CN106987816A - 一种高铝含量超致密Al‑Cr‑Si‑N涂层制备工艺 - Google Patents

一种高铝含量超致密Al‑Cr‑Si‑N涂层制备工艺 Download PDF

Info

Publication number
CN106987816A
CN106987816A CN201710218848.5A CN201710218848A CN106987816A CN 106987816 A CN106987816 A CN 106987816A CN 201710218848 A CN201710218848 A CN 201710218848A CN 106987816 A CN106987816 A CN 106987816A
Authority
CN
China
Prior art keywords
coatings
coating
close
depositing
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710218848.5A
Other languages
English (en)
Other versions
CN106987816B (zh
Inventor
王铁钢
李柏松
刘艳梅
戚厚军
阎兵
范其香
李彤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology
Original Assignee
Tianjin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology filed Critical Tianjin University of Technology
Priority to CN201710218848.5A priority Critical patent/CN106987816B/zh
Publication of CN106987816A publication Critical patent/CN106987816A/zh
Application granted granted Critical
Publication of CN106987816B publication Critical patent/CN106987816B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/347Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with layers adapted for cutting tools or wear applications

Abstract

本发明涉及纳米复合涂层及其制备技术,具体地说是一种高铝含量超致密Al‑Cr‑Si‑N纳米复合涂层的制备工艺,采用高功率脉冲磁控溅射技术在金属或合金基体上沉积Al‑Cr‑Si‑N纳米复合涂层。靶材选用Al‑Cr‑Si合金靶(原子比Al:Cr:Si=6:3:1,纯度为99.8 wt.%,尺寸为300×100×5 mm),镀膜前先通入Ar,在‑800 V偏压下起辉高功率脉冲磁控溅射Al‑Cr‑Si靶,对基体表面进行轰击清洗。然后降低偏压至‑30 V,沉积Al‑Cr‑Si过渡层,最后再通入反应气体N2,开始沉积Al‑Cr‑Si‑N涂层。本发明涉及的高铝含量超致密Al‑Cr‑Si‑N纳米复合涂层制备工艺简单,重复性好,并且容易工业化生产;制备出的Al‑Cr‑Si‑N涂层硬度高、韧性好、内应力低、耐磨性能优异,且涂层组织结构极为致密、与基体结合牢固,抗高温氧化能力强。

