WO2021056855A1 - 一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法 - Google Patents

一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法 Download PDF

Info

Publication number
WO2021056855A1
WO2021056855A1 PCT/CN2019/125596 CN2019125596W WO2021056855A1 WO 2021056855 A1 WO2021056855 A1 WO 2021056855A1 CN 2019125596 W CN2019125596 W CN 2019125596W WO 2021056855 A1 WO2021056855 A1 WO 2021056855A1
Authority
WO
WIPO (PCT)
Prior art keywords
alcrsin
self
lubricating film
doped
film
Prior art date
Application number
PCT/CN2019/125596
Other languages
English (en)
French (fr)
Inventor
王铁钢
蒙德强
刘艳梅
阎兵
许人仁
尹照星
Original Assignee
天津职业技术师范大学(中国职业培训指导教师进修中心)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津职业技术师范大学(中国职业培训指导教师进修中心) filed Critical 天津职业技术师范大学(中国职业培训指导教师进修中心)
Publication of WO2021056855A1 publication Critical patent/WO2021056855A1/zh
Priority to US17/655,907 priority Critical patent/US20220213588A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target

Definitions

  • the invention relates to the technical field of thin films and their preparation, in particular to a Mo-doped AlCrSiN/Mo self-lubricating thin film and a preparation method thereof.
  • the quaternary AlCrSiN nanocomposite film, the internal nanocrystalline nc-(Al,Cr)N is wrapped by the amorphous phase a-Si 3 N 4 , which makes it have the advantages of high hardness, high toughness and excellent thermal stability. It is suitable for On the surface of the cutting tool, it has shortcomings such as high friction coefficient and high cutting temperature, which makes it difficult to guarantee the tool life and the surface quality of the workpiece.
  • the present invention adopts high-power pulsed magnetron sputtering and pulsed DC magnetron sputtering composite coating technology to deposit AlCrSiN/Mo self-lubricating film, which gives the tool higher hardness, good heat resistance and anti-friction and wear resistance, and is suitable for modern In the field of high-speed dry cutting, further improve tool life and processing efficiency.
  • the purpose of the present invention is to provide a Mo-doped AlCrSiN/Mo self-lubricating film and a preparation method thereof.
  • the prepared AlCrSiN/Mo self-lubricating film has high hardness, good toughness, excellent anti-friction properties, and can significantly reduce the knife- The friction between chips has good chemical stability and easy-to-shear lubricating properties.
  • a Mo-doped AlCrSiN/Mo self-lubricating film is obtained by doping Mo element into the AlCrSiN film, and the doping amount of Mo element is 0.3-6.3 at.%.
  • the chemical composition of the AlCrSiN/Mo self-lubricating film is as follows:
  • the AlCrSiN/Mo self-lubricating film has a multi-phase composite structure, Mo elements are doped into the AlCrSiN film, and Mo atoms replace Al and/or Cr atoms in the (Al,Cr)N lattice to form a replacement solid solution.
  • the AlCrSiN The /Mo self-lubricating film is composed of AlN, CrN and Mo 2 N nano crystal grains embedded in the amorphous layer to form a nano composite structure.
  • the substrate is stainless steel, single crystal Si wafer, tungsten steel flake or cemented carbide substrate, and the CrN transition layer has a thickness of 150-250 nm.
  • the thickness of the AlCrSiN/Mo self-lubricating film is 2.5 ⁇ 4.0 ⁇ m.
  • the Mo-doped AlCrSiN/Mo self-lubricating film is prepared by high-power pulsed magnetron sputtering and pulsed DC magnetron sputtering composite coating technology, and the specific method is as follows:
  • step (1) before the substrate is fixed on the rotating frame, it is first ultrasonically cleaned in acetone and ethanol for 10 to 35 minutes, and then blown dry with high-purity nitrogen.
  • the glow cleaning process is: under the bias of -800V, pass Ar with a flow rate of 50 to 200 sccm, adjust the throttle valve to maintain a working pressure of 0.5 to 1.5 Pa, and perform the glow Light discharge cleans the surface of the substrate for 5 to 15 minutes to remove surface impurities.
  • the ion bombardment process is: after glow discharge cleaning, the arc Cr target is turned on for ion bombardment, the arc source current is set to 80-100A, the arc source voltage is 15V-25V, and the flow rate is 50 ⁇ 200sccm of Ar, maintain working pressure of (5 ⁇ 10) ⁇ 10 -1 Pa, and bombardment time of 5 ⁇ 10min.
  • step (3) after ion bombardment, the parameters of the arc Cr target are kept unchanged, the flow rate of Ar is 40-60 sccm, the flow of N 2 is 150-250 sccm, the working pressure is maintained at 8 ⁇ 10 -1 Pa, and the CrN transition layer 10 is deposited ⁇ 20min.
  • the deposition time is determined according to the technical requirements and the film deposition rate.
  • the design mechanism of the present invention is as follows:
  • the sixth subgroup Mo element is doped into the AlCrSiN film, and Mo atoms are used to replace the Al or Cr atomic positions in the (Al,Cr)N lattice to form a replacement solid solution.
  • the different atomic radii will cause lattice distortion. Increase the resistance of dislocation movement between grain boundaries to achieve grain boundary strengthening and improve film performance.
  • layered MoO 3 with self-lubricating function is easily generated during the friction process, which can effectively reduce the friction coefficient, reduce the cutting heat, and play a good anti-friction effect.
  • the study found that the content of Mo element has a greater impact on the film. When the content of Mo is too low, the lubrication effect is not obvious; but the content of Mo is too high, and the nitriding reaction cannot be completed, resulting in the decrease of film hardness.
  • the invention utilizes the advantages of high-power pulse magnetron sputtering technology such as high instantaneous current density, high ionization rate, high sputtering ion energy, low duty ratio ( ⁇ 1%), etc., and can produce compact structure, smooth surface, and internal stress.
  • Adjustable high-quality film combined with the advantages of high deposition rate and low deposition temperature of pulsed DC magnetron sputtering technology, AlCrSiN/Mo self-lubricating film is prepared on the surface of SUS304 stainless steel, single crystal Si wafer, tungsten steel wafer or cemented carbide .
  • the AlCrSiN/Mo film is composed of AlN, CrN, Mo 2 N and other nano crystal grains embedded in the amorphous layer to form a nano composite structure, which has the advantages of high hardness, high toughness, low friction coefficient, good wear resistance and the like.
  • the AlCrSiN/Mo film developed by the present invention has a smooth surface, a dense internal structure, and a good combination with the substrate; the film/substrate bonding force of the film is greater than 150N, the friction coefficient is less than 0.20, and the wear rate is low.
  • the AlCrSiN/Mo nano composite film developed by the invention has good thermal stability and can be used in high-speed cutting, dry cutting and other processing fields.
  • the preparation process of the AlCrSiN/Mo thin film developed by the present invention has good repeatability, has a broader application prospect, can be used for cutting various difficult-to-machine materials, and has unique advantages.
  • FIG. 1 is a layout diagram of the target material when the AlCrSiN/Mo thin film is prepared in Example 1.
  • FIG. 1 is a layout diagram of the target material when the AlCrSiN/Mo thin film is prepared in Example 1.
  • Example 2 is the surface morphology of the AlCrSiN/Mo thin film prepared in Example 1.
  • Example 3 is the cross-sectional morphology of the AlCrSiN/Mo thin film prepared in Example 1.
  • Example 4 is an XRD pattern of the AlCrSiN/Mo thin film prepared in Example 1.
  • Figure 5 shows the scratch morphology of the AlCrSiN/Mo thin film prepared in Example 1.
  • Fig. 6 shows the morphology of the wear scars of the AlCrSiN/Mo film prepared in Example 1 and alumina balls after grinding.
  • FIG. 7 shows the friction coefficient of the AlCrSiN/Mo film prepared in Example 1.
  • FIG. 8 shows the surface morphology of the AlCrSiN/Mo thin film prepared in Example 2.
  • Example 10 is an XRD pattern of the AlCrSiN/Mo thin film prepared in Example 2.
  • Fig. 11 shows the morphology of the wear scars of the AlCrSiN/Mo film prepared in Example 2 and alumina balls after grinding.
  • FIG. 12 shows the friction coefficient of the AlCrSiN/Mo film prepared in Example 2.
  • This embodiment uses high-power pulse magnetron sputtering and pulse DC magnetron sputtering composite coating technology, in tungsten steel sheet (20mm ⁇ 10mm ⁇ 1.0mm), SUS304 stainless steel sheet (40mm ⁇ 40mm ⁇ 2.0mm) and cemented carbide AlCrSiN/Mo composite film was deposited on the substrate (35mm ⁇ 35mm ⁇ 4.5mm).
  • the film preparation process is as follows:
  • Figure 1 shows the target layout during the preparation of AlCrSiN/Mo thin films. It can be seen from the figure that the Cr target is connected to the arc power supply, the AlCrSi target is connected to the pulsed DC magnetron sputtering power supply, and the CrMo target is connected to the high-power pulsed magnetron sputtering power supply.
  • the rotating speed of the vacuum chamber turret was set to 2.5r/min, and the target base distance was 80mm (AlCrSi target), 80mm (CrMo target) and 280mm (Cr target).
  • the working gas and the reaction gas are Ar and N 2 (purities are both 99.999%).
  • Ion bombardment After glow cleaning, turn on the arc Cr target for ion bombardment. Set the arc source current to 90A, the arc source voltage to 20V ⁇ 20.3V, and the Ar flow rate to 200sccm. Keep the working pressure at 5 ⁇ 10 -1 Pa , Bombardment cleaning for 8 minutes to improve the film-base bonding interface, thereby increasing the critical load of the film.
  • Preparation of AlCrSiN/Mo self-lubricating film adjust the bias voltage to -150V, and then pass the reaction gas N 2 flow rate to 50 sccm, Ar flow rate to 250 sccm, maintain the total flow rate of Ar and N 2 to 300 sccm, and maintain the deposition pressure at 2.0 Pa , Change the CrMo target sputtering power, select 0.3kW, 0.6kW or 0.9kW, respectively, the AlCrSi target sputtering power is 1.5kW, strictly control the deposition time to 240min, and prepare a series of AlCrSiN/Mo composite films with a thickness of about 3.0 ⁇ m.
  • the friction and wear tester (Anton Paar THT) to test the coefficient of friction of the coating.
  • the friction pair selects an Al 2 O 3 ball with a diameter of 5.99 mm (hardness 22 ⁇ 1 GPa), and sets the sliding linear speed to 10 cm/s and the normal load 6N, wear scar radius 4mm, sliding distance 125.6m.
  • an ultra-depth-of-field microscope (VHX-1000C, Keyence) was used to observe the morphology of the wear scar.
  • Figure 2 shows the surface morphology of the prepared AlCrSiN/Mo thin film (CrMo target sputtering power is 0.6kW). It can be seen from the figure that the crystal grains in the surface morphology exhibit a rhombic structure, and all the crystal grain sizes are at the nanometer level. This is because the amorphous silicon nitride layer is wrapped around the fine (Al,Cr)N nanocrystals, effectively Suppresses grain growth.
  • Figure 3 shows the cross-sectional morphology of AlCrSiN/Mo thin film (CrMo target sputtering power is 0.6kW).
  • the (Al,Cr)N phase has a NaCl-type face-centered cubic structure, the density of dangling bonds and non-equilibrium bonds on the (200) crystal plane is low, so it has the lowest surface energy; and according to the principle of minimum thermodynamic free energy, the target The higher the sputtering power, the stronger the atom movement ability of the sputtered particles on the surface of the film, which will promote the preferential growth of the film along the (200) crystal plane with the smallest surface free energy.
  • Figure 5 shows the scratch morphology of the prepared AlCrSiN/Mo thin film (CrMo target sputtering power is 0.6kW).
