cathode)和双极脉冲靶(Bipolar pulsed sputtering cathodes)共溅射的方式,沉积(H+B)CrAlN涂层;同时采用第四代电弧离子镀技术(ARC evaporators)沉积ARC CrAlN涂层。通过划痕试验、X射线衍射、微观形貌观察、电化学腐蚀测试等分析涂层各方面的性能后发现,共溅射制备的(H+B)CrAlN涂层膜基结合力更强,临界载荷最高可达到62.4N;其表面晶粒更细小,缺陷少,断面组织致密;同时(H+B)方法制备的CrAlN涂层高温抗氧化性最佳;在涂层耐腐蚀性能方面共溅射制备的涂层比电弧离子镀制备的涂层更耐蚀。
附图说明
图1为CrAIN涂层球磨仪球坑图片;
图2为CrAIN涂层划痕轨迹图与划痕参数曲线图;
图3为沉积态CrAIN涂层表面微观组织照片;
图4为沉积态CrAIN涂层断面微观组织照片;
图5为氧化处理后CrAIN涂层微观组织;
具体实施方式
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例1
本实施例的基于HIPIMS技术的CrAlN涂层的制备方法,包括下列步骤:
步骤S1:将高速钢基片表面处理干净;
步骤S2:镀膜过程在有效镀膜空间为φ600mm×600mm的立圆柱体真空室内进行,真空室内配备第四代电弧离化源阴极电弧系统,双极脉冲电源系统Bipolar 4020以及高能脉冲磁控电源Highpulse 4002,CrAlN涂层采用合金CrAl靶;
步骤S3:将高速钢基片装夹在转速为2pm的转架上,开始沉积前本底真空为5×10-4Pa,沉积温度为400℃;真空室内通入纯Ar控制在2Pa的气氛环境下,在-1000V偏压条件下轰击10min;
步骤S4:以一层合金金属层以及一层陶瓷层相互叠加的方式沉积,每一层沉积时间控制为10min,共沉积10层;电弧离子镀靶电流为120A,基体偏压为-40V,沉积合金金属层时不通入氮气,陶瓷层沉积时氮气流量为700sccm;磁控溅射沉积Bipolar靶溅射功率为8kW,Highpulse靶溅射功率为8kW,基体偏压为-60V,陶瓷层沉积时氮气流量为100sccm;
进一步的,所述高速钢基片规格为φ30mm×4mm,基片平均硬度在63HRC。
进一步的,所述高速钢基片表面先进行镜面抛光处理,在丙酮溶液和工业用无水乙醇试剂超声清洗,并在干燥箱内烘干。
进一步的,所述真空室内配备第四代电弧离化源阴极电弧系统数量为6套,双极脉冲电源系统Bipolar 4020以及高能脉冲磁控电源Highpulse 4002各一套。
进一步的,所述合金CrAl靶的纯度为99.95%,Cr和Al两种元素原子比为3∶7。
多层涂层形貌用球坑仪进行表征,试样在金刚石研磨液中磨蚀1-2min,如图1所示,多层涂层相互叠加的花样可以在显微镜下清晰观察。
采用兰州华汇MFT-4000多功能材料表面性能试验仪检测CrAlN涂层的结合力,划痕仪压头为圆锥形半径为0.2mm、锥角为120°金刚石,涂层结合力测试的主要参数设置载荷加载速度为80N/m,终止载荷为80N,涂层表面划痕长度设置为10mm,测试结果如图2所示。图中基线上下波动的曲线为声发射信号曲线,基线上方的趋势线为摩擦系数曲线。摩擦系数曲线的突变区间表明金刚石压头从涂层划破到基体,摩擦系数发生改变,同时声发射信号会在涂层被划破或者剥落时陡然增强,此时的加载力为薄膜-基体界面附着失效的临界载荷Lc。当薄膜-基体界面粘附能W较大时,临界载荷Lc较大,由此可直接通过临界载荷大小来定量判定涂层附着力的强弱。如图在ARC CrAlN临界载荷39.2N,(H+B)CrAlN临界载荷62.4N。采用(H+B)方式沉积得到的涂层具有更好的膜基结合力。