Description

一种高铝含量超致密Al-Cr-Si-N涂层制备工艺
技术领域
本发明涉及涂层制备技术,具体地说是一种高铝含量超致密Al-Cr-Si-N纳米复合涂层的制备工艺。
背景技术
随着现代工业的迅速发展,高效率、高精度、高柔性和绿色化已成为当代先进制造业的重要发展方向,高速切削加工作为先进制造技术的一个重要分支,必将成为21世纪切削技术的主流。高速切削、硬切削和干切削工艺的出现,对金属切削刀具如丝锥、麻花钻、齿轮刀具、拉刀、小直径铣刀等提出了越来越高的要求,传统刀具普遍存在耐磨性差,抗高温氧化性差,寿命短等缺点,不适用于越来越恶劣地现代切削加工环境,而涂层技术是解决这一难题的有效方法。刀具涂层的使役环境非常苛刻和复杂,涂层表面要承受900-1000 ℃以上的高温和超过1 GPa的应力载荷,故涂层的设计要从整体综合考虑其结合强度、硬度、韧性、热稳定性和化学稳定性、摩擦系数、导热和热膨胀系数等。CrN涂层因具有较高的硬度、优良的耐磨性、低的摩擦系数和残余应力以及耐蚀性等许多优点而引起人们的重视,但CrN的抗氧化温度最高仅有650 ℃,尚不能满足高速切削和干切削对涂层高热稳定性的要求。研究表明,在CrN中加入铝元素形成亚稳态三元固溶体,能获得比CrN涂层更好的耐磨性、更高的硬度以及更优良的机械加工性能,尤其是热稳定性可得到很大提高,抗氧化温度高达到900 ℃。涂层含Al元素较多时,由于Al元素与氧具有极强的亲和力,在涂层表面生成致密的氧化铝,阻挡涂层的进一步氧化,从而显著提升涂层的抗高温氧化能力。CrAlN在硬度、韧性、和抗氧化性能方面均有显著提高。而Si元素的加入由于形成纳米复合结构,可改变涂层内应力、细化晶粒、改善涂层的摩擦学性能。常温摩擦时生成润滑化合物Si(OH)4摩擦系数很低。高温摩擦时由于缺少Si(OH)4,摩擦系数显著提高,但是磨损率较低,呈现高摩擦低磨损现象。
纳米复合结构涂层是由孤立的纳米晶(如nc-TiN)镶嵌在很薄的非晶层(如a-Si3N4)中形成的一种复合结构涂层,纳米晶硬度较高,非晶相塑性好,两相界面内聚能高,晶体相和非晶相在热力学上呈分离趋势;另外,细小的纳米晶内无法形成位错,晶粒间的薄非晶层能有效阻挡晶界滑移,大量的两相界面增加了微裂纹扩展阻力。因此,这种刀具涂层具有高硬度(>40 GPa)、高韧性、优异的耐磨性能和高温热稳定性,适合用于高速切削、干加工等工况。Al-Cr-Si-N涂层由纳米晶nc-(Al,Cr)N和非晶Si3N4相组成,纳米晶粒弥散分布于非晶层中,具有典型的纳米复合结构,涂层具有较高的硬度、强度和韧性。
为研制结构更加致密、高硬度、高抗氧化能力的纳米复合涂层,本发明采用高功率脉冲磁控溅射技术沉积纳米复合Al-Cr-Si-N涂层。高功率脉冲磁控溅射技术利用较高的脉冲峰值功率(超出传统磁控溅射2 ~ 3个数量级)和较低的脉冲占空比(0.5 % ~ 10 %)来实现高金属离化率,这样在偏压电场的作用下,带电粒子会加速轰击基体表面起到清洗作用,同时也为保障涂层硬度提供了大量的金属Cr离子。基体表面经高能离子轰击后, 产生清洁的活化界面并促进局部表面的外延生长, 增强涂层的粘附性能。利用高功率脉冲磁控溅射技术在金属或合金基体上沉积高铝含量纳米复合Al-Cr-Si-N涂层,在保证涂层硬度的前提下,可进一步改善其耐热能力。
发明内容
本发明的目的在于提供一种具有高硬度、高韧性、良好的耐磨性能和抗高温氧化能的高铝含量超致密Al-Cr-Si-N涂层及其制备工艺。
本发明的技术方案为:
采用高功率脉冲磁控溅射技术在金属或合金基体上沉积高铝含量纳米复合Al-Cr-Si-N涂层,为提高涂层与基体间的结合强度,在沉积Al-Cr-Si-N涂层之前,先在高偏压下,利用高功率脉冲磁控溅射技术轰击清洗基体,之后沉积约200 nm厚Al-Cr-Si过渡层,用以缓冲内应力、提高涂层/基体结合强度。通过添加适量N元素形成纳米复合结构来改善涂层的韧性和耐磨性能,选用高铝含量的Al-Cr-Si合金靶来保证涂层内的铝含量,在高温下铝易与氧反应形成致密的氧化膜,可阻挡外界氧向涂层内扩散,从而提高涂层的抗高温氧化能力。镀膜时严格控制反应气体N2流量和高功率靶的电源功率,以制备出结构致密、高硬度、高韧性、高耐热能力的纳米复合涂层。
沉积参数:
先将真空室真空抽至2.0×10-3 Pa,然后在真空室内通入氩气炼靶,除去Al-Cr-Si合金靶表面氧化膜,工作压强保持在0.6 Pa,不加偏压,开启靶前挡板,高功率脉冲平均输出功率设置为0.8 kW,炼靶20分钟,关闭高功率脉冲电源;然后在真空室内增加氩气流量,对基材表面进行辉光放电清洗,工作压强保持在1.5 Pa,加-800 V偏压,清洗时间10 min;之后开启高功率脉冲磁控溅射电源,平均输出功率为0.8 kW,工作压强0.6 Pa,靶电流约1.8A,电压600 V,脉宽160 μs,频率180 Hz,轰击清洗5 min;之后依次降低偏压至-600 、-400、-200 V,各轰击2 min,再将偏压降至-30 V,开始沉积Al-Cr-Si过渡层30 min,基材与Al-Cr-Si靶面距离保持在100 mm,沉积温度300 ℃;随后通入反应气体N2(纯度99.999%),保持氮氩气流量比N2/Ar =1:2,沉积温度300 ℃,利用喉阀将工作压力调至6.0×10-1 Pa,开始沉积Al-Cr-Si-N涂层,沉积时间根据使用要求确定。
该高铝含量超致密纳米复合Al-Cr-Si-N涂层可应用于各种金属及合金基体;也可应用于硬质合金刀具表面。
本发明的优点如下:
1.本发明研制的高铝含量超致密Al-Cr-Si-N纳米复合涂层具有良好的抗氧化能力,在高温下铝易与氧反应形成致密的氧化膜,可阻挡外界氧向涂层内扩散。
2.本发明研制的高铝含量超致密Al-Cr-Si-N纳米复合涂层化学性能稳定,不与常见的化学腐蚀介质反应。
3.本发明研制的高铝含量超致密Al-Cr-Si-N纳米复合涂层具有较高的硬度和韧性,以及良好的耐磨性能。
4.本发明研制的高铝含量超致密Al-Cr-Si-N纳米复合涂层厚度均匀,结构极为致密,与基体结合牢固。
5.本发明研制的高铝含量超致密Al-Cr-Si-N纳米复合涂层内应力较低,抗冲击载荷能力强。
6.本发明研制的高铝含量超致密Al-Cr-Si-N纳米复合涂层采用高功率脉冲磁控溅射技术制备,工艺重复性好,应用范围广,实用性强,适用于耐磨零部件表面和各种切削刀具表面。
附图说明
图1为高功率脉冲磁控溅射系统示意图。
图2为单晶Si片((100)取向)上沉积Al-Cr-Si-N涂层的断面形貌。
图3为单晶Si片((100)取向)上沉积Al-Cr-Si-N涂层的表面形貌。
图4为单晶Si片((100)取向)上沉积Al-Cr-Si-N涂层的X射线衍射谱。
图5为不锈钢基体上沉积Al-Cr-Si-N涂层划痕测试后的形貌。
图6为不锈钢基体上沉积Al-Cr-Si-N涂层的摩擦系数测试曲线。
具体实施方式
下面通过实例对本发明作进一步详细说明。
实施例1
本实施例为在已镜面抛光的单晶Si片((100)取向)上沉积高铝含量Al-Cr-Si-N涂层,试样尺寸为40×30×0.67 mm。基片先分别在脱脂剂和酒精溶液中各超声清洗20分钟,然后用高纯氮气吹干,再正对靶材放置于真空室内试样架上。镀膜过程在V-TECH HIPIMS 610/610型高功率脉冲磁控溅射镀膜机上进行,阴极高功率靶材选用Al-Cr-Si合金靶(原子比Al:Cr:Si=6:3:1,纯度为99.8 wt.%,尺寸为300×100×5 mm),工作气体和反应气体分别选用Ar和N2(纯度均为99.999%),图1为高功率脉冲磁控溅射系统示意图。通入氮气参与反应时,氮气走右侧混气罐,只有氩气通过左侧靶进入真空室,以增强高功率靶附近等离子体、减轻靶中毒。
先将真空室真空抽至2.0×10-3 Pa,然后在真空室内通入氩气炼靶,除去Al-Cr-Si合金靶表面氧化膜,工作压强保持在0.6 Pa,不加偏压,开启靶前挡板,高功率脉冲平均输出功率设置为0.8 kW,炼靶20分钟,关闭高功率脉冲电源;然后在真空室内增加氩气流量,对基材表面进行辉光放电清洗,工作压强保持在1.5 Pa,加-800 V偏压,清洗时间10 min;之后开启高功率脉冲磁控溅射电源,平均输出功率为0.8 kW,工作压强0.6 Pa,靶电流约1.8 A,电压600 V,脉宽160 μs,频率180 Hz,轰击清洗5 min;之后依次降低偏压至-600 、-400、-200 V,各轰击2 min,再将偏压降至-30 V,开始沉积Al-Cr-Si过渡层30 min,基材与Al-Cr-Si靶面距离保持在100 mm,沉积温度300 ℃;随后通入反应气体N2(纯度99.999%),保持氮氩气流量比N2/Ar =1:2,沉积温度300 ℃,利用喉阀将工作压力调至6.0×10-1 Pa,开始沉积Al-Cr-Si-N涂层,沉积时间为180 min。
Al-Cr-Si-N涂层成分为:Al 53 at.%,Cr 19 at.%,Si 10 at.%,N 18 at.%。图2为Al-Cr-Si-N涂层的断面SEM形貌,可以看出采用本发明工艺制备的Al-Cr-Si过渡层厚度约200 nm,Al-Cr-Si-N涂层总厚度约2.1 μm。图3为Al-Cr-Si-N涂层放大三万倍后的表面形貌,涂层表面光滑致密,无大颗粒,一些纳米晶粒与晶界均匀分布于涂层表面。
实施例2
本实施例为在镜面抛光的AISI 304不锈钢基片(Cr-18.5,Ni-9.4,Mn-0.8,Si-0.4,P-0.1,Fe余量,均为重量百分比)上沉积Al-Cr-Si-N涂层,试样尺寸为30×25×1 mm。基片先经金相砂纸研磨、抛光后,再分别用丙酮和酒精溶液超声清洗,吹干后正对靶材放置于真空室内试样架上。沉积参数同实施例1。
利用纳米压痕技术测试沉积在不锈钢基体上Al-Cr-Si-N涂层的硬度,测量结果为~30 GPa。图4为Al-Cr-Si-N涂层的X射线衍射图谱,当衍射角2θ=44°时,涂层中氮化铝和氮化铬的 (200) 衍射峰重叠,由于Al原子固溶到NaCl结构的CrN晶格中,引起晶格畸变显著改善涂层的力学性能。涂层与基体的结合强度采用划痕法测试,金刚石划头的针尖半径为200 μm,以1 N/s的速率由0到100 N逐渐进行法向加载,划痕长度为15 mm,测试速度0.5mm/s。经5次测试,Al-Cr-Si-N涂层与基体的临界载荷平均值为63.7 N。图5为划痕测试后Al-Cr-Si-N涂层上的划痕形貌,从图中可以识别涂层完全从基体上剥离的位置,经能谱分析确认,灰色区域为残余的涂层,白色区域为不锈钢基体。图6为Al-Cr-Si-N涂层与直径为6mm的氧化铝陶瓷球对磨后的摩擦系数曲线,法向载荷为2 N,采用旋转式运动,速度为150rpm,滑行距离75.4 m,磨痕轨道半径为8 mm。其中,稳定摩擦阶段的平均摩擦系数为0.66,具有良好的耐磨性能。