  • the film was not scratched under the action of 150N normal load. The reason is as follows: because arc ion plating technology can evaporate more high-energy particles, under the action of negative bias, high-energy and high-density particle beams can etch the surface of the substrate, and a good chemical bond interface can be obtained, thereby greatly strengthening the film substrate. Binding force.
  • the scratched surface appears white, which is due to the presence of more Mo elements in the film, which is gradually oxidized during the scratch test.
  • Figure 6 shows the morphology of the wear scars of the prepared AlCrSiN/Mo film and alumina ball after grinding (CrMo target sputtering power is 0.6kW). It can be seen from the figure that there are many micro-furrows distributed in the wear scar. This is due to the cyclic impact of the normal load and the tangential load, some hard fragments are easy to peel off, and gradually gather in the friction contact area to form three-body wear , Continuous scratching causes fatigue damage to the coating surface. At this time, the main wear mechanism of the film is slight abrasive wear. At the same time, there are a small amount of white wear debris on the edge of the wear scar. This is because the friction test is carried out under high load and long sliding distance. The aluminum oxide ball and the coating are repeatedly ground to cause fatigue damage and local peeling occurs.
  • Figure 7 shows the friction coefficient of the prepared AlCrSiN/Mo film (CrMo target sputtering power is 0.6kW).
  • the friction coefficient rises rapidly; as the friction process continues, the friction coefficient curve fluctuates slightly, which is attributed to the fact that the hard particles inside the film fall off and transfer to the friction interface to participate in friction, causing abrasive wear.
  • the frequent exfoliation and transfer of hard particles during the friction process causes the friction coefficient to fluctuate.
  • the friction coefficient is finally stabilized at about 0.19, and the wear rate is about 1.64 ⁇ 10 -3 ⁇ m 3 /N ⁇ m.
  • the HiPIMS/Pulse DC composite magnetron sputtering system is used for single crystal Si wafers (40mm ⁇ 40mm ⁇ 0.67mm), SUS304 stainless steel plates (40mm ⁇ 40mm ⁇ 2.0mm) and cemented carbide substrates (35mm ⁇ 35mm ⁇ 4.5mm) AlCrSiN/Mo thin film is deposited on it.
  • the film preparation process is as follows:
  • the Cr target is connected to the arc power supply
  • the CrMo target is connected to the pulsed DC magnetron sputtering power supply
  • the AlCrSi target is connected to the high-power pulsed magnetron sputtering power supply.
  • the rotation speed of the rotating frame is set to 2.5r/min, and the target base distance is respectively 80mm (AlCrSi target), 80mm (CrMo target) and 280mm (Cr target).
  • the working gas and reaction gas in the coating process are Ar and N 2 respectively (purity is 99.999%).
  • Glow cleaning pump the background vacuum to above 3.0 ⁇ 10 -3 Pa and heat it to 400°C. Under the action of -800V bias, let in Ar with a flow of 200sccm and maintain the working pressure at 1.5Pa , Glow discharge cleaning for 15min; remove impurities on the surface of the substrate.
  • Ion bombardment After glow cleaning, turn on the arc Cr target for ion bombardment. Set the arc source current to 90A, the arc source voltage to 20V ⁇ 20.3V, and the Ar flow rate to 200sccm. Keep the working pressure at 5 ⁇ 10 -1 Pa , Bombardment cleaning for 8 minutes to improve the film-base bonding interface and increase the critical load of the film.
  • Figure 8 shows the surface morphology of the prepared AlCrSiN/Mo film (the deposition pressure is 1.6 Pa). It can be seen that the crystal grain size is relatively large, and exhibits obvious crystallographic characteristic structure. As the kinetic energy of the sputtered particles is continuously weakened, the diffusion and migration ability of the deposited particles on the coating surface is reduced, and the grain size is increased.
  • Figure 9 shows the cross-sectional morphology of the AlCrSiN/Mo film (deposition pressure is 1.6Pa). No obvious columnar crystals are seen in the figure. This is because Si atoms have low solubility in the (Al,Cr)N lattice and precipitate from the grain boundaries, hindering the growth of columnar crystals in the form of interface phases.
  • Figure 11 shows the morphology of the wear scars of the prepared AlCrSiN/Mo film and alumina ball after grinding (the deposition pressure is 1.6Pa). There are many small furrows in the wear scar, but the corresponding wear scar width is relatively narrow. As the hardness of the film is as high as 20.6GPa, the effective contact area between the alumina ball and the coating is reduced, and the wear resistance of the film is improved. The minimum wear rate is about 1.52 ⁇ 10 -3 ⁇ m 3 /N ⁇ m. The wear mechanism is slight abrasive wear. In addition, since the Mo element is easily oxidized during the friction process, layered MoO 3 with self-lubricating function is formed, which can reduce friction.
  • Figure 12 shows the friction coefficient of the prepared AlCrSiN/Mo film (the deposition pressure is 1.6 Pa).
  • the friction coefficient rises rapidly.
  • the friction coefficient curve fluctuates slightly. This is due to the fact that the hard particles inside the film fall off and transfer to the friction interface to participate in friction, causing abrasive wear. The frequent exfoliation and transfer of hard particles during the friction process causes the friction coefficient to fluctuate. After entering the stable wear stage, the friction coefficient finally remains at about 0.18.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法,属于薄膜及其制备技术领域。所述AlCrSiN/Mo自润滑薄膜是将Mo元素掺杂进AlCrSiN薄膜中制备而成,Mo元素的掺杂量为0.3~6.3at.%,该薄膜采用高功率脉冲磁控溅射和脉冲直流磁控溅射复合镀膜技术在基体上制备而成。所制备的AlCrSiN/Mo自润滑薄膜硬度高、韧性好,具备优良的减摩特性,可以显著降低刀-屑间的摩擦,具有较好的化学稳定性及易剪切的润滑特性。

Description

一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法 技术领域
本发明涉及薄膜及其制备技术领域,具体涉及一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法。
背景技术
随着现代工业技术迅速发展,各种难加工材料日益增多,对刀具切削性能不断提出更高要求,将薄膜涂覆于刀具基体表面能有效地提高刀具寿命。高速切削、超硬切削及干式切削等新工艺的应用,使得传统薄膜已不能满足高温切削需求,急需研发具有自润滑功能的刀具涂层,以降低刀-屑间的摩擦、减少切削热、降低切削温度,从而提高刀具服役寿命和加工效率。
四元AlCrSiN纳米复合薄膜,其内部纳米晶nc-(Al,Cr)N被非晶相a-Si 3N 4所包裹,使其具有高硬度、高韧性及优良的热稳定性等优点,适用于切削刀具表面,但存在摩擦系数高、切削温度高等缺点,难以保证刀具寿命及工件表面质量。故本发明采用高功率脉冲磁控溅射与脉冲直流磁控溅射复合镀膜技术沉积AlCrSiN/Mo自润滑薄膜,赋予刀具更高硬度、良好的耐热能力和减摩耐磨性能,适用于现代高速干切削领域,进一步提高刀具使用寿命和加工效率。
发明内容
本发明的目的在于提供一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法,所制备的AlCrSiN/Mo自润滑薄膜硬度高、韧性好,具备优良的减摩特性,可以显著降低刀-屑间的摩擦,具有较好的化学稳定性及易剪切的润滑特性。
为实现上述目的,本发明所采用的技术方案如下:
一种Mo掺杂型AlCrSiN/Mo自润滑薄膜,通过将Mo元素掺杂进AlCrSiN薄膜中而获得,Mo元素的掺杂量为0.3~6.3at.%。按原子百分比计,所述AlCrSiN/Mo自润滑薄膜的化学组成如下:
Al 14.3~25.5at.%,Cr 14.3~36.2at.%,Si 1.6~3.4at.%,N 33.6~56.9at.%,Mo 0.3~6.3at.%。
所述AlCrSiN/Mo自润滑薄膜为多相复合结构,Mo元素掺杂进AlCrSiN薄膜中,Mo原子代替(Al,Cr)N晶格中的Al和/或Cr原子位形成置换固溶体,所述AlCrSiN/Mo自润滑薄膜由AlN、CrN及Mo 2N等纳米晶粒镶嵌在非晶层中形成纳米复合结构。
所述AlCrSiN/Mo自润滑薄膜与基体之间为CrN过渡层,所述基体为不锈钢、单晶Si片、钨钢薄片或硬质合金基片,所述CrN过渡层厚度150~250nm,所述AlCrSiN/Mo自润滑薄膜厚度2.5~4.0μm。
所述Mo掺杂型AlCrSiN/Mo自润滑薄膜是采用高功率脉冲磁控溅射和脉冲直流磁控溅射复合镀膜技术制备,具体方法如下:
(1)先将基体固定于真空室内旋转架上,然后将真空室本底真空度抽至3.0×10 -3Pa以上,Cr靶连接电弧电源,CrMo靶连接高功率脉冲磁控溅射电源,AlCrSi靶连接脉冲直流磁控溅射电源;
(2)先对基体进行辉光放电清洗,去除表面杂质;然后再进行离子轰击清洗,以提高膜/基结合力;
(3)制备CrN过渡层;
(4)制备AlCrSiN/Mo自润滑薄膜:沉积完CrN过渡层,调节偏压至-50~-150V,再通入反应气体N 2流量为50~150sccm,Ar流量为50~250sccm,N 2和Ar总流量为300sccm,维持沉积压强在1.0~2.5Pa,控制CrMo靶溅射功率为0.1~0.9kW,AlCrSi靶溅射功率为0.2~1.5kW,沉积AlCrSiN/Mo自润滑薄膜。
上述步骤(1)中,所述基体固定在旋转架之前,先依次在丙酮和乙醇中超声清洗10~35min,然后用高纯氮气吹干。
上述步骤(2)中,所述辉光清洗的过程为:在-800V的偏压作用下,通入流量为50~200sccm的Ar,调节节流阀保持工作压强为0.5~1.5Pa,进行辉光放电清洗基体表面5~15min,去除表面杂质。
上述步骤(2)中,所述离子轰击的过程为:辉光放电清洗后,再开启电弧Cr靶进行离子轰击,设定弧源电流80~100A,弧源电压15V~25V,通入流量50~200sccm的Ar,保持工作压强为(5~10)×10 -1Pa,轰击时间为5~10min。
上述步骤(3)中,进行离子轰击后维持电弧Cr靶参数不变,通入Ar流量40~60sccm,N 2流量150~250sccm,保持工作压强为8×10 -1Pa,沉积CrN过渡层10~20min。
上述步骤(4)中,沉积时间根据技术要求和薄膜沉积速率确定。
本发明设计机理如下:
本发明将第六副族Mo元素掺杂进AlCrSiN薄膜中,利用Mo原子代替(Al,Cr)N晶格中的Al或Cr原子位形成置换固溶体,由于原子半径不同会导致晶格畸变,通过增加晶界间位错运动阻力以实现晶界强化,提升薄膜性能。同时在摩擦过程中易生成具有自润滑功能的层状MoO 3,能有效降低摩擦系数、减少切削热,起到良好的减摩作用。研究发现,Mo元素含量对薄膜的影响较大,当Mo含量过低时会导致润滑效果不明显;但含量过高Mo元素不能完全氮化反应,导致薄膜硬度下降。
本发明利用高功率脉冲磁控溅射技术瞬时电流密度高、离化率高、溅射离子能量高、占空比较低(<1%)等优点,可制备出结构致密、表面光滑、内应力可调的高质量薄膜;并结合脉冲直流磁控溅射技术沉积速率高、沉积温度低的优点,在SUS304不锈钢、单晶Si片、钨钢薄片或硬质合金表面制备AlCrSiN/Mo自润滑薄膜。制备过程中,通过严格控制反应气体流量、靶材溅射功率以及沉积压强等工艺参数,在保证薄膜硬度与韧性的前提下,实现减摩和提高薄膜耐磨性能。本工作利用纳米复合结构和固溶强化机制,实现AlCrSiN/Mo薄膜的性能优化,适用于干式切削、高速切削等现代加工领域,进一步提高刀具的使用寿命及加工效率。
本发明的优点和有益效果为:
(1)所述AlCrSiN/Mo薄膜由AlN、CrN及Mo 2N等纳米晶粒镶嵌在非晶层中形成纳米复合结构,具有高硬度、高韧性、摩擦系数低、耐磨性能好等优点。
(2)本发明研制的AlCrSiN/Mo薄膜表面光滑、内部结构致密,与基体结合良 好;薄膜的膜/基结合力大于150N,摩擦系数低于0.20,磨损率较低。
(3)本发明研制的AlCrSiN/Mo纳米复合薄膜具有良好热稳定性,可用于高速切削、干式切削等加工领域。
(4)本发明研制的AlCrSiN/Mo薄膜制备工艺重复性好,具有更广阔的应用前景,能够用于切削各种难加工材料,具有独特优势。
附图说明
图1为实施例1制备AlCrSiN/Mo薄膜时的靶材布局图。
图2为实施例1制备的AlCrSiN/Mo薄膜的表面形貌。
图3为实施例1制备的AlCrSiN/Mo薄膜的截面形貌。
图4为实施例1制备的AlCrSiN/Mo薄膜的XRD图谱。
图5为实施例1制备的AlCrSiN/Mo薄膜的划痕形貌。
图6为实施例1制备的AlCrSiN/Mo薄膜与氧化铝球对磨后的磨痕形貌。
图7为实施例1制备的AlCrSiN/Mo薄膜的摩擦系数。
图8为实施例2制备的AlCrSiN/Mo薄膜的表面形貌。
图9为实施例2制备的AlCrSiN/Mo薄膜的截面形貌。
图10为实施例2制备的AlCrSiN/Mo薄膜的XRD图谱。
图11为实施例2制备的AlCrSiN/Mo薄膜与氧化铝球对磨后的磨痕形貌。
图12为实施例2制备的AlCrSiN/Mo薄膜的摩擦系数。
具体实施方式
下面结合具体实施例进一步说明本发明的技术方案。
实施例1
本实施例利用高功率脉冲磁控溅射和脉冲直流磁控溅射复合镀膜技术,在钨钢薄片(20mm×10mm×1.0mm)、SUS304不锈钢片(40mm×40mm×2.0mm)和硬质合金基体(35mm×35mm×4.5mm)上沉积AlCrSiN/Mo复合薄膜。薄膜制备过程如下:
(1)所有基体依次在丙酮和乙醇中超声清洗30min,然后用高纯N 2吹干,再固定于真空室内旋转架上。图1为制备AlCrSiN/Mo薄膜时的靶材布局图。由图可见,Cr靶连接到电弧电源,AlCrSi靶连接脉冲直流磁控溅射电源,CrMo靶连接高功率脉冲磁控溅射电源。
真空室转架转速设定为2.5r/min,靶基距分别为80mm(AlCrSi靶)、80mm(CrMo靶)和280mm(Cr靶)。镀膜过程中工作气体和反应气体分别为Ar和N 2(纯度均为99.999%)。
(2)辉光清洗:将本底真空度抽至3.0×10 -3Pa以上,再加热至400℃,然后施加-800V偏压,通入流量为200sccm的Ar,保持工作压强1.5Pa,辉光放电清洗15min;去除基体表面杂质。
(3)离子轰击:辉光清洗后再开启电弧Cr靶进行离子轰击,设定弧源电流90A,弧源电压20V~20.3V,通入Ar流量200sccm,保持工作压强为5×10 -1Pa,轰击清洗8min,以改善膜基结合界面,从而提高薄膜的临界载荷。
(4)沉积CrN过渡层:维持电弧Cr靶参数不变,通入Ar流量50sccm,N 2流量200sccm,保持工作压强为8×10 -1Pa,沉积CrN过渡层15min,获得CrN过渡层厚度约200nm,以减少薄膜与基体热膨胀系数的不匹配,以改善膜基结合力。
(5)制备AlCrSiN/Mo自润滑薄膜:调节偏压至-150V,再通入反应气体N 2流量为50sccm,Ar流量为250sccm,维持Ar和N 2总流量为300sccm,保持沉积压强为2.0Pa,改变CrMo靶溅射功率,分别选用0.3kW、0.6kW或0.9kW,AlCrSi靶溅射功率为1.5kW,严格控制沉积时间为240min,制备一系列AlCrSiN/Mo复合薄膜,厚度约3.0μm。
对本实施例制备的AlCrSiN/Mo薄膜进行形貌观察与性能测试,具体如下:
利用日立冷场发射扫描电镜(SEM,SU8010型)观察薄膜表面和截面形貌;利用电子探针(EPMA,Shimadzu,EPMA 1600)分析薄膜的元素组成。利用X射线衍射仪(XRD,D8-Discovery Brucker)进行薄膜的物相分析,X射线衍射数据采用阶梯扫描方 式采集,入射X射线选用Cu靶Kα特征谱线(λ=0.154056nm)辐射,管电压40kV,管电流40mA,选择2θ模式进行扫描,扫描范围为20~80°,扫描步长0.02°,每步计数时间0.2s。
采用纳米压痕仪(Anton Paar,TTX-NHT-3)测试薄膜的硬度与弹性模量,为避免基体效应对测量结果造成影响,要保证针尖压入深度在薄膜厚度的1/10,并选取15个测试点的平均值作为薄膜硬度与弹性模量。采用划痕测试仪(Anton Paar RST-3)测量薄膜与硬质合金基体的结合强度,金刚石针尖锥顶角和半径分别为120°、100μm,加载速度6mm/min,划痕长度3mm和负载1~150N。测试数据由计算机实时记录。
利用摩擦磨损试验机(Anton Paar THT)测试涂层的摩擦系数,摩擦副选用直径为5.99mm的Al 2O 3球(硬度为22±1GPa),设定滑动线速度10cm/s,法向载荷6N,磨痕半径4mm,滑动距离125.6m。摩擦实验在室温25±3℃和湿度30%下进行,每组样片重复测试3次,利用磨损率公式W=V/(F×S)(V为磨损体积,F为负载,S为滑动距离)计算涂层的磨损率。另外,使用超景深显微镜(VHX-1000C,Keyence)观察磨痕形貌。
本实施例制备的AlCrSiN/Mo自润滑薄膜的化学成分如表1所示。
表1不同CrMo靶溅射功率下制备的薄膜成分
Figure PCTCN2019125596-appb-000001
图2为制备的AlCrSiN/Mo薄膜的表面形貌(CrMo靶溅射功率为0.6kW)。由图可知,表面形貌中晶粒呈现出菱形结构,且所有晶粒尺寸均在纳米级别,这是因为非晶氮化硅层包裹在细小的(Al,Cr)N纳米晶周围,有效地抑制了晶粒生长。图3为AlCrSiN/Mo薄膜的截面形貌(CrMo靶溅射功率为0.6kW)。此时截面形貌中存在尺寸较大的柱状晶,其顶部与表面形貌中较大菱形晶胞相对应。靶溅射功率越大,涂层表面粒子迁移能力就越强,使得涂层生长更加充分,有助于柱状晶生长。
图4为制备的AlCrSiN/Mo薄膜的XRD图谱。在2θ=31.4°与35.8°处,能够检测到沿
Figure PCTCN2019125596-appb-000002
晶面生长的hcp-AlN衍射峰,其强度随着靶溅射功率的增加而降低。在衍射角2θ=37.8°、43.9°、64.1°和75.5°附近,均可以检测到沿(111)、(200)、(220)、(311)晶面生长的fcc-AlN、tetra-Mo 2N、fcc-CrN三种衍射峰,并且沿(200)晶面生长的衍射峰呈现择优生长趋势。由于(Al,Cr)N相具有NaCl型面心立方结构,其(200)晶面上悬空键和非平衡键密度值较低,故具有最低的表面能;并根据热力学自由能最小原则,靶溅射功率越大,溅射粒子在薄膜表面原子移动能力就越强,将促使薄膜沿表面自由能最小的(200)晶面择优生长。
图5为制备的AlCrSiN/Mo薄膜的划痕形貌(CrMo靶溅射功率为0.6kW)。薄膜在150N法向载荷作用下未被划破。原因如下:由于电弧离子镀技术可以蒸发出较多高能粒子,在负偏压作用下,高能量及高密度粒子束流能够刻蚀基体表面,能够获得良好的化学键结合界面,从而大大增强膜基结合力。此外,划痕表面呈现出白色,这是由于薄膜中存在较多的Mo元素,在划痕测试过程中被逐渐氧化所致。
图6为制备的AlCrSiN/Mo薄膜与氧化铝球对磨后的磨痕形貌(CrMo靶溅射功率为0.6kW)。由图可见磨痕中分布着许多微犁沟,这是由于涂层在法向载荷与切向载荷的循环冲击下,一些硬质碎块易发生剥落,逐渐聚集于摩擦接触区域形成三体磨损,不断刮擦使涂层表面产生疲劳损伤。此时薄膜主要磨损机制为轻微磨粒磨损。同时,磨痕边缘还分布着少量白色磨屑,这是因为摩擦试验在高负载、较长滑动距离下进行,氧化铝球与涂层反复研磨发生疲劳损伤而出现局部脱落。
图7为制备的AlCrSiN/Mo薄膜的摩擦系数(CrMo靶溅射功率为0.6kW)。在起始预磨阶段,摩擦系数迅速上升;随着摩擦过程持续进行,摩擦系数曲线有小幅波动,归因于薄膜内部硬质颗粒脱落后,转移至摩擦界面参与摩擦,造成磨粒磨损。摩擦过程中硬质颗粒的频繁剥落转移,导致摩擦系数发生波动,借助于薄膜中润滑相的作用,摩擦系数最终稳定在0.19左右,磨损率约为1.64×10 -3μm 3/N·μm。
实施例2:
本实施例利用HiPIMS/Pulse DC复合磁控溅射系统,在单晶Si片(40mm×40mm×0.67mm)、SUS304不锈钢片(40mm×40mm×2.0mm)和硬质合金基体(35mm×35mm×4.5mm)上沉积AlCrSiN/Mo薄膜。薄膜制备过程如下:
(1)所有的基体依次在丙酮和乙醇中超声清洗30min,然后用高纯N 2吹干,再固定于真空室内旋转架上。其中,Cr靶连接到电弧电源,CrMo靶连接到脉冲直流磁控溅射电源,AlCrSi靶连接到高功率脉冲磁控溅射电源。
旋转架转速设置为2.5r/min,靶基距分别为80mm(AlCrSi靶)、80mm(CrMo靶)和280mm(Cr靶)。镀膜过程工作气体和反应气体分别为Ar和N 2(纯度均为99.999%)。
(2)辉光清洗:将本底真空度抽至3.0×10 -3Pa以上,并加热至400℃,在-800V偏压作用下,通入流量为200sccm的Ar,保持工作压强为1.5Pa,辉光放电清洗15min;去除基体表面杂质。
(3)离子轰击:辉光清洗后再开启电弧Cr靶进行离子轰击,设定弧源电流90A,弧源电压20V~20.3V,通入Ar流量200sccm,保持工作压强为5×10 -1Pa,轰击清洗8min,以改善膜基结合界面,提高薄膜的临界载荷。
(4)沉积CrN过渡层:维持电弧Cr靶参数不变,通入Ar流量为50sccm,N 2流量为200sccm,保持工作压强为8×10 -1Pa,沉积CrN过渡层15min,目的是改善薄膜与基体的热膨胀系数差异,提高膜/基结合力。
(5)制备AlCrSiN/Mo自润滑薄膜:降低偏压至-150V,再通入反应气体N 2,流量为50sccm,Ar流量为250sccm,保持Ar和N 2总流量为300sccm,通过调节沉积压强,分别为1.0Pa、1.2Pa、1.6Pa或2.0Pa,CrMo靶溅射功率为0.4kW,AlCrSi靶溅射功率为1.2kW,严格控制沉积时间360min,制备一系列AlCrSiN/Mo复合薄膜。
本实施例制备的AlCrSiN/Mo自润滑薄膜的化学成分如表2所示。
表2不同沉积压强下制备的涂层成分
Figure PCTCN2019125596-appb-000003
Figure PCTCN2019125596-appb-000004
图8为制备的AlCrSiN/Mo薄膜的表面形貌(沉积压强为1.6Pa)。可见晶粒尺寸较大,并呈现出明显晶体学特征结构。由于溅射粒子动能被不断削弱,使得沉积粒子在涂层表面扩散和迁移能力降低,增加了晶粒尺寸。图9为AlCrSiN/Mo薄膜的截面形貌(沉积压强为1.6Pa)。从图中未见明显的柱状晶,这是因为Si原子在(Al,Cr)N晶格溶解度较低而从晶界析出,以界面相的形式阻碍了柱状晶的生长。
图10为AlCrSiN/Mo薄膜的XRD图谱。从图中可以看到,AlCrSiN/Mo复合薄膜呈现多晶态,主要由AlN、CrN及Mo 2N等纳米晶组成。在2θ=37.9°与43.7°附近,分别检测到沿(111)与(200)晶面生长衍射峰,分别为AlN(111)、CrN(111)衍射峰和Mo 2N(200)、CrN(200)与AlN(200)衍射峰。当沉积压强为1.6Pa时,(200)晶面衍射峰最强。这是由于游离态氮与溅射离子反应充分,涂层结晶良好。在2θ=42.6°时,出现了密排六方结构的Cr 2N相,并沿
Figure PCTCN2019125596-appb-000005
晶面生长。同时,所有涂层中未检测到Si单质及相应的化合物衍射峰,说明Si元素可能以非晶相Si 3N 4的形式存在,具有抑制晶粒生长的作用。
图11为制备的AlCrSiN/Mo薄膜与氧化铝球对磨后的磨痕形貌(沉积压强为1.6Pa)。磨痕中存在许多微小犁沟,但对应磨痕宽度较窄。由于薄膜硬度高达20.6GPa,减少了氧化铝球与涂层的有效接触面积,提高了薄膜的耐磨损能力,磨损率最低约为1.52×10 -3μm 3/N·μm,此时薄膜主要磨损机制为轻微磨粒磨损。此外,由于Mo元素在摩擦过程中易被氧化,生成具有自润滑功能的层状MoO 3,可起减摩作用。
图12为制备的AlCrSiN/Mo薄膜的摩擦系数(沉积压强为1.6Pa)。在预磨阶段,摩擦系数迅速上升,随着摩擦过程持续进行,摩擦系数曲线有小幅波动,归因于薄膜内部硬质颗粒脱落后,转移至摩擦界面参与摩擦,造成磨粒磨损。摩擦过程中硬质颗粒的频繁剥落转移,导致摩擦系数发生波动。进入稳定磨损阶段后,摩擦系数最终保 持在0.18左右。
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (10)

  1. 一种Mo掺杂型AlCrSiN/Mo自润滑薄膜,其特征在于:所述AlCrSiN/Mo自润滑薄膜是将Mo元素掺杂进AlCrSiN薄膜中制备而成,Mo元素的掺杂量为0.3~6.3at.%。
  2. 根据权利要求1所述的Mo掺杂型AlCrSiN/Mo自润滑薄膜,其特征在于:按原子百分比计,所述AlCrSiN/Mo自润滑薄膜的化学组成如下:
    Al 14.3~25.5at.%,Cr 14.3~36.2at.%,Si 1.6~3.4at.%,N 33.6~56.9at.%,Mo 0.3~6.3at.%。
  3. 根据权利要求1所述的Mo掺杂型AlCrSiN/Mo自润滑薄膜,其特征在于:所述AlCrSiN/Mo自润滑薄膜为多相复合结构,当Mo元素掺杂进AlCrSiN薄膜时,Mo原子替换(Al,Cr)N晶格中的Al和/或Cr原子位形成置换固溶体,所述AlCrSiN/Mo自润滑薄膜包含AlN、CrN和Mo 2N等纳米晶相。
  4. 根据权利要求1所述的Mo掺杂型AlCrSiN/Mo自润滑薄膜,其特征在于:所述AlCrSiN/Mo自润滑薄膜与基体之间为CrN过渡层,所述基体为不锈钢、单晶Si片、钨钢薄片或硬质合金片,所述CrN过渡层厚度150~250nm,所述AlCrSiN/Mo自润滑薄膜厚度2.5~4.0μm。
  5. 根据权利要求4所述的Mo掺杂型AlCrSiN/Mo自润滑薄膜的制备方法,其特征在于:该方法是采用高功率脉冲磁控溅射和脉冲直流磁控溅射复合镀膜技术在基体表面沉积所述AlCrSiN/Mo自润滑薄膜,具体包括如下步骤:
    (1)将基体固定于真空室内旋转架上,然后将真空室本底真空度抽至3.0×10 -3Pa以上,Cr靶连接电弧电源,CrMo靶连接高功率脉冲磁控溅射电源,AlCrSi靶连接脉冲直流磁控溅射电源;
    (2)先对基体进行辉光放电清洗,去除表面杂质;然后再进行离子轰击清洗,以提高膜/基结合力;
    (3)制备CrN过渡层;
    (4)制备AlCrSiN/Mo自润滑薄膜:沉积完CrN过渡层,调节偏压至-50~-150V,再通入流量为50~150sccm的反应气体N 2,流量为50~250sccm的Ar,N 2和Ar总流量为300sccm,保持沉积压强在1.0~2.5Pa,控制CrMo靶溅射功率为0.1~0.9kW,AlCrSi靶溅射功率为0.2~1.5kW,沉积AlCrSiN/Mo自润滑薄膜。
  6. 根据权利要求5所述的Mo掺杂型AlCrSiN/Mo自润滑薄膜的制备方法,其特征在于:步骤(1)中,所述基体固定在旋转架之前,先依次在丙酮和乙醇中超声清洗10~35min,然后用高纯氮气吹干。
  7. 根据权利要求5所述的Mo掺杂型AlCrSiN/Mo自润滑薄膜的制备方法,其特征在于:步骤(2)中,所述辉光放电清洗的过程为:在-800V的偏压作用下,通入流量为50~200sccm的Ar,调节节流阀保持工作压强在0.5~1.5Pa,进行辉光放电清洗基体表面5~15min,去除表面杂质。
  8. 根据权利要求5所述的Mo掺杂型AlCrSiN/Mo自润滑薄膜的制备方法,其特征在于:步骤(2)中,所述离子轰击过程为:辉光清洗后再开启电弧Cr靶进行离子轰击,设定弧源电流80~100A,弧源电压15V~25V,通入流量50~200sccm的Ar,保持工作压强为(5~10)×10 -1Pa,轰击时间为5~10min。
  9. 根据权利要求5所述的Mo掺杂型AlCrSiN/Mo自润滑薄膜的制备方法,其特征在于:步骤(3)中,离子轰击后维持电弧Cr靶参数不变,通入流量40~60sccm的Ar,流量150~250sccm的N 2,保持工作压强为8×10 -1Pa,沉积CrN过渡层,时间为10~20min。
  10. 根据权利要求5所述的Mo掺杂型AlCrSiN/Mo自润滑薄膜的制备方法,其特征在于:步骤(4)中,沉积时间根据技术要求和薄膜沉积速率确定。
PCT/CN2019/125596 2019-09-23 2019-12-16 一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法 WO2021056855A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/655,907 US20220213588A1 (en) 2019-09-23 2022-03-22 Mo Doped AlCrSiN/Mo Self-lubricating Films and Preparation Method Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910897038.6 2019-09-23
CN201910897038.6A CN110607499A (zh) 2019-09-23 2019-09-23 一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/655,907 Continuation-In-Part US20220213588A1 (en) 2019-09-23 2022-03-22 Mo Doped AlCrSiN/Mo Self-lubricating Films and Preparation Method Thereof

Publications (1)

Publication Number Publication Date
WO2021056855A1 true WO2021056855A1 (zh) 2021-04-01

Family

ID=68891841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125596 WO2021056855A1 (zh) 2019-09-23 2019-12-16 一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法

Country Status (3)

Country Link
US (1) US20220213588A1 (zh)
CN (2) CN110607499A (zh)
WO (1) WO2021056855A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110607499A (zh) * 2019-09-23 2019-12-24 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法
CN115505886B (zh) * 2022-09-23 2023-10-24 天津职业技术师范大学(中国职业培训指导教师进修中心) 高硬度、高耐磨性的AlCrSiN/AlCrMoSiN纳米多层复合涂层及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102149844A (zh) * 2008-07-09 2011-08-10 欧瑞康贸易股份公司(特吕巴赫) 涂覆体系、涂覆的工件及其生产方法
CN102296269A (zh) * 2011-09-07 2011-12-28 钢铁研究总院 一种硬质涂层及其制备方法
CN104928637A (zh) * 2015-05-19 2015-09-23 上海新弧源涂层技术有限公司 高硬度CrAlSiN纳米复合结构保护性涂层及其制备方法
CN107130222A (zh) * 2017-06-30 2017-09-05 天津职业技术师范大学 高功率脉冲磁控溅射CrAlSiN纳米复合涂层及其制备方法
US20190093768A1 (en) * 2017-06-02 2019-03-28 Mahle International Gmbh Piston ring and method of manufacture
CN110453190A (zh) * 2019-09-23 2019-11-15 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种AlCrSiN/Mo自润滑薄膜的复合磁控溅射制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070099027A1 (en) * 2005-10-28 2007-05-03 Anand Krishnamurthy Wear resistant coatings
CN102776481A (zh) * 2012-06-15 2012-11-14 上海大学 硬质薄膜与基体间梯度过渡层的制备方法
CN105624623A (zh) * 2016-01-26 2016-06-01 浙江工业大学 一种冷作模具钢基体上的CrMoAlN涂层及其制备方法和性能测试方法
CN110607499A (zh) * 2019-09-23 2019-12-24 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102149844A (zh) * 2008-07-09 2011-08-10 欧瑞康贸易股份公司(特吕巴赫) 涂覆体系、涂覆的工件及其生产方法
CN102296269A (zh) * 2011-09-07 2011-12-28 钢铁研究总院 一种硬质涂层及其制备方法
CN104928637A (zh) * 2015-05-19 2015-09-23 上海新弧源涂层技术有限公司 高硬度CrAlSiN纳米复合结构保护性涂层及其制备方法
US20190093768A1 (en) * 2017-06-02 2019-03-28 Mahle International Gmbh Piston ring and method of manufacture
CN107130222A (zh) * 2017-06-30 2017-09-05 天津职业技术师范大学 高功率脉冲磁控溅射CrAlSiN纳米复合涂层及其制备方法
CN110453190A (zh) * 2019-09-23 2019-11-15 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种AlCrSiN/Mo自润滑薄膜的复合磁控溅射制备方法

Also Published As

Publication number Publication date
CN112501553B (zh) 2022-12-23
CN110607499A (zh) 2019-12-24
CN112501553A (zh) 2021-03-16
US20220213588A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
CN109504940B (zh) 一种周期性纳米多层结构的AlCrN/AlCrSiNiN涂层及其制备方法和应用
CN109161841B (zh) 一种AlCrN/AlCrSiN超硬纳米复合多层涂层及其制备方法和应用
CN110453190B (zh) 一种AlCrSiN/Mo自润滑薄膜的复合磁控溅射制备方法
CN111647851B (zh) 兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法
CN107916402B (zh) 一种AlCrTiSiCN涂层结构及其制备方法
CN109402564B (zh) 一种AlCrSiN和AlCrSiON双层纳米复合涂层及其制备方法
CN104928638A (zh) 一种AlCrSiN基多层纳米复合刀具涂层及其制备方法
WO2019128904A1 (zh) 一种离子源增强的Si含量和晶粒尺寸梯度变化的AlCrSiN涂层
CN207313693U (zh) 基于类金刚石薄膜的复合厚膜
WO2021056855A1 (zh) 一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法
CN110670038A (zh) 具有自润滑和耐磨性能的AlCrN/MoS2纳米复合薄膜及其制备方法
JP2012045650A (ja) 硬質皮膜被覆切削工具
Cheng et al. Effect of substrate bias on structure and properties of (AlTiCrZrNb) N high-entropy alloy nitride coatings through arc ion plating
CN111304612B (zh) 具有高硬度和高抗氧化性能的CrAlN/AlN纳米多层涂层及其制备方法
CN111485219B (zh) 具有高耐磨性的AlCrSiN/Mo热处理型涂层及其制备工艺
CN111647859B (zh) 一种还原性气氛中Zr-Ti-B-N纳米复合涂层的制备工艺
CN111500990B (zh) 一种Zr-Ti-B-N纳米复合涂层及其制备方法
CN111471973B (zh) 一种还原性气氛中制备Zr-B-N纳米复合涂层的工艺
JP2011167838A (ja) 硬質皮膜被覆切削工具
Mei et al. Microstructure and residual stress of TiN films deposited at low temperature by arc ion plating
CN111424254B (zh) 一种提高AlCrSiN/Mo纳米复合涂层韧性与耐磨性的热处理工艺
CN113667939A (zh) 具有高硬度与高温抗氧化性的Zr-B-N/ZrO2纳米多层复合涂层的制备工艺
CN115404438B (zh) 高硬度与高耐磨性的AlCrSiN/AlCrMoSiN纳米多层复合涂层的制备工艺
CN115505886B (zh) 高硬度、高耐磨性的AlCrSiN/AlCrMoSiN纳米多层复合涂层及其制备方法
CN113564551B (zh) 一种多相BN-Y/CrAlN复合涂层及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947237

Country of ref document: EP

Kind code of ref document: A1