用场发射扫描电镜(JSM-7800F)分别观察热处理前后涂层的表面形貌和截面特征,用能谱仪对涂层表面成分进行测定。图3为CrAlN涂层在扫描电镜下观察到的表面微观形貌。在基体偏压为-40V,Ar/N2比为1:14的条件下,沉积CrAlN涂层时,阴极电弧离化源产生的电弧弧斑引起的液滴尺寸变大、数量变多,表面出现大颗粒密集堆积。在基体偏压为-60V,Ar/N2比为2:1的条件下,(H+B)CrAlN涂层表面虽然有少量针孔出现,但整体涂层表面平整。表明(H+B)方法沉积得到的涂层表面质量得到明显改善。断面图观察到多层涂层花样一层一层分布十分明显,图4为CrAlN断面,可以看出虽然两者柱状晶都被紧紧压在一起,但(H+B)CrAlN涂层组织更加细小。
用管式退火炉对涂层进行氧化处理,在通空气环境下5℃/min的升温速度升至800℃温度后保温2h并随炉冷却至室温。将CrAlN涂层在空气中,温度在800℃的条件下氧化2h。图5中ARC CrAlN涂层表面轻微氧化,熔滴氧化相对比较严重,微观尺度上涂层本身表面大颗粒堆积严重,氧化后形成的氧化物球继续在大颗粒周围堆积,而(H+B)CrAlN涂层表面稀疏地散布了些白色的氧化物颗粒,表面被氧化的晶粒较少,(H+B)CrAlN涂层在800℃抗氧化的能力较优,提高涂层结构的致密度有利于提高涂层的抗氧化性。
选用上海辰华CHI660C电化学工作站,在3.5mass%的NaCl溶液中对涂层进行电化学腐蚀测试,涂层裸露面积为1cm2,辅助电极为石墨片,参比电极为饱和甘汞电极(SCE),测试极化曲线扫描速率为8mV/s,扫描范围为-0.6~-0.2V。室温下在3.5%NaCl的溶液中探究四种涂层的耐蚀性能,测试开路电位下的相关腐蚀数据见表1。ARC CrAlN涂层的腐蚀电位最负,涂层腐蚀电位差异表明这两种涂层在氯化钠溶液中的表面活性不同。而ARC CrAlN涂层腐蚀电流密度(J0)比(H+B)CrAlN涂层大数个数量级,相应腐蚀电阻(Rp)最小,表明在3.5%的NaCl溶液中ARC CrAlN涂层比(H+B)CrAlN容易腐蚀,ARC CrAlN涂层表面粗糙,组织疏松,表面大颗粒密度高,在Cl离子强电离作用下,蚀孔更容易在这些缺陷处形成,并垂直涂层表面不断向内部发展。
表1
高功率脉冲磁控靶和双极脉冲靶共溅射涂层CrAlN,膜基结合力更加优良,结合力最高达到62.4N;高功率脉冲磁控靶和双极脉冲靶共溅射涂层表面质量明显改善,组织结构更加致密;改善涂层表面质量有利于提高其抗氧化能力,共溅射得到的CrAlN涂层抗氧化能力较优,且800℃下(H+B)CrAlN抗氧化性优于ARC CrAlN;提高涂层表面质量有利于提高涂层耐腐蚀性能,共溅射得到的涂层耐蚀性优于电弧离子镀得到的涂层组织。
以上实施例描述了本发明的主要特征及优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。

Claims (5)

1.一种基于HIPIMS技术的CrAlN涂层制备方法,其特征在于,具体步骤为:
步骤S1:将高速钢基片表面处理干净;
步骤S2:镀膜过程在有效镀膜空间为φ600mm×600mm的立圆柱体真空室内进行,真空室内配备第四代电弧离化源阴极电弧系统,双极脉冲电源系统Bipolar 4020以及高能脉冲磁控电源Highpulse 4002,CrAlN涂层采用合金CrAl靶;
步骤S3:将高速钢基片装夹在转速为2pm的转架上,开始沉积前本底真空为5×10-4Pa,沉积温度为400℃;真空室内通入纯Ar控制在2Pa的气氛环境下,在-1000V偏压条件下轰击10min;
步骤S4:以一层合金金属层以及一层陶瓷层相互叠加的方式沉积,每一层沉积时间控制为10min,共沉积10层;电弧离子镀靶电流为120A,基体偏压为-40V,沉积合金金属层时不通入氮气,陶瓷层沉积时氮气流量为700sccm;磁控溅射沉积Bipolar靶溅射功率为8kW,Highpulse靶溅射功率为8kW,基体偏压为-60V,陶瓷层沉积时氮气流量为100sccm。
2.根据权利要求1所述的一种基于HIPIMS技术的CrAlN涂层制备方法,其特征在于:所述高速钢基片规格为φ30mm×4mm,基片平均硬度在63HRC。
3.根据权利要求1所述的一种基于HIPIMS技术的CrAlN涂层制备方法,其特征在于:所述高速钢基片表面先进行镜面抛光处理,在丙酮溶液和工业用无水乙醇试剂超声清洗,并在干燥箱内烘干。
4.根据权利要求1所述的一种基于HIPIMS技术的CrAlN涂层制备方法,其特征在于:所述真空室内配备第四代电弧离化源阴极电弧系统数量为6套,双极脉冲电源系统Bipolar4020以及高能脉冲磁控电源Highpulse 4002各一套。
5.根据权利要求1所述的一种基于HIPIMS技术的CrAlN涂层制备方法,其特征在于:所述合金CrAl靶的纯度为99.95%,Cr和Al两种元素原子比为3∶7。
CN201910663304.9A 2019-07-22 2019-07-22 一种基于HIPIMS技术的CrAlN涂层制备方法 Pending CN110241387A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910663304.9A CN110241387A (zh) 2019-07-22 2019-07-22 一种基于HIPIMS技术的CrAlN涂层制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910663304.9A CN110241387A (zh) 2019-07-22 2019-07-22 一种基于HIPIMS技术的CrAlN涂层制备方法

Publications (1)

Publication Number Publication Date
CN110241387A true CN110241387A (zh) 2019-09-17

Family

ID=67893178

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910663304.9A Pending CN110241387A (zh) 2019-07-22 2019-07-22 一种基于HIPIMS技术的CrAlN涂层制备方法

Country Status (1)

Country Link
CN (1) CN110241387A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110965035A (zh) * 2019-11-25 2020-04-07 中国科学院宁波材料技术与工程研究所 一种事故容错锆包壳管防护涂层及其制备方法与应用
CN112239855A (zh) * 2020-10-30 2021-01-19 贵州大学 一种无基体偏压下获得的刚玉和立方结构三氧化二铝铬混合相涂层及其制备方法
RU2768092C1 (ru) * 2021-11-23 2022-03-23 федеральное государственное автономное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Способ получения коррозионностойкого покрытия
RU2768053C1 (ru) * 2021-11-24 2022-03-23 федеральное государственное автономное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Способ получения коррозионностойкого покрытия

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107130222A (zh) * 2017-06-30 2017-09-05 天津职业技术师范大学 高功率脉冲磁控溅射CrAlSiN纳米复合涂层及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107130222A (zh) * 2017-06-30 2017-09-05 天津职业技术师范大学 高功率脉冲磁控溅射CrAlSiN纳米复合涂层及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
朱宇杰 等: ""HIPIMS技术制备CrN及CrAlN涂层的性能"", 《材料热处理学报》 *
郭玉垚 等: ""高功率脉冲和脉冲直流磁控共溅射CrAlN薄膜的研究"", 《表面技术》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110965035A (zh) * 2019-11-25 2020-04-07 中国科学院宁波材料技术与工程研究所 一种事故容错锆包壳管防护涂层及其制备方法与应用
CN112239855A (zh) * 2020-10-30 2021-01-19 贵州大学 一种无基体偏压下获得的刚玉和立方结构三氧化二铝铬混合相涂层及其制备方法
CN112239855B (zh) * 2020-10-30 2023-02-14 贵州大学 一种无基体偏压下获得的刚玉和立方结构三氧化二铝铬混合相涂层及其制备方法
RU2768092C1 (ru) * 2021-11-23 2022-03-23 федеральное государственное автономное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Способ получения коррозионностойкого покрытия
RU2768053C1 (ru) * 2021-11-24 2022-03-23 федеральное государственное автономное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Способ получения коррозионностойкого покрытия

Similar Documents

Publication Publication Date Title
CN110241387A (zh) 一种基于HIPIMS技术的CrAlN涂层制备方法
CN108220880B (zh) 一种高硬度高耐蚀性高熵合金氮化物涂层及其制备方法
CN106086806B (zh) 一种AlTiCrN高温耐磨涂层及其制备方法
CN108823526B (zh) 一种纳米多层复合超硬刀具涂层及其制备方法
Cai et al. Effects of multi-layer structure on microstructure, wear and erosion performance of the Cr/CrN films on Ti alloy substrate
Kang et al. A significant improvement of the wear resistance of Ti6Al4V alloy by a combined method of magnetron sputtering and plasma electrolytic oxidation (PEO)
CN109402564A (zh) 一种AlCrSiN和AlCrSiON双层纳米复合涂层及其制备方法
Zhou et al. AlTiCrN coatings deposited by hybrid HIPIMS/DC magnetron co-sputtering
CN109881148A (zh) 一种单相固溶体结构的AlCrTiSiN高熵合金氮化物涂层及其制备方法和应用
Chen et al. Influence of vacuum annealing on structures and properties of AlTiSiN coatings with corrosion resistance
Liu et al. Structure and mechanical properties of multi-principal-element (AlCrNbSiTi) N hard coating
CN109735799A (zh) 一种切削刀具表面多层梯度高温耐磨涂层及其制备方法
CN108977781A (zh) 一种硬质合金表面磁控溅射复合技术沉积w-n硬质膜的方法
Wu et al. Wear behavior of AlCrSiVN coatings at elevated temperature up to 700° C
Gorokhovsky et al. Characterization of large area filtered arc deposition technology: part II—coating properties and applications
Hong et al. Influence of annealing temperature on microstructure evolution of TiAlSiN coating and its tribological behavior against Ti6Al4V alloys
CN103938157B (zh) 一种ZrNbAlN超晶格涂层及制备方法
CN107354442B (zh) 一种基体表面硬且韧的减磨防护涂层及其制备方法
Li et al. Microstructure and tribological properties of multilayered ZrCrW (C) N coatings fabricated by cathodic vacuum-arc deposition
CN109930108A (zh) 一种高温耐磨自润滑TiB2基涂层及其制备方法和应用
CN111647856B (zh) 一种AlCrTiSiN/AlCrTiSiON多层复合涂层的制备工艺
Liu et al. Effects of duty cycle on microstructure and mechanical properties of (AlCrNbSiTi) N high-entropy nitride hard coatings deposited by pulsed arc ion plating
CN108179393A (zh) 一种CrAlSiCON纳米复合涂层及其制备方法
Wu et al. Surface characteristics of electroless and sputtered Ni–P–W alloy coatings
CN103628032A (zh) 一种在导电基体材料上制备纳米氮化钛层的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190917

WD01 Invention patent application deemed withdrawn after publication