Claims (4)

1.一种高铝含量超致密Al-Cr-Si-N纳米复合涂层的制备工艺,其特征在于:采用高功率脉冲磁控溅射技术在金属或合金基体上沉积Al-Cr-Si-N涂层。
2.按照权利要求1所述Al-Cr-Si-N涂层的制备工艺,其特征在于:先利用高功率脉冲磁控溅射技术溅射Al-Cr-Si靶,对基体表面进行轰击清洗,随后沉积Al-Cr-Si过渡层,再采用高功率脉冲磁控溅射技术在氮气气氛中反应沉积Al-Cr-Si-N涂层。
3.按照权利要求2所述Al-Cr-Si-N涂层的制备工艺,其特征在于:先将真空室真空抽至2.0×10-3 Pa,然后在真空室内通入氩气炼靶,除去Al-Cr-Si合金靶表面氧化膜,工作压强保持在0.6 Pa,不加偏压,开启靶前挡板,高功率脉冲平均输出功率设置为0.8 kW,炼靶20分钟,关闭高功率脉冲电源;然后在真空室内增加氩气流量,对基材表面进行辉光放电清洗,工作压强保持在1.5 Pa,加-800 V偏压,清洗时间10 min;之后开启高功率脉冲磁控溅射电源,平均输出功率为0.8 kW,工作压强0.6 Pa,靶电流约1.8 A,电压600 V,脉宽160 μs,频率180 Hz,轰击清洗5 min;之后依次降低偏压至-600 、-400、-200 V,各轰击2 min,再将偏压降至-30 V,开始沉积Al-Cr-Si过渡层30 min,基材与Al-Cr-Si靶面距离保持在100mm,沉积温度300 ℃;随后通入反应气体N2(纯度99.999%),保持氮氩气流量比N2/Ar =1:2,沉积温度300 ℃,利用喉阀将工作压力调至6.0×10-1 Pa,开始沉积Al-Cr-Si-N涂层,沉积时间根据使用要求确定。
4.按照权利要求1所述的Al-Cr-Si-N涂层的制备工艺,其特征在于:该高铝含量超致密Al-Cr-Si-N涂层可应用于各种金属及合金基体;也可应用于硬质合金刀具表面。
CN201710218848.5A 2017-04-06 2017-04-06 一种高铝含量超致密Al-Cr-Si-N涂层制备工艺 Active CN106987816B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710218848.5A CN106987816B (zh) 2017-04-06 2017-04-06 一种高铝含量超致密Al-Cr-Si-N涂层制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710218848.5A CN106987816B (zh) 2017-04-06 2017-04-06 一种高铝含量超致密Al-Cr-Si-N涂层制备工艺

Publications (2)

Publication Number Publication Date
CN106987816A true CN106987816A (zh) 2017-07-28
CN106987816B CN106987816B (zh) 2019-07-02

Family

ID=59415921

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710218848.5A Active CN106987816B (zh) 2017-04-06 2017-04-06 一种高铝含量超致密Al-Cr-Si-N涂层制备工艺

Country Status (1)

Country Link
CN (1) CN106987816B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107557736A (zh) * 2017-10-30 2018-01-09 广东工业大学 一种AlCrSiVN纳米复合涂层及其制备方法
CN107740054A (zh) * 2017-11-21 2018-02-27 天津职业技术师范大学 一种CrAlTiN涂层及其制备方法
CN107858647A (zh) * 2017-11-09 2018-03-30 天津职业技术师范大学 一种Al含量呈梯度变化的CrAlSiN纳米复合涂层及其制备方法
CN107916402A (zh) * 2017-11-21 2018-04-17 天津职业技术师范大学 一种AlCrTiSiCN涂层结构及其制备方法
CN108486537A (zh) * 2018-03-09 2018-09-04 中国科学院宁波材料技术与工程研究所 一种用于锆合金的非晶防护涂层及其制备方法和应用
CN109234694A (zh) * 2018-10-29 2019-01-18 中国科学院宁波材料技术与工程研究所 一种抗高温水蒸气腐蚀的纳米梯度复合多层涂层及其制备方法和应用
CN109406737A (zh) * 2018-12-21 2019-03-01 齐鲁师范学院 一种bn材料研究方法
CN110670038A (zh) * 2019-01-21 2020-01-10 天津职业技术师范大学(中国职业培训指导教师进修中心) 具有自润滑和耐磨性能的AlCrN/MoS2纳米复合薄膜及其制备方法
CN111471973A (zh) * 2020-06-15 2020-07-31 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种还原性气氛中制备Zr-B-N纳米复合涂层的工艺
CN111621752A (zh) * 2020-06-10 2020-09-04 天津职业技术师范大学(中国职业培训指导教师进修中心) AlCrSiN/AlCrN/AlCrON/AlCrN多层纳米复合涂层的制备工艺
CN111647851A (zh) * 2020-06-15 2020-09-11 天津职业技术师范大学(中国职业培训指导教师进修中心) 兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法
CN113728125A (zh) * 2019-05-08 2021-11-30 瓦尔特公开股份有限公司 涂覆的切削工具
CN114107905A (zh) * 2021-11-08 2022-03-01 广州今泰科技股份有限公司 一种抗冲击高硬度涂层和制备方法及应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110453190B (zh) * 2019-09-23 2021-06-15 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种AlCrSiN/Mo自润滑薄膜的复合磁控溅射制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008049454A (ja) * 2006-08-25 2008-03-06 Mitsubishi Materials Corp 硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具
CN101426947A (zh) * 2006-04-21 2009-05-06 塞美康股份公司 涂覆体
CN104195515A (zh) * 2014-08-22 2014-12-10 哈尔滨工业大学 一种高功率双极脉冲磁控溅射方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101426947A (zh) * 2006-04-21 2009-05-06 塞美康股份公司 涂覆体
JP2008049454A (ja) * 2006-08-25 2008-03-06 Mitsubishi Materials Corp 硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具
CN104195515A (zh) * 2014-08-22 2014-12-10 哈尔滨工业大学 一种高功率双极脉冲磁控溅射方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHIH-KANG TIEN ETAL: "Effect of nitrogen flow on the properties of quaternary CrAlSiNc oatings at elevated temperatures", 《SURFACE & COATINGS TECHNOLOGY》 *
傅龙生: "高功率脉冲磁控溅射CrN、AlCrN和AlCrSiN涂层的制备研究", 《中国优秀硕士学位论文全文数据库(电子期刊)》 *
白振中等: "《工程玻璃深加工技术手册》", 30 April 2014, 中国建材工业出版社 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107557736A (zh) * 2017-10-30 2018-01-09 广东工业大学 一种AlCrSiVN纳米复合涂层及其制备方法
CN107858647A (zh) * 2017-11-09 2018-03-30 天津职业技术师范大学 一种Al含量呈梯度变化的CrAlSiN纳米复合涂层及其制备方法
CN107858647B (zh) * 2017-11-09 2019-10-25 天津职业技术师范大学 一种Al含量呈梯度变化的CrAlSiN纳米复合涂层及其制备方法
CN107740054A (zh) * 2017-11-21 2018-02-27 天津职业技术师范大学 一种CrAlTiN涂层及其制备方法
CN107916402A (zh) * 2017-11-21 2018-04-17 天津职业技术师范大学 一种AlCrTiSiCN涂层结构及其制备方法
CN108486537B (zh) * 2018-03-09 2020-05-12 中国科学院宁波材料技术与工程研究所 一种用于锆合金的非晶防护涂层及其制备方法和应用
CN108486537A (zh) * 2018-03-09 2018-09-04 中国科学院宁波材料技术与工程研究所 一种用于锆合金的非晶防护涂层及其制备方法和应用
CN109234694A (zh) * 2018-10-29 2019-01-18 中国科学院宁波材料技术与工程研究所 一种抗高温水蒸气腐蚀的纳米梯度复合多层涂层及其制备方法和应用
CN109406737A (zh) * 2018-12-21 2019-03-01 齐鲁师范学院 一种bn材料研究方法
CN110670038A (zh) * 2019-01-21 2020-01-10 天津职业技术师范大学(中国职业培训指导教师进修中心) 具有自润滑和耐磨性能的AlCrN/MoS2纳米复合薄膜及其制备方法
CN113728125A (zh) * 2019-05-08 2021-11-30 瓦尔特公开股份有限公司 涂覆的切削工具
CN113728125B (zh) * 2019-05-08 2024-04-26 瓦尔特公开股份有限公司 涂覆的切削工具
CN111621752A (zh) * 2020-06-10 2020-09-04 天津职业技术师范大学(中国职业培训指导教师进修中心) AlCrSiN/AlCrN/AlCrON/AlCrN多层纳米复合涂层的制备工艺
CN111471973A (zh) * 2020-06-15 2020-07-31 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种还原性气氛中制备Zr-B-N纳米复合涂层的工艺
CN111647851A (zh) * 2020-06-15 2020-09-11 天津职业技术师范大学(中国职业培训指导教师进修中心) 兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法
CN111471973B (zh) * 2020-06-15 2022-07-19 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种还原性气氛中制备Zr-B-N纳米复合涂层的工艺
CN111647851B (zh) * 2020-06-15 2022-07-19 天津职业技术师范大学(中国职业培训指导教师进修中心) 兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法
CN114107905A (zh) * 2021-11-08 2022-03-01 广州今泰科技股份有限公司 一种抗冲击高硬度涂层和制备方法及应用

Also Published As

Publication number Publication date
CN106987816B (zh) 2019-07-02

Similar Documents

Publication Publication Date Title
CN106987816B (zh) 一种高铝含量超致密Al-Cr-Si-N涂层制备工艺
CN109161841B (zh) 一种AlCrN/AlCrSiN超硬纳米复合多层涂层及其制备方法和应用
CN105887012B (zh) 一种Zr-B-N纳米复合涂层制备工艺
JP4824173B2 (ja) Pvd被膜切削工具およびその製造方法
US20060292399A1 (en) Composite coating for finishing of hardened steels
WO2013099752A1 (ja) 硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具
CN107130222A (zh) 高功率脉冲磁控溅射CrAlSiN纳米复合涂层及其制备方法
CN104928638A (zh) 一种AlCrSiN基多层纳米复合刀具涂层及其制备方法
CN110453190B (zh) 一种AlCrSiN/Mo自润滑薄膜的复合磁控溅射制备方法
CN111647851B (zh) 兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法
CN107916402A (zh) 一种AlCrTiSiCN涂层结构及其制备方法
CN109402564A (zh) 一种AlCrSiN和AlCrSiON双层纳米复合涂层及其制备方法
CN110670038A (zh) 具有自润滑和耐磨性能的AlCrN/MoS2纳米复合薄膜及其制备方法
Chen et al. The effect of carbon doping on microstructure, mechanical properties, wear resistance and cutting performance of AlTiCN coating
Cao et al. Effect of bias voltage on microstructure, mechanical and tribological properties of TiAlN coatings
CN108559957B (zh) 一种具有pvd涂层的钛合金切削刀具材料及其制备方法
Hovorun et al. Improvement of the physical and mechanical properties of the cutting tool by applying wear-resistant coatings based on Ti, Al, Si, and N
Xiao et al. Microstructures and properties of PVD TiAlN coating deposited on cermets with different Ti (C, N) grain size
CN112501553A (zh) 一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法
JP2011194535A (ja) 硬質被覆層がすぐれた耐欠損性を発揮する表面被覆切削工具
CN111471973B (zh) 一种还原性气氛中制备Zr-B-N纳米复合涂层的工艺
CN111647859B (zh) 一种还原性气氛中Zr-Ti-B-N纳米复合涂层的制备工艺
CN111500990B (zh) 一种Zr-Ti-B-N纳米复合涂层及其制备方法
CN114000115A (zh) 一种Ti-B-N纳米复合涂层及其制备方法
Ding et al. Tribological behavior of TiAlN-coated TA19 alloy at elevated temperatures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant