CN112501553A - 一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法 - Google Patents

一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法 Download PDF

Info

Publication number
CN112501553A
CN112501553A CN202010999545.3A CN202010999545A CN112501553A CN 112501553 A CN112501553 A CN 112501553A CN 202010999545 A CN202010999545 A CN 202010999545A CN 112501553 A CN112501553 A CN 112501553A
Authority
CN
China
Prior art keywords
alcrsin
self
lubricating film
doped
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010999545.3A
Other languages
English (en)
Other versions
CN112501553B (zh
Inventor
王铁钢
蒙德强
刘艳梅
阎兵
许人仁
尹照星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology and Education China Vocational Training Instructor Training Center
Original Assignee
Tianjin University of Technology and Education China Vocational Training Instructor Training Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology and Education China Vocational Training Instructor Training Center filed Critical Tianjin University of Technology and Education China Vocational Training Instructor Training Center
Publication of CN112501553A publication Critical patent/CN112501553A/zh
Application granted granted Critical
Publication of CN112501553B publication Critical patent/CN112501553B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target

Abstract

本发明公开了一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法,属于薄膜及其制备技术领域。所述AlCrSiN/Mo自润滑薄膜是将Mo元素掺杂进AlCrSiN薄膜中制备而成,Mo元素的掺杂量为0.3~6.3at.%,该薄膜采用高功率脉冲磁控溅射和脉冲直流磁控溅射复合镀膜技术在基体上制备而成。所制备的AlCrSiN/Mo自润滑薄膜硬度高、韧性好,具备优良的减摩特性,可以显著降低刀‑屑间的摩擦,具有较好的化学稳定性及易剪切的润滑特性。

Description

一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法
技术领域
本发明涉及薄膜及其制备技术领域,具体涉及一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法。
背景技术
随着现代工业技术迅速发展,各种难加工材料日益增多,对刀具切削性能不断提出更高要求,将薄膜涂覆于刀具基体表面能有效地提高刀具寿命。高速切削、超硬切削及干式切削等新工艺的应用,使得传统薄膜已不能满足高温切削需求,急需研发具有自润滑功能的刀具涂层,以降低刀-屑间的摩擦、减少切削热、降低切削温度,从而提高刀具服役寿命和加工效率。
四元AlCrSiN纳米复合薄膜,其内部纳米晶nc-(Al,Cr)N被非晶相a-Si3N4所包裹,使其具有高硬度、高韧性及优良的热稳定性等优点,适用于切削刀具表面,但存在摩擦系数高、切削温度高等缺点,难以保证刀具寿命及工件表面质量。故本发明采用高功率脉冲磁控溅射与脉冲直流磁控溅射复合镀膜技术沉积AlCrSiN/Mo自润滑薄膜,赋予刀具更高硬度、良好的耐热能力和减摩耐磨性能,适用于现代高速干切削领域,进一步提高刀具使用寿命和加工效率。
发明内容
本发明的目的在于提供一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法,所制备的AlCrSiN/Mo自润滑薄膜硬度高、韧性好,具备优良的减摩特性,可以显著降低刀-屑间的摩擦,具有较好的化学稳定性及易剪切的润滑特性。
为实现上述目的,本发明所采用的技术方案如下:
一种Mo掺杂型AlCrSiN/Mo自润滑薄膜,通过将Mo元素掺杂进AlCrSiN薄膜中而获得,Mo元素的掺杂量为0.3~6.3at.%。按原子百分比计,所述AlCrSiN/Mo自润滑薄膜的化学组成如下:
Al 14.3~25.5at.%,Cr 14.3~36.2at.%,Si 1.6~3.4at.%,N 33.6~56.9at.%,Mo 0.3~6.3at.%。
所述AlCrSiN/Mo自润滑薄膜为多相复合结构,Mo元素掺杂进AlCrSiN薄膜中,Mo原子代替(Al,Cr)N晶格中的Al和/或Cr原子位形成置换固溶体,所述AlCrSiN/Mo自润滑薄膜由AlN、CrN及Mo2N等纳米晶粒镶嵌在非晶层中形成纳米复合结构。
所述AlCrSiN/Mo自润滑薄膜与基体之间为CrN过渡层,所述基体为不锈钢、单晶Si片、钨钢薄片或硬质合金基片,所述CrN过渡层厚度150~250nm,所述AlCrSiN/Mo自润滑薄膜厚度2.5~4.0μm。
所述Mo掺杂型AlCrSiN/Mo自润滑薄膜是采用高功率脉冲磁控溅射和脉冲直流磁控溅射复合镀膜技术制备,具体方法如下:
(1)先将基体固定于真空室内旋转架上,然后将真空室本底真空度抽至3.0×10- 3Pa以上,Cr靶连接电弧电源,CrMo靶连接高功率脉冲磁控溅射电源,AlCrSi靶连接脉冲直流磁控溅射电源;
(2)先对基体进行辉光放电清洗,去除表面杂质;然后再进行离子轰击清洗,以提高膜/基结合力;
(3)制备CrN过渡层;
(4)制备AlCrSiN/Mo自润滑薄膜:沉积完CrN过渡层,调节偏压至-50~-150V,再通入反应气体N2流量为50~150sccm,Ar流量为50~250sccm,N2和Ar总流量为300sccm,维持沉积压强在1.0~2.5Pa,控制CrMo靶溅射功率为0.1~0.9kW,AlCrSi靶溅射功率为0.2~1.5kW,沉积AlCrSiN/Mo自润滑薄膜。
上述步骤(1)中,所述基体固定在旋转架之前,先依次在丙酮和乙醇中超声清洗10~35min,然后用高纯氮气吹干。
上述步骤(2)中,所述辉光清洗的过程为:在-800V的偏压作用下,通入流量为50~200sccm的Ar,调节节流阀保持工作压强为0.5~1.5Pa,进行辉光放电清洗基体表面5~15min,去除表面杂质。
上述步骤(2)中,所述离子轰击的过程为:辉光放电清洗后,再开启电弧Cr靶进行离子轰击,设定弧源电流80~100A,弧源电压15V~25V,通入流量50~200sccm的Ar,保持工作压强为(5~10)×10-1Pa,轰击时间为5~10min。
上述步骤(3)中,进行离子轰击后维持电弧Cr靶参数不变,通入Ar流量40~60sccm,N2流量150~250sccm,保持工作压强为8×10-1Pa,沉积CrN过渡层10~20min。
上述步骤(4)中,沉积时间根据技术要求和薄膜沉积速率确定。
本发明设计机理如下:
本发明将第六副族Mo元素掺杂进AlCrSiN薄膜中,利用Mo原子代替(Al,Cr)N晶格中的Al或Cr原子位形成置换固溶体,由于原子半径不同会导致晶格畸变,通过增加晶界间位错运动阻力以实现晶界强化,提升薄膜性能。同时在摩擦过程中易生成具有自润滑功能的层状MoO3,能有效降低摩擦系数、减少切削热,起到良好的减摩作用。研究发现,Mo元素含量对薄膜的影响较大,当Mo含量过低时会导致润滑效果不明显;但含量过高Mo元素不能完全氮化反应,导致薄膜硬度下降。
本发明利用高功率脉冲磁控溅射技术瞬时电流密度高、离化率高、溅射离子能量高、占空比较低(<1%)等优点,可制备出结构致密、表面光滑、内应力可调的高质量薄膜;并结合脉冲直流磁控溅射技术沉积速率高、沉积温度低的优点,在SUS304不锈钢、单晶Si片、钨钢薄片或硬质合金表面制备AlCrSiN/Mo自润滑薄膜。制备过程中,通过严格控制反应气体流量、靶材溅射功率以及沉积压强等工艺参数,在保证薄膜硬度与韧性的前提下,实现减摩和提高薄膜耐磨性能。本工作利用纳米复合结构和固溶强化机制,实现AlCrSiN/Mo薄膜的性能优化,适用于干式切削、高速切削等现代加工领域,进一步提高刀具的使用寿命及加工效率。
本发明的优点和有益效果为:
(1)所述AlCrSiN/Mo薄膜由AlN、CrN及Mo2N等纳米晶粒镶嵌在非晶层中形成纳米复合结构,具有高硬度、高韧性、摩擦系数低、耐磨性能好等优点。
(2)本发明研制的AlCrSiN/Mo薄膜表面光滑、内部结构致密,与基体结合良好;薄膜的膜/基结合力大于150N,摩擦系数低于0.20,磨损率较低。
(3)本发明研制的AlCrSiN/Mo纳米复合薄膜具有良好热稳定性,可用于高速切削、干式切削等加工领域。
(4)本发明研制的AlCrSiN/Mo薄膜制备工艺重复性好,具有更广阔的应用前景,能够用于切削各种难加工材料,具有独特优势。
附图说明
图1为实施例1制备AlCrSiN/Mo薄膜时的靶材布局图。
图2为实施例1制备的AlCrSiN/Mo薄膜的表面形貌。
图3为实施例1制备的AlCrSiN/Mo薄膜的截面形貌。
图4为实施例1制备的AlCrSiN/Mo薄膜的XRD图谱。
图5为实施例1制备的AlCrSiN/Mo薄膜的划痕形貌。
图6为实施例1制备的AlCrSiN/Mo薄膜与氧化铝球对磨后的磨痕形貌。
图7为实施例1制备的AlCrSiN/Mo薄膜的摩擦系数。
图8为实施例2制备的AlCrSiN/Mo薄膜的表面形貌。
图9为实施例2制备的AlCrSiN/Mo薄膜的截面形貌。
图10为实施例2制备的AlCrSiN/Mo薄膜的XRD图谱。
图11为实施例2制备的AlCrSiN/Mo薄膜与氧化铝球对磨后的磨痕形貌。
图12为实施例2制备的AlCrSiN/Mo薄膜的摩擦系数。
具体实施方式
下面结合具体实施例进一步说明本发明的技术方案。
实施例1
本实施例利用高功率脉冲磁控溅射和脉冲直流磁控溅射复合镀膜技术,在钨钢薄片(20mm×10mm×1.0mm)、SUS304不锈钢片(40mm×40mm×2.0mm)和硬质合金基体(35mm×35mm×4.5mm)上沉积AlCrSiN/Mo复合薄膜。薄膜制备过程如下:
(1)所有基体依次在丙酮和乙醇中超声清洗30min,然后用高纯N2吹干,再固定于真空室内旋转架上。图1为制备AlCrSiN/Mo薄膜时的靶材布局图。由图可见,Cr靶连接到电弧电源,AlCrSi靶连接脉冲直流磁控溅射电源,CrMo靶连接高功率脉冲磁控溅射电源。
真空室转架转速设定为2.5r/min,靶基距分别为80mm(AlCrSi靶)、80mm(CrMo靶)和280mm(Cr靶)。镀膜过程中工作气体和反应气体分别为Ar和N2(纯度均为99.999%)。
(2)辉光清洗:将本底真空度抽至3.0×10-3Pa以上,再加热至400℃,然后施加-800V偏压,通入流量为200sccm的Ar,保持工作压强1.5Pa,辉光放电清洗15min;去除基体表面杂质。
(3)离子轰击:辉光清洗后再开启电弧Cr靶进行离子轰击,设定弧源电流90A,弧源电压20V~20.3V,通入Ar流量200sccm,保持工作压强为5×10-1Pa,轰击清洗8min,以改善膜基结合界面,从而提高薄膜的临界载荷。
(4)沉积CrN过渡层:维持电弧Cr靶参数不变,通入Ar流量50sccm,N2流量200sccm,保持工作压强为8×10-1Pa,沉积CrN过渡层15min,获得CrN过渡层厚度约200nm,以减少薄膜与基体热膨胀系数的不匹配,以改善膜基结合力。
(5)制备AlCrSiN/Mo自润滑薄膜:调节偏压至-150V,再通入反应气体N2流量为50sccm,Ar流量为250sccm,维持Ar和N2总流量为300sccm,保持沉积压强为2.0Pa,改变CrMo靶溅射功率,分别选用0.3kW、0.6kW或0.9kW,AlCrSi靶溅射功率为1.5kW,严格控制沉积时间为240min,制备一系列AlCrSiN/Mo复合薄膜,厚度约3.0μm。
对本实施例制备的AlCrSiN/Mo薄膜进行形貌观察与性能测试,具体如下:
利用日立冷场发射扫描电镜(SEM,SU8010型)观察薄膜表面和截面形貌;利用电子探针(EPMA,Shimadzu,EPMA1600)分析薄膜的元素组成。利用X射线衍射仪(XRD,D8-Discovery Brucker)进行薄膜的物相分析,X射线衍射数据采用阶梯扫描方式采集,入射X射线选用Cu靶Kα特征谱线(λ=0.154056nm)辐射,管电压40kV,管电流40mA,选择2θ模式进行扫描,扫描范围为20~80°,扫描步长0.02°,每步计数时间0.2s。
采用纳米压痕仪(Anton Paar,TTX-NHT-3)测试薄膜的硬度与弹性模量,为避免基体效应对测量结果造成影响,要保证针尖压入深度在薄膜厚度的1/10,并选取15个测试点的平均值作为薄膜硬度与弹性模量。采用划痕测试仪(Anton Paar RST-3)测量薄膜与硬质合金基体的结合强度,金刚石针尖锥顶角和半径分别为120°、100μm,加载速度6mm/min,划痕长度3mm和负载1~150N。测试数据由计算机实时记录。
利用摩擦磨损试验机(Anton Paar THT)测试涂层的摩擦系数,摩擦副选用直径为5.99mm的Al2O3球(硬度为22±1GPa),设定滑动线速度10cm/s,法向载荷6N,磨痕半径4mm,滑动距离125.6m。摩擦实验在室温25±3℃和湿度30%下进行,每组样片重复测试3次,利用磨损率公式W=V/(F×S)(V为磨损体积,F为负载,S为滑动距离)计算涂层的磨损率。另外,使用超景深显微镜(VHX-1000C,Keyence)观察磨痕形貌。
本实施例制备的AlCrSiN/Mo自润滑薄膜的化学成分如表1所示。
表1不同CrMo靶溅射功率下制备的薄膜成分
Figure BDA0002693798930000071
图2为制备的AlCrSiN/Mo薄膜的表面形貌(CrMo靶溅射功率为0.6kW)。由图可知,表面形貌中晶粒呈现出菱形结构,且所有晶粒尺寸均在纳米级别,这是因为非晶氮化硅层包裹在细小的(Al,Cr)N纳米晶周围,有效地抑制了晶粒生长。图3为AlCrSiN/Mo薄膜的截面形貌(CrMo靶溅射功率为0.6kW)。此时截面形貌中存在尺寸较大的柱状晶,其顶部与表面形貌中较大菱形晶胞相对应。靶溅射功率越大,涂层表面粒子迁移能力就越强,使得涂层生长更加充分,有助于柱状晶生长。
图4为制备的AlCrSiN/Mo薄膜的XRD图谱。在2θ=31.4°与35.8°处,能够检测到沿(101_1)晶面生长的hcp-AlN衍射峰,其强度随着靶溅射功率的增加而降低。在衍射角2θ=37.8°、43.9°、64.1°和75.5°附近,均可以检测到沿(111)、(200)、(220)、(311)晶面生长的fcc-AlN、tetra-Mo2N、fcc-CrN三种衍射峰,并且沿(200)晶面生长的衍射峰呈现择优生长趋势。由于(Al,Cr)N相具有NaCl型面心立方结构,其(200)晶面上悬空键和非平衡键密度值较低,故具有最低的表面能;并根据热力学自由能最小原则,靶溅射功率越大,溅射粒子在薄膜表面原子移动能力就越强,将促使薄膜沿表面自由能最小的(200)晶面择优生长。
图5为制备的AlCrSiN/Mo薄膜的划痕形貌(CrMo靶溅射功率为0.6kW)。薄膜在150N法向载荷作用下未被划破。原因如下:由于电弧离子镀技术可以蒸发出较多高能粒子,在负偏压作用下,高能量及高密度粒子束流能够刻蚀基体表面,能够获得良好的化学键结合界面,从而大大增强膜基结合力。此外,划痕表面呈现出白色,这是由于薄膜中存在较多的Mo元素,在划痕测试过程中被逐渐氧化所致。
图6为制备的AlCrSiN/Mo薄膜与氧化铝球对磨后的磨痕形貌(CrMo靶溅射功率为0.6kW)。由图可见磨痕中分布着许多微犁沟,这是由于涂层在法向载荷与切向载荷的循环冲击下,一些硬质碎块易发生剥落,逐渐聚集于摩擦接触区域形成三体磨损,不断刮擦使涂层表面产生疲劳损伤。此时薄膜主要磨损机制为轻微磨粒磨损。同时,磨痕边缘还分布着少量白色磨屑,这是因为摩擦试验在高负载、较长滑动距离下进行,氧化铝球与涂层反复研磨发生疲劳损伤而出现局部脱落。
图7为制备的AlCrSiN/Mo薄膜的摩擦系数(CrMo靶溅射功率为0.6kW)。在起始预磨阶段,摩擦系数迅速上升;随着摩擦过程持续进行,摩擦系数曲线有小幅波动,归因于薄膜内部硬质颗粒脱落后,转移至摩擦界面参与摩擦,造成磨粒磨损。摩擦过程中硬质颗粒的频繁剥落转移,导致摩擦系数发生波动,借助于薄膜中润滑相的作用,摩擦系数最终稳定在0.19左右,磨损率约为1.64×10-3μm3/N·μm。
实施例2:
本实施例利用HiPIMS/Pulse DC复合磁控溅射系统,在单晶Si片(40mm×40mm×0.67mm)、SUS304不锈钢片(40mm×40mm×2.0mm)和硬质合金基体(35mm×35mm×4.5mm)上沉积AlCrSiN/Mo薄膜。薄膜制备过程如下:
(1)所有的基体依次在丙酮和乙醇中超声清洗30min,然后用高纯N2吹干,再固定于真空室内旋转架上。其中,Cr靶连接到电弧电源,CrMo靶连接到脉冲直流磁控溅射电源,AlCrSi靶连接到高功率脉冲磁控溅射电源。
旋转架转速设置为2.5r/min,靶基距分别为80mm(AlCrSi靶)、80mm(CrMo靶)和280mm(Cr靶)。镀膜过程工作气体和反应气体分别为Ar和N2(纯度均为99.999%)。
(2)辉光清洗:将本底真空度抽至3.0×10-3Pa以上,并加热至400℃,在-800V偏压作用下,通入流量为200sccm的Ar,保持工作压强为1.5Pa,辉光放电清洗15min;去除基体表面杂质。
(3)离子轰击:辉光清洗后再开启电弧Cr靶进行离子轰击,设定弧源电流90A,弧源电压20V~20.3V,通入Ar流量200sccm,保持工作压强为5×10-1Pa,轰击清洗8min,以改善膜基结合界面,提高薄膜的临界载荷。
(4)沉积CrN过渡层:维持电弧Cr靶参数不变,通入Ar流量为50sccm,N2流量为200sccm,保持工作压强为8×10-1Pa,沉积CrN过渡层15min,目的是改善薄膜与基体的热膨胀系数差异,提高膜/基结合力。
(5)制备AlCrSiN/Mo自润滑薄膜:降低偏压至-150V,再通入反应气体N2,流量为50sccm,Ar流量为250sccm,保持Ar和N2总流量为300sccm,通过调节沉积压强,分别为1.0Pa、1.2Pa、1.6Pa或2.0Pa,CrMo靶溅射功率为0.4kW,AlCrSi靶溅射功率为1.2kW,严格控制沉积时间360min,制备一系列AlCrSiN/Mo复合薄膜。
本实施例制备的AlCrSiN/Mo自润滑薄膜的化学成分如表2所示。
表2不同沉积压强下制备的涂层成分
Figure BDA0002693798930000091
图8为制备的AlCrSiN/Mo薄膜的表面形貌(沉积压强为1.6Pa)。可见晶粒尺寸较大,并呈现出明显晶体学特征结构。由于溅射粒子动能被不断削弱,使得沉积粒子在涂层表面扩散和迁移能力降低,增加了晶粒尺寸。图9为AlCrSiN/Mo薄膜的截面形貌(沉积压强为1.6Pa)。从图中未见明显的柱状晶,这是因为Si原子在(Al,Cr)N晶格溶解度较低而从晶界析出,以界面相的形式阻碍了柱状晶的生长。
图10为AlCrSiN/Mo薄膜的XRD图谱。从图中可以看到,AlCrSiN/Mo复合薄膜呈现多晶态,主要由AlN、CrN及Mo2N等纳米晶组成。在2θ=37.9°与43.7°附近,分别检测到沿(111)与(200)晶面生长衍射峰,分别为AlN(111)、CrN(111)衍射峰和Mo2N(200)、CrN(200)与AlN(200)衍射峰。当沉积压强为1.6Pa时,(200)晶面衍射峰最强。这是由于游离态氮与溅射离子反应充分,涂层结晶良好。在2θ=42.6°时,出现了密排六方结构的Cr2N相,并沿(112_1)晶面生长。同时,所有涂层中未检测到Si单质及相应的化合物衍射峰,说明Si元素可能以非晶相Si3N4的形式存在,具有抑制晶粒生长的作用。
图11为制备的AlCrSiN/Mo薄膜与氧化铝球对磨后的磨痕形貌(沉积压强为1.6Pa)。磨痕中存在许多微小犁沟,但对应磨痕宽度较窄。由于薄膜硬度高达20.6GPa,减少了氧化铝球与涂层的有效接触面积,提高了薄膜的耐磨损能力,磨损率最低约为1.52×10-3μm3/N·μm,此时薄膜主要磨损机制为轻微磨粒磨损。此外,由于Mo元素在摩擦过程中易被氧化,生成具有自润滑功能的层状MoO3,可起减摩作用。
图12为制备的AlCrSiN/Mo薄膜的摩擦系数(沉积压强为1.6Pa)。在预磨阶段,摩擦系数迅速上升,随着摩擦过程持续进行,摩擦系数曲线有小幅波动,归因于薄膜内部硬质颗粒脱落后,转移至摩擦界面参与摩擦,造成磨粒磨损。摩擦过程中硬质颗粒的频繁剥落转移,导致摩擦系数发生波动。进入稳定磨损阶段后,摩擦系数最终保持在0.18左右。
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (10)

1.一种Mo掺杂型AlCrSiN/Mo自润滑薄膜,其特征在于:所述AlCrSiN/Mo自润滑薄膜是将Mo元素掺杂进AlCrSiN薄膜中制备而成,Mo元素的掺杂量为0.3~6.3at.%。
2.根据权利要求1所述的Mo掺杂型AlCrSiN/Mo自润滑薄膜,其特征在于:按原子百分比计,所述AlCrSiN/Mo自润滑薄膜的化学组成如下:
Al 14.3~25.5at.%,Cr 14.3~36.2at.%,Si 1.6~3.4at.%,N 33.6~56.9at.%,Mo 0.3~6.3at.%。
3.根据权利要求1所述的Mo掺杂型AlCrSiN/Mo自润滑薄膜,其特征在于:所述AlCrSiN/Mo自润滑薄膜为多相复合结构,当Mo元素掺杂进AlCrSiN薄膜时,Mo原子替换(Al,Cr)N晶格中的Al和/或Cr原子位形成置换固溶体,所述AlCrSiN/Mo自润滑薄膜包含AlN、CrN和Mo2N等纳米晶相。
4.根据权利要求1所述的Mo掺杂型AlCrSiN/Mo自润滑薄膜,其特征在于:所述AlCrSiN/Mo自润滑薄膜与基体之间为CrN过渡层,所述基体为不锈钢、单晶Si片、钨钢薄片或硬质合金片,所述CrN过渡层厚度150~250nm,所述AlCrSiN/Mo自润滑薄膜厚度2.5~4.0μm。
5.根据权利要求4所述的Mo掺杂型AlCrSiN/Mo自润滑薄膜的制备方法,其特征在于:该方法是采用高功率脉冲磁控溅射和脉冲直流磁控溅射复合镀膜技术在基体表面沉积所述AlCrSiN/Mo自润滑薄膜,具体包括如下步骤:
(1)将基体固定于真空室内旋转架上,然后将真空室本底真空度抽至3.0×10-3Pa以上,Cr靶连接电弧电源,CrMo靶连接高功率脉冲磁控溅射电源,AlCrSi靶连接脉冲直流磁控溅射电源;
(2)先对基体进行辉光放电清洗,去除表面杂质;然后再进行离子轰击清洗,以提高膜/基结合力;
(3)制备CrN过渡层;
(4)制备AlCrSiN/Mo自润滑薄膜:沉积完CrN过渡层,调节偏压至-50~-150V,再通入流量为50~150sccm的反应气体N2,流量为50~250sccm的Ar,N2和Ar总流量为300sccm,保持沉积压强在1.0~2.5Pa,控制CrMo靶溅射功率为0.1~0.9kW,AlCrSi靶溅射功率为0.2~1.5kW,沉积AlCrSiN/Mo自润滑薄膜。
6.根据权利要求5所述的Mo掺杂型AlCrSiN/Mo自润滑薄膜的制备方法,其特征在于:步骤(1)中,所述基体固定在旋转架之前,先依次在丙酮和乙醇中超声清洗10~35min,然后用高纯氮气吹干。
7.根据权利要求5所述的Mo掺杂型AlCrSiN/Mo自润滑薄膜的制备方法,其特征在于:步骤(2)中,所述辉光放电清洗的过程为:在-800V的偏压作用下,通入流量为50~200sccm的Ar,调节节流阀保持工作压强在0.5~1.5Pa,进行辉光放电清洗基体表面5~15min,去除表面杂质。
8.根据权利要求5所述的Mo掺杂型AlCrSiN/Mo自润滑薄膜的制备方法,其特征在于:步骤(2)中,所述离子轰击过程为:辉光清洗后再开启电弧Cr靶进行离子轰击,设定弧源电流80~100A,弧源电压15V~25V,通入流量50~200sccm的Ar,保持工作压强为(5~10)×10- 1Pa,轰击时间为5~10min。
9.根据权利要求5所述的Mo掺杂型AlCrSiN/Mo自润滑薄膜的制备方法,其特征在于:步骤(3)中,离子轰击后维持电弧Cr靶参数不变,通入流量40~60sccm的Ar,流量150~250sccm的N2,保持工作压强为8×10-1Pa,沉积CrN过渡层,时间为10~20min。
10.根据权利要求5所述的Mo掺杂型AlCrSiN/Mo自润滑薄膜的制备方法,其特征在于:步骤(4)中,沉积时间根据技术要求和薄膜沉积速率确定。
CN202010999545.3A 2019-09-23 2020-09-22 一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法 Active CN112501553B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2019108970386 2019-09-23
CN201910897038.6A CN110607499A (zh) 2019-09-23 2019-09-23 一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN112501553A true CN112501553A (zh) 2021-03-16
CN112501553B CN112501553B (zh) 2022-12-23

Family

ID=68891841

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201910897038.6A Pending CN110607499A (zh) 2019-09-23 2019-09-23 一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法
CN202010999545.3A Active CN112501553B (zh) 2019-09-23 2020-09-22 一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201910897038.6A Pending CN110607499A (zh) 2019-09-23 2019-09-23 一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法

Country Status (3)

Country Link
US (1) US20220213588A1 (zh)
CN (2) CN110607499A (zh)
WO (1) WO2021056855A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110607499A (zh) * 2019-09-23 2019-12-24 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法
CN115505886B (zh) * 2022-09-23 2023-10-24 天津职业技术师范大学(中国职业培训指导教师进修中心) 高硬度、高耐磨性的AlCrSiN/AlCrMoSiN纳米多层复合涂层及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070099027A1 (en) * 2005-10-28 2007-05-03 Anand Krishnamurthy Wear resistant coatings
CN102776481A (zh) * 2012-06-15 2012-11-14 上海大学 硬质薄膜与基体间梯度过渡层的制备方法
CN110607499A (zh) * 2019-09-23 2019-12-24 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5640004B2 (ja) * 2008-07-09 2014-12-10 エーリコン・トレイディング・アーゲー・トリューバッハ コーティングシステム、コーティングされたワークピースおよびその製造方法
CN102296269B (zh) * 2011-09-07 2013-02-06 钢铁研究总院 一种硬质涂层及其制备方法
CN104928637B (zh) * 2015-05-19 2017-12-22 上海新弧源涂层技术有限公司 高硬度CrAlSiN纳米复合结构保护性涂层及其制备方法
US11156291B2 (en) * 2017-06-02 2021-10-26 Mahle International Gmbh Piston ring and method of manufacture
CN107130222B (zh) * 2017-06-30 2019-07-02 天津职业技术师范大学 高功率脉冲磁控溅射CrAlSiN纳米复合涂层及其制备方法
CN110453190B (zh) * 2019-09-23 2021-06-15 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种AlCrSiN/Mo自润滑薄膜的复合磁控溅射制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070099027A1 (en) * 2005-10-28 2007-05-03 Anand Krishnamurthy Wear resistant coatings
CN102776481A (zh) * 2012-06-15 2012-11-14 上海大学 硬质薄膜与基体间梯度过渡层的制备方法
CN110607499A (zh) * 2019-09-23 2019-12-24 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HENG TAO.ET.AL.: "Improving high-temperature tribological characteristics on nanocomposite CrAlSiN coating by Mo doping", 《SURFACE & COATINGS TECHNOLOGY》 *

Also Published As

Publication number Publication date
CN112501553B (zh) 2022-12-23
CN110607499A (zh) 2019-12-24
US20220213588A1 (en) 2022-07-07
WO2021056855A1 (zh) 2021-04-01

Similar Documents

Publication Publication Date Title
CN110453190B (zh) 一种AlCrSiN/Mo自润滑薄膜的复合磁控溅射制备方法
CN106987816B (zh) 一种高铝含量超致密Al-Cr-Si-N涂层制备工艺
CN111647851B (zh) 兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法
CN104928638A (zh) 一种AlCrSiN基多层纳米复合刀具涂层及其制备方法
CN107130222A (zh) 高功率脉冲磁控溅射CrAlSiN纳米复合涂层及其制备方法
CN107916402B (zh) 一种AlCrTiSiCN涂层结构及其制备方法
CN109402564B (zh) 一种AlCrSiN和AlCrSiON双层纳米复合涂层及其制备方法
CN110670038A (zh) 具有自润滑和耐磨性能的AlCrN/MoS2纳米复合薄膜及其制备方法
CN112501553B (zh) 一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法
CN102021513B (zh) 一种基体表面的高韧性抗氧化减磨涂层及其制备方法
CN111485219B (zh) 具有高耐磨性的AlCrSiN/Mo热处理型涂层及其制备工艺
CN109735799A (zh) 一种切削刀具表面多层梯度高温耐磨涂层及其制备方法
CN111500990B (zh) 一种Zr-Ti-B-N纳米复合涂层及其制备方法
JP5560513B2 (ja) 硬質被覆層がすぐれた耐欠損性を発揮する表面被覆切削工具
CN111647859B (zh) 一种还原性气氛中Zr-Ti-B-N纳米复合涂层的制备工艺
CN111424254B (zh) 一种提高AlCrSiN/Mo纳米复合涂层韧性与耐磨性的热处理工艺
CN111471973B (zh) 一种还原性气氛中制备Zr-B-N纳米复合涂层的工艺
CN113667939A (zh) 具有高硬度与高温抗氧化性的Zr-B-N/ZrO2纳米多层复合涂层的制备工艺
CN112626456A (zh) 一种兼具高硬度和高韧性的ZrB2-Ni涂层及其制备工艺
CN115404438B (zh) 高硬度与高耐磨性的AlCrSiN/AlCrMoSiN纳米多层复合涂层的制备工艺
CN115505886B (zh) 高硬度、高耐磨性的AlCrSiN/AlCrMoSiN纳米多层复合涂层及其制备方法
CN118007055A (zh) 一种Mo含量呈梯度变化的高耐磨性AlCrMoSiN梯度涂层及其制备方法
CN118007058A (zh) 具有自润滑性能的AlCrVTiSiN高熵合金涂层的制备工艺
CN115181948A (zh) 一种W-Si-B硬质涂层及其制备方法和应用
CN118007059A (zh) 一种兼具高硬度和自润滑性能的AlCrVTiSiN高熵合金涂层及其制备工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant