CN114107905A - 一种抗冲击高硬度涂层和制备方法及应用 - Google Patents

一种抗冲击高硬度涂层和制备方法及应用 Download PDF

Info

Publication number
CN114107905A
CN114107905A CN202111313781.6A CN202111313781A CN114107905A CN 114107905 A CN114107905 A CN 114107905A CN 202111313781 A CN202111313781 A CN 202111313781A CN 114107905 A CN114107905 A CN 114107905A
Authority
CN
China
Prior art keywords
layer
gradient
femncrco
impact
tial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111313781.6A
Other languages
English (en)
Inventor
梁献文
彭继华
杜日昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Grandtech Co ltd
Original Assignee
Guangzhou Grandtech Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Grandtech Co ltd filed Critical Guangzhou Grandtech Co ltd
Priority to CN202111313781.6A priority Critical patent/CN114107905A/zh
Publication of CN114107905A publication Critical patent/CN114107905A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种抗冲击高硬度涂层和制备方法及应用,涉及新型薄膜材料领域。涂层包括高熵合金层、二元合金层以及三元或四元氮化物层,高熵合金层包括FeMnCrCo层和/或(FeMnCrCo)1‑x1Cx1梯度层;二元合金层包括TiAl层或CrAl层以及(TiAl)1‑x2Nx2梯度层或(CrAl)1‑x2(CN)x2梯度层;三元或四元氮化物层为TiAlN层、CrAlN层、(CrAlSi)1‑X3NX3层或(TiAlSi)1‑X3NX3层。本申请涂层界面的高韧度可以抑制裂纹萌生,二元合金层起缓冲作用,有效抑制裂纹的扩展,同时结合底层效果,使涂层整体达到高韧度、高强度、高硬度、抗剥落的性能。

Description

一种抗冲击高硬度涂层和制备方法及应用
技术领域
本发明涉及新型薄膜材料领域,尤其涉及一种抗冲击高硬度涂层和制备方法及应用。
背景技术
硬质涂层的应用领域越来越广泛,具统计85%以上的刀具使用硬质涂层,在高速高精加工领域更是100%采用了硬质涂层,运动器材领域也广泛使用硬质涂层来提高器件的质感、耐用度。当切削刀具高速断续加工、运动器材用力击打时硬质涂层的剥落成为其主要的失效方式,因此在保证涂层高硬、耐磨的前提下,如何提高硬质涂层的自身韧性、抗冲击能力成为诸多应用领域的迫切需求。
众所周知,当涂层受到强烈冲击或击打时,裂纹的萌生与扩展是导致涂层剥落的本质问题。按照Hertz等理论,冲击/击打时最大拉应力或剪切应力发生在亚表层及击打点一定距离的表面处,对于绝大多数的硬质涂层而言即是界面。因此界面的高强度、高韧性是抑制裂纹萌生的关键,与控制裂纹扩展具有同等重要的地位。
发明内容
本发明提供了一种抗冲击高硬度涂层和制备方法及应用,以解决目前合金涂层强度较低、韧性不足的技术问题,提供兼具高附着力、高韧性、高强度和高硬度的涂层。
为了解决上述技术问题,本发明目的之一提供了一种抗冲击高硬度涂层,包括依次涂附于工件的高熵合金层、二元合金层以及三元氮化物层或四元氮化物层,所述高熵合金层包括FeMnCrCo层和/或(FeMnCrCo)1-x1Cx1梯度层;所述二元合金层包括靠近工件的纯二元合金层和远离工件的梯度二元合金层,所述纯二元合金层为TiAl层或CrAl层,所述梯度二元合金层为(TiAl)1-x2Nx2梯度层或(CrAl)1-x2(CN)x2梯度层;所述三元氮化物层为(TiAl)1-X3NX3层或(CrAl)1-X3NX3层,所述四元氮化物层为(CrAlSi)1-X3NX3层或(TiAlSi)1-X3NX3层。
作为优选方案,所述FeMnCrCo层和(FeMnCrCo)1-x1Cx1梯度层中合金元素FeMnCrCo包括40at%Fe、40at%Mn、10at%Cr和10at%Co,其中0<X1≤0.05。
作为优选方案,所述TiAl层和(TiAl)1-x2Nx2梯度层中的合金元素TiAl包括60at%-70at%Ti和30at%-40at%Al;所述CrAl层和(CrAl)1-x2(CN)x2梯度层中的合金元素CrAl包括50at%Cr和50at%Al,其中0<X2≤0.5。
作为优选方案,所述(TiAl)1-X3NX3层中的合金元素TiAl包括35at%Ti和65at%Al,所述(CrAlSi)1-X3NX3层中的合金元素CrAlSi包括32at%Cr、60at%Al和8at%Si,所述(TiAlSi)1-X3NX3层中的合金元素TiAlSi包括30at%Ti、61at%Al和9at%Si,其中0<X3≤0.5。
作为优选方案,所述高熵合金层的厚度为251nm-470nm,所述纯二元合金层的厚度为200nm-300nm,所述梯度二元合金层的厚度为250nm-300nm,所述三元氮化物层或四元氮化物层的厚度为1μm-10μm。
作为优选方案,包括依次涂附于工件的FeMnCrCo层、(FeMnCrCo)1-x1Cx1梯度层、TiAl层、(TiAl)1-x2Nx2梯度层和(TiAl)1-X3NX3层。
作为优选方案,包括依次涂附于工件的FeMnCrCo层、CrAl层、(CrAl)1-x2(CN)x2梯度层和(CrAlSi)1-X3NX3层。
作为优选方案,包括依次涂附于工件的(FeMnCrCo)1-x1Cx1梯度层、TiAl层、(TiAl)1-x2Nx2梯度层和(TiAlSi)1-X3NX3层。
为了解决上述技术问题,本发明目的之二提供了一种抗冲击高硬度涂层的制备方法,包括以下步骤:
1)工件进行离子刻蚀活化;
2)磁控溅射制备高熵合金层;
3)阴极电弧依次制备纯二元合金层和梯度二元合金层;
4)阴极电弧制备三元或四元氮化物层。
作为优选方案,在步骤1)中具体步骤为通过离子源通入氩气使真空室维持压强为0.1Pa,开启离子源轰击清洗试片施加工件偏压-200V。
作为优选方案,在步骤2)包括FeMnCrCo层和/或(FeMnCrCo)1-x1Cx1梯度层制备;FeMnCrCo层制备的具体步骤为:采用FeMnCrCo靶,采用单极脉冲直流电源,偏压-100V~-150V,频率40kHz,占空比80%的磁控溅射法制备FeMnCrCo层;(FeMnCrCo)1-x1Cx1梯度层制备的具体步骤为:采用单极脉冲直流磁控溅射FeMnCrCo靶,偏压-100V~-150V,频率40kHz,占空比80%,真空室压强达到0.1Pa,调节甲烷气体流量线性梯度增加,40分钟内从0sccm增加到40sccm,获得(FeMnCrCo)1-x1Cx1梯度层。
作为优选方案,在步骤3)中具体步骤为:关闭磁控电源和甲烷气体,维持真空室压强为0.3Pa,开动直流电弧CrAl靶或TiAl靶,弧靶电流90A-120A,偏压-120V~-150V,沉积纯二元合金层,然后开启并线性梯度调节氮气和甲烷流量,并在12min-20min内使真空室压强增加到2Pa,获得梯度二元合金层。
作为优选方案,在步骤4)具体步骤为:继续开动所述直流电弧CrAl靶或TiAl靶,调节氮气流量和/或甲烷气体流量使真空室压强增加到3Pa-6Pa,开动阴极电弧纯Al靶或AlSi靶,打开屏蔽门,维持工件偏压-100~-150V,制得三元或四元氮化物层。
为了解决上述技术问题,本发明目的之三提供了上述一种抗冲击高硬度涂层在切削刀具或运动器材领域中的应用。
相比于现有技术,本发明实施例具有如下有益效果:
1、本申请涂层利用顶层三元或四元氮化物层界面的高强度、高韧度可以有效抑制裂纹萌生;同时发挥气相沉积便于成分调制的特点,设计采用纯金属高熵合金层与碳梯度高熵合金层复合来获得界面底层,具有高附着力、高韧性,同时兼具高强度和高硬度,抑制高速击打/打击时膜基界面裂纹的萌生;此外在顶层和底层之间设计了二元合金缓冲层来协调瞬时高载荷产生的变形层间差异,缓冲层可以调和高速、高载荷冲击带来的变形,又能与顶层的硬质涂层构成良好的成分和力学相容性,通过硬层与软层交互重叠复合,达到刚柔相济的效果,可以有效抑制裂纹的扩展,从而使涂层整体达到高韧性、高强度、高硬度、抗剥落的性能。
附图说明
图1-为本发明实施例一中一种抗冲击高硬度涂层的结构示意图;
图2-为本发明实施例二中一种抗冲击高硬度涂层的结构示意图;
图3-为本发明实施例三中一种抗冲击高硬度涂层的结构示意图;
图4-为本发明对比例一中一种抗冲击高硬度涂层的结构示意图;
其中,说明书附图的附图标记如下:1、工件;2、高熵合金层;2.1、纯金属高熵合金层;2.2、碳梯度高熵合金层;3、二元合金层;3.1、纯二元合金层;3.2、梯度二元合金层;4、三元氮化物层;5、四元氮化物层。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请中关于成分表述说明:
1)多元合金:直接用元素符号,如TiAl合金;
2)具体合金:将元素成分的原子百分含量写出,如简写方式的Ti40Al60合金即表示包含有40at%Ti和60at%Al;
3)具体化合物:如简写方式的(Ti33Al67)0.5N0.5,这里总合金金属元素占50%,非金属N占50%,其中合金金属元素中Ti33Al67包括33at%Ti和67at%Al。
本申请提供一种抗冲击高硬度涂层,可以应用于切削刀具或运动器材等领域,包括依次涂附于工件1表面的高熵合金层2、二元合金层3以及三元氮化物层4或四元氮化物层5,工件为导电金属,高熵合金层2包括纯金属高熵合金层21和/或碳梯度高熵合金层22,纯金属高熵合金层21为FeMnCrCo层,碳梯度高熵合金层22为(FeMnCrCo)1-x1Cx1梯度层;二元合金层3包括依次涂附的纯二元合金层31和梯度二元合金层32,纯二元合金层31可以为TiAl层或CrAl层,梯度二元合金层32可以为(TiAl)1-x2Nx2梯度层或(CrAl)1-x2(CN)x2梯度层;三元氮化物层4可以为(TiAl)1-X3NX3层或(CrAl)1-X3NX3层,四元氮化物层5可以为(CrAlSi)1-X3NX3层或(TiAlSi)1-X3NX3层,具体包括以下制备步骤:
1)工件表面清洗、烘干;
2)工件进行离子刻蚀活化;
3)磁控溅射制备高熵合金层2;
4)阴极电弧依次制备纯二元合金层31和梯度二元合金层32;
5)阴极电弧制备三元氮化物层4或四元氮化物层5。
在其中一个实施方式中,FeMnCrCo层和(FeMnCrCo)1-x1Cx1梯度层均采用FeMnCrCo靶溅射,FeMnCrCo靶包括以下成分:40at%Fe、40at%Mn、10at%Cr、10at%Co,FeMnCrCo层简写为:Fe40Mn40Cr10Co10层,(FeMnCrCo)1-x1Cx1梯度层简写为:(Fe40Mn40Cr10Co10)1-x1Cx1
在其中一个实施方式中,(FeMnCrCo)1-x1Cx1梯度层中0<X1≤0.05。
在其中一个实施方式中,TiAl层和(TiAl)1-x2Nx2梯度层均采用TiAl靶溅射,TiAl靶包括以下成分:60at%-70at%Ti和30at%-40at%Al,TiAl层简写为:Ti60Al40层或Ti70Al30层,(TiAl)1-x2Nx2梯度层简写为:(Ti60Al40)1-x2Nx2梯度层或(Ti70Al30)1-x2Nx2梯度层。
在其中一个实施方式中,CrAl层和(CrAl)1-x2(CN)x2梯度层均采用CrAl靶溅射,CrAl靶包括以下成分:50at%Cr和50at%Al,CrAl层简写为:Cr50Al50层,(CrAl)1-x2(CN)x2梯度层简写为:(Cr50Al50)1-x2(CN)x2梯度层。
在其中一个实施方式中,(TiAl)1-x2Nx2梯度层和(CrAl)1-x2(CN)x2梯度层中0<X2≤0.5。
在其中一个实施方式中,(TiAl)1-X3NX3层中的合金元素TiAl包括以下成分:35at%Ti、65at%Al,简写为:(Ti35Al65)1-X3NX3层,(CrAlSi)1-X3NX3层中的合金元素CrAlSi包括以下成分:32at%Cr、60at%Al和8at%Si,简写为:(Cr32Al60Si8)1-X3NX3,(TiAlSi)1-X3NX3层中的合金元素TiAlSi包括以下成分:30at%Ti、61at%Al和9at%Si,简写为:(Ti30Al61Si9)1-X3NX3
在其中一个实施方式中,(TiAlSi)1-X3NX3层和(CrAlSi)1-X3NX3层中0<X3≤0.5。
在其中一个实施方式中,纯金属高熵合金层21的厚度为0nm-500nm,碳梯度合金层22的厚度为0nm-251nm。
在其中一个实施方式中,纯二元合金层31的厚度为200nm-300nm,梯度二元合金层32的厚度为250nm-300nm。
在其中一个实施方式中,三元氮化物层4或四元氮化物层5的厚度为1μm-10μm。
在其中一个实施方式中,步骤1)具体为工件表面洁净后烘干,放入真空室中,并开动工件托架旋转。
在其中一个实施方式中,步骤2)具体为通过离子源通入氩气使真空室维持压强为0.1Pa,开启离子源轰击清洗试片施加工件偏压-200V,刻蚀活化的同时加热试样到400℃-600℃,该温度维持到涂层沉积结束。
本申请利用氩等离子体对施加负脉冲偏压的工件基底表面刻蚀清洗和活化,改善界面状态,增强涂层与工件基底的结合力。
在其中一个实施方式中,步骤3)具体包括FeMnCrCo层和/或(FeMnCrCo)1-xCx梯度层制备;FeMnCrCo层制备的具体步骤为:采用FeMnCrCo磁控靶,采用单极脉冲直流电源,偏压-100V~-150V,频率40kHz,占空比80%的磁控溅射法制备FeMnCrCo层;(FeMnCrCo)1-xCx梯度层制备的具体步骤为:采用单极脉冲直流磁控溅射FeMnCrCo高熵合金靶,偏压-100V~-150V,频率40kHz,占空比80%,真空室压强达到0.1Pa,调节甲烷气体流量线性梯度增加,40分钟内从0sccm增加到40sccm,获得(FeMnCrCo)1-xCx梯度层。
在其中一个实施方式中,步骤4)具体为关闭磁控电源和甲烷气体,维持真空室压强为0.3Pa,开动直流电弧CrAl靶或TiAl靶,弧靶电流90A-120A,偏压-120V~-150V,沉积纯合金层,然后开启并线性梯度调节氮气和甲烷流量,并在12min-20min内使真空室压强增加到2Pa,获得梯度合金层。
在其中一个实施方式中,步骤5)具体包括三元氮化物层4的制备或四元氮化物层5的制备;三元氮化物层4制备的具体步骤为:继续开动所述直流电弧CrAl靶或TiAl靶,调节氮气流量使真空室压强增加到3Pa,开动阴极电弧纯Al靶,打开屏蔽门,维持工件偏压-100~-150V,制得三元氮化物层4;四元氮化物层5制备的具体步骤为:继续开动所述直流电弧CrAl靶或TiAl靶,关闭甲烷气体,调节氮气流量使真空室压强增加到6Pa,开动合金阴极电弧AlSi靶,打开屏蔽门,偏压-100V~-150V,制备四元氮化物层5。
当涂层受到强烈冲击或击打时,裂纹的萌生与扩展是导致涂层剥落的本质问题,冲击/击打时最大拉应力或剪切应力发生在亚表层及击打点一定距离的表面处,对于绝大多数的硬质涂层而言即是界面,因此本申请涂层的三元或四元氮化物层界面的高强度、高韧性是抑制裂纹萌生的关键。
同时,本申请发挥气相沉积便于成分调制的特点,设计采用纯金属高熵合金21层、碳梯度高熵合金层22或两者的复合来获得界面底层,具有高附着力、高韧性,同时兼具高强度和高硬度,抑制高速击打/打击时膜基界面裂纹的萌生。
此外,本申请为有效地抑制裂纹扩展,在顶层高硬度三元或四元氮化物层之间设计了二元合金缓冲层来协调瞬时高载荷产生的变形层间差异,缓冲层可以调和高速、高载荷冲击带来的变形,又能与顶层的硬质涂层构成良好的成分和力学相容性,通过硬层与软层交互重叠复合,达到刚柔相济的效果,可以有效抑制裂纹的扩展。
以下结合具体实施例进行阐述,以证明本申请方案的实际效果。
实施例一
一种抗冲击高硬度涂层,如图1所示,包括依次涂附设置于试片工件1表面的高熵合金层2、二元合金层3和三元氮化物层4,高熵合金层2包括依次涂附的厚度100nm的Fe40Mn40Cr10Co10层和厚度245nm的(Fe40Mn40Cr10Co10)1-x1Cx1梯度层,其中X1=0.032,二元合金层3包括依次涂附的厚度300nm的Ti70Al30层和厚度300nm的(Ti70Al30)0.5N0.5梯度层,三元氮化物层4为厚度1μm的(Ti35Al65)0.5N0.5层,具体包括以下制备步骤:
1)尺寸为20x20x5mm的方形304不锈钢合金试片在清洗线清洗,使试片表面洁净后,用无油压缩空气烘干,装挂在卡具上放入HauzerFlexcoat 850镀膜系统的真空室中,并开动工件托架旋转;
2)真空室的背底真空低于5x10-3Pa后,通过离子源的入气口通入氩气使真空室维持压强为0.1Pa,开启离子源轰击清洗试片并施加工件偏压-200V,期间维持直流弧电流为30A,离子轰击清洗40分钟后关闭,刻蚀活化的同时开动加热电源加热试样到400℃,该温度一直维持到涂层沉积结束;
3)开启单极脉冲直流磁控溅射Fe40Mn40Cr10Co10靶,靶功率3.5kW,偏压-100V,频率40kHz,占空比80%,真空室仅通入氩气并维持压强为0.1Pa,沉积10分钟获得Fe40Mn40Cr10Co10层,然后调节甲烷气体流量线性梯度,30分钟内从0sccm增加到30sccm,涂制245nm梯度(Fe40Mn40Cr10Co10)1-x1Cx1梯度层,该层波谱分析C含量即X1为3.2%,其中Fe40Mn40Cr10Co10靶包括以下成分:40at%Fe、40at%Mn、10at%Cr和10at%Co。
4)关闭磁控电源和甲烷气体,通入氩气维持真空室压强为0.3Pa,开动直流电弧Ti70Al30靶,弧靶电流100A,工件偏压-150V,沉积Ti70Al30层,然后线性梯度调节氮气流量在15分钟内使真空室压强增加到2Pa,制备(Ti70Al30)0.5N0.5梯度层,其中X2=0.5,Ti70Al30靶包括以下成分:70at%Ti和30at%Al。
5)继续开动上述合金阴极电弧Ti70Al30靶,调节氮气流量使真空室压强增加到3Pa,开动纯Al阴极电弧靶,打开屏蔽门,维持工件偏压-150V,制备(Ti35Al65)0.5N0.5层,完成涂层制备后,工件随炉冷却低于150℃后取出,其中(Ti35Al65)0.5N0.5层中的合金元素Ti35Al65包括以下成分:35at%Ti和65at%Al。
性能检测中,采用载荷为10g的MVA401型显微硬度计测试试片涂层的表面硬度为2989HV;采用压头直径为200μm的划痕仪MFT-4000测试试片涂层的膜基结合力达到95N;将试片焊接在高尔夫球头,并在练习球场砂坑70公斤力挥杆击打测试,击打300次后表面仅有少量切痕,未见涂层剥落。
实施例二
一种抗冲击高硬度涂层,如图2所示,包括依次涂附设置于试片工件1表面的高熵合金层2、二元合金层3和四元氮化物层5,高熵合金层2为涂附厚度470nm的Fe40Mn40Cr10Co10层,二元合金层3包括依次涂附的厚度200nm的Cr50Al50层和厚度300nm的(Cr50Al50)0.5(CN)0.5梯度层,四元氮化物层5为厚度3μm的(Cr32Al60Si8)0.5N0.5层,具体包括以下制备步骤:
1)尺寸为20x20x5mm的方形Ti6Al4V合金试片在清洗线清洗,使表面洁净后,用无油压缩空气烘干,装挂在卡具上放入HauzerFlexcoat 850镀膜系统的真空室中,并开动工件托架旋转;
2)真空室的背底真空低于5x10-3Pa后,通过离子源的入气口通入氩气使真空室维持压强为0.1Pa,开启离子源轰击清洗试片并施加工件偏压-200V,期间维持直流弧电流为30A,离子轰击清洗40分钟后关闭,刻蚀活化的同时开动加热电源加热试样到600℃,该温度一直维持到涂层沉积结束;
3)开启单极脉冲直流磁控溅射Fe40Mn40Cr10Co10靶,靶功率3.5kW,偏压-150V,频率40kHz,占空比80%,真空室通入氩气并维持压强为0.1Pa,沉积45分钟获得470nm厚Fe40Mn40Cr10Co10层,其中Fe40Mn40Cr10Co10靶包括以下成分:40at%Fe、40at%Mn、10at%Cr和10at%Co。
4)关闭磁控电源,通入氩气维持真空室压强为0.3Pa,开动直流电弧Cr50Al50靶,弧靶电流120A,工件偏压-120V,沉积200nm厚度Cr50Al50层;然后线性梯度调节氮气+甲烷(体积比1:1)流量在20分钟内使真空室压强增加到2Pa,制备300nm厚度的梯度层(Cr50Al50)0.5(CN)0.5,其中Cr50Al50靶包括以下成分:50at%Cr和50at%Al。
步骤5:继续开动Cr50Al50合金阴极电弧靶,关闭甲烷气体,调节氮气流量使真空室压强增加到6Pa,开动Al80Si20合金阴极电弧靶,打开屏蔽门,维持工件偏压-120V,制备厚度3微米厚的(Cr32Al60Si8)0.5N0.5层,完成涂层制备后,工件随炉冷却低于150℃后取出,其中Al80Si20靶包括以下成分:80at%Al和20at%Si,(Cr32Al60Si8)0.5N0.5层中的合金元素Cr32Al60Si8包括以下成分:32at%Cr、60at%Al和8at%Si。
性能检测中,采用载荷为10g的MVA401型显微硬度计测试试片涂层的表面硬度为3348HV;采用压头直径为200μm的划痕仪MFT-4000测试试片涂层的膜基结合力大于100N;将试片焊接在高尔夫球头,并在练习球场砂坑70公斤力挥杆击打测试,击打400次后表面仅有少量切痕,未见涂层剥落。
实施例三
一种抗冲击高硬度涂层,如图3所示,包括依次涂附设置于试片工件1表面的高熵合金层2、二元合金层3和四元氮化物层5,高熵合金层2为涂附厚度251nm的(Fe40Mn40Cr10Co10)1-x1Cx1梯度层,其中X1=0.041,二元合金层3包括依次涂附的厚度250nm的Ti60Al40层和厚度250nm的(Ti60Al40)0.5N0.5梯度层,四元氮化物层5为厚度10μm的(Ti30Al61Si9)0.5N0.5层,具体包括以下制备步骤:
1)尺寸为20x20x5mm的方形电镀Ni-Cr的PH-17金属试片在清洗线清洗,使表面洁净后,用无油压缩空气烘干,装挂在卡具上放入HauzerFlexcoat 850镀膜系统的真空室中,并开动工件托架旋转;
2)真空室的背底真空低于5x10-3Pa后,通过离子源的入气口通入氩气使真空室维持压强为0.1Pa,开启离子源轰击清洗试片并施加工件偏压-200V,期间维持直流弧电流为30A,离子轰击清洗40分钟后关闭,刻蚀活化的同时开动加热电源加热试样到450℃,该温度一直维持到涂层沉积结束;
3)开启单极脉冲直流磁控溅射Fe40Mn40Cr10Co10靶,靶功率3.5kW,偏压-120V,频率40kHz,占空比80%,导入氩气使真空室压强达到0.1Pa后立即调节甲烷气体流量线性梯度增加,40分钟内从0sccm增加到40sccm,涂制251nm厚(Fe40Mn40Cr10Co10)1-x1Cx1层,该层波谱分析C含量为4.1%,其中Fe40Mn40Cr10Co10靶包括以下成分:40at%Fe、40at%Mn、10at%Cr和10at%Co。
4)关闭磁控电源和甲烷气体,通入氩气维持真空室压强为0.3Pa,开动直流电弧Ti60Al40靶,弧靶电流90A,工件偏压-120V,沉积250nm厚度T60Al40层;然后线性梯度调节氮气流量在12分钟内使真空室压强增加到2Pa,制备250nm厚度的(Ti60Al40)0.5N0.5层,其中Ti60Al40靶包括以下成分:60at%Ti和40at%Al。
5)继续开动上述Ti60Al40合金阴极电弧靶,调节氮气流量使真空室压强增加到2Pa,开动Al80Si20铝合金阴极电弧靶,打开屏蔽门,维持工件偏压-120V,制备厚度10微米的(Ti30Al61Si9)0.5N0.5层,完成涂层制备后,工件随炉冷却低于150℃后取出,其中Al80Si20靶包括以下成分:80at%Al和20at%Si,(Ti30Al61Si9)0.5N0.5层中的合金元素Ti30Al61Si9包括以下成分:30at%Ti、61at%Al和9at%Si。
性能检测中,采用载荷为10g的MVA401型显微硬度计测试试片涂层的表面硬度为3217HV;采用压头直径为200μm的划痕仪MFT-4000测试试片涂层的膜基结合力达到98N;将试片焊接在高尔夫球头,并在练习球场砂坑70公斤力挥杆击打测试,击打400次后表面仅有少量切痕,未见涂层剥落。
对比例一
一种抗冲击高硬度涂层,如图4所示,包括涂附设置于试片工件1表面的四元氮化物层5,四元氮化物层5为厚度10μm的(Ti30Al61Si9)0.5N0.5层,具体包括以下制备步骤:
1)尺寸为20x20x5mm的方形电镀Ni-Cr的PH-17金属试片在清洗线清洗,使表面洁净后,用无油压缩空气烘干,装挂在卡具上放入HauzerFlexcoat 850镀膜系统的真空室中,并开动工件托架旋转;
2)真空室的背底真空低于5x10-3Pa后,通过离子源的入气口通入氩气使真空室维持压强为0.1Pa,开启离子源轰击清洗试片施加工件偏压-200V,期间维持直流弧电流为30A,离子轰击清洗40分钟后关闭,刻蚀活化的同时开动加热电源加热试样到450℃,该温度一直维持到涂层沉积结束;
3)通入Ar使真空室压强达到0.3Pa,然后开动Ti60Al40合金阴极电弧靶以及Al80Si20铝合金阴极电弧靶,调节氮气流量使真空室压强增加到2Pa,维持工件偏压120V,制备厚度10微米的(Ti30Al61Si9)0.5N0.5层,完成涂层制备后,工件随炉冷却低于150℃后取出,其中Ti60Al40靶包括以下成分:60at%Ti和40at%Al,Al80Si20靶包括以下成分:80at%Al和20at%Si,(Ti30Al61Si9)0.5N0.5层中的合金元素Ti30Al61Si9包括以下成分:30at%Ti、61at%Al和9at%Si。
性能测试中,采用载荷为10g的MVA401型显微硬度计测试试片涂层的表面硬度为3198HV;采用压头直径为200μm的划痕仪MFT-4000测试试片涂层的膜基结合力达到30N;将试片焊接在高尔夫球头,并在练习球场砂坑70公斤力挥杆击打测试,击打20次后表面涂层大片剥落。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步的详细说明,应当理解,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围。特别指出,对于本领域技术人员来说,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种抗冲击高硬度涂层,其特征在于,包括依次涂附于工件(1)的高熵合金层(2)、二元合金层(3)以及三元氮化物层(4)或四元氮化物层(5),所述高熵合金层(2)包括FeMnCrCo层和/或(FeMnCrCo)1-x1Cx1梯度层;所述二元合金层(3)包括依次涂附的纯二元合金层(31)和梯度二元合金层(32),所述纯二元合金层(31)为TiAl层或CrAl层,所述梯度二元合金层(32)为(TiAl)1-x2Nx2梯度层或(CrAl)1-x2(CN)x2梯度层;所述三元氮化物层(4)为(TiAl)1- X3NX3层或(CrAl)1-X3NX3层,所述四元氮化物层(5)为(CrAlSi)1-X3NX3层或(TiAlSi)1-X3NX3层。
2.如权利要求1所述的一种抗冲击高硬度涂层,其特征在于,所述FeMnCrCo层和(FeMnCrCo)1-x1Cx1梯度层中合金元素FeMnCrCo包括40at%Fe、40at%Mn、10at%Cr和10at%Co,其中0<X1≤0.05。
3.如权利要求1所述的一种抗冲击高硬度涂层,其特征在于,所述TiAl层和(TiAl)1- x2Nx2梯度层中合金元素TiAl包括60at%-70at%Ti和30at%-40at%Al;所述CrAl层和(CrAl)1-x2(CN)x2梯度层中合金元素CrAl包括50at%Cr和50at%Al,其中0<X2≤0.5。
4.如权利要求1所述的一种抗冲击高硬度涂层,其特征在于,所述(TiAl)1-X3NX3层中的合金元素TiAl包括35at%Ti和65at%Al,所述(CrAlSi)1-X3NX3层中的合金元素CrAlSi包括32at%Cr、60at%Al和8at%Si,所述(TiAlSi)1-X3NX3层中的合金元素TiAlSi包括30at%Ti、61at%Al和9at%Si,其中0<X3≤0.5。
5.如权利要求1所述的一种抗冲击高硬度涂层,其特征在于,所述高熵合金层(2)的厚度为251nm-470nm,所述纯二元合金层(31)的厚度为200nm-300nm,所述梯度二元合金层(32)的厚度为250nm-300nm,所述三元氮化物层(4)或四元氮化物层(5)的厚度为1μm-10μm。
6.一种抗冲击高硬度涂层的制备方法,其特征在于,用于制备如权利要求1-5任一所述的一种抗冲击高硬度涂层,包括以下步骤:
1)工件进行离子刻蚀活化;
2)磁控溅射制备高熵合金层;
3)阴极电弧依次制备纯二元合金层和梯度二元合金层;
4)阴极电弧制备三元或四元氮化物层。
其特征在于,在步骤1)中具体步骤为通过离子源通入氩气使真空室维持压强为0.1Pa,开启离子源轰击清洗试片施加工件偏压-200V。
7.如权利要求6所述的一种抗冲击高硬度涂层的制备方法,其特征在于,在步骤2)包括FeMnCrCo层和/或(FeMnCrCo)1-xCx梯度层制备;
FeMnCrCo层制备的具体步骤为:采用FeMnCrCo靶,采用单极脉冲直流电源,偏压-100V~-150V,频率40kHz,占空比80%的磁控溅射法制备FeMnCrCo层;
(FeMnCrCo)1-xCx梯度层制备的具体步骤为:采用单极脉冲直流磁控溅射FeMnCrCo靶,偏压-100V~-150V,频率40kHz,占空比80%,真空室压强达到0.1Pa,调节甲烷气体流量线性梯度增加,40分钟内从0sccm增加到40sccm,获得(FeMnCrCo)1-xCx梯度层。
8.如权利要求7所述的一种抗冲击高硬度涂层的制备方法,其特征在于,在步骤3)中具体步骤为:关闭磁控电源和甲烷气体,维持真空室压强为0.3Pa,开动直流电弧CrAl靶或TiAl靶,弧靶电流90A-120A,偏压-120V~-150V,沉积纯二元合金层,然后开启并线性梯度调节氮气和甲烷流量,并在12min-20min内使真空室压强增加到2Pa,获得梯度二元合金层。
9.如权利要求8所述的一种抗冲击高硬度涂层的制备方法,其特征在于,在步骤4)具体步骤为:继续开动所述直流电弧CrAl靶或TiAl靶,调节氮气流量和/或甲烷气体流量使真空室压强增加到3Pa-6Pa,开动阴极电弧纯Al靶或AlSi靶,打开屏蔽门,维持工件偏压-100~-150V,制得三元或四元氮化物层。
10.一种如权利要求1-5任一所述的抗冲击高硬度涂层在切削刀具或运动器材领域中的应用。
CN202111313781.6A 2021-11-08 2021-11-08 一种抗冲击高硬度涂层和制备方法及应用 Pending CN114107905A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111313781.6A CN114107905A (zh) 2021-11-08 2021-11-08 一种抗冲击高硬度涂层和制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111313781.6A CN114107905A (zh) 2021-11-08 2021-11-08 一种抗冲击高硬度涂层和制备方法及应用

Publications (1)

Publication Number Publication Date
CN114107905A true CN114107905A (zh) 2022-03-01

Family

ID=80381308

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111313781.6A Pending CN114107905A (zh) 2021-11-08 2021-11-08 一种抗冲击高硬度涂层和制备方法及应用

Country Status (1)

Country Link
CN (1) CN114107905A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120052276A1 (en) * 2010-08-30 2012-03-01 Hon Hai Precision Industry Co., Ltd. Coating, article coated with coating, and method for manufacturing article
CN104789933A (zh) * 2015-04-28 2015-07-22 重庆文理学院 一种纳米复合涂层及其沉积方法
CN106987816A (zh) * 2017-04-06 2017-07-28 天津职业技术师范大学 一种高铝含量超致密Al‑Cr‑Si‑N涂层制备工艺
CN109023263A (zh) * 2018-08-03 2018-12-18 河北工程大学 TiAl/TiAlN/TiCrAlN复合涂层及其制备方法
CN110578122A (zh) * 2019-10-18 2019-12-17 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种AlTiN/AlTiSiN多层纳米复合涂层的制备工艺
CN110629174A (zh) * 2019-08-28 2019-12-31 淮阴师范学院 利用牵引式氮等离子体增强反应气氛环境制备Ti-Al-N硬质薄膜的方法
CN111155064A (zh) * 2019-12-30 2020-05-15 广东汇成真空科技股份有限公司 高功率脉冲磁控溅射制备TiAlSiN复合涂层的方法
CN216712213U (zh) * 2021-11-08 2022-06-10 广州今泰科技股份有限公司 一种抗击打性能优异的高尔夫球头

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120052276A1 (en) * 2010-08-30 2012-03-01 Hon Hai Precision Industry Co., Ltd. Coating, article coated with coating, and method for manufacturing article
CN104789933A (zh) * 2015-04-28 2015-07-22 重庆文理学院 一种纳米复合涂层及其沉积方法
CN106987816A (zh) * 2017-04-06 2017-07-28 天津职业技术师范大学 一种高铝含量超致密Al‑Cr‑Si‑N涂层制备工艺
CN109023263A (zh) * 2018-08-03 2018-12-18 河北工程大学 TiAl/TiAlN/TiCrAlN复合涂层及其制备方法
CN110629174A (zh) * 2019-08-28 2019-12-31 淮阴师范学院 利用牵引式氮等离子体增强反应气氛环境制备Ti-Al-N硬质薄膜的方法
CN110578122A (zh) * 2019-10-18 2019-12-17 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种AlTiN/AlTiSiN多层纳米复合涂层的制备工艺
CN111155064A (zh) * 2019-12-30 2020-05-15 广东汇成真空科技股份有限公司 高功率脉冲磁控溅射制备TiAlSiN复合涂层的方法
CN216712213U (zh) * 2021-11-08 2022-06-10 广州今泰科技股份有限公司 一种抗击打性能优异的高尔夫球头

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
唐宇鑫;苏东艺;彭继华;郑佳荣;: "硬质涂层与奥氏体不锈钢摩擦磨损性能研究", 真空科学与技术学报, no. 01, 15 January 2017 (2017-01-15) *

Similar Documents

Publication Publication Date Title
US6196936B1 (en) Coated golf club component
US6716540B2 (en) Multilayer film formed body
CN105887012B (zh) 一种Zr-B-N纳米复合涂层制备工艺
CN106244986B (zh) 功能梯度的类金刚石碳薄膜及其制备方法和制品
CN107022761A (zh) 基于类金刚石薄膜的复合厚膜及其镀膜方法
CN105839049B (zh) 一种钛铝合金表面抗高温氧化、耐磨损AlCrN涂层及其制备方法
WO2017170536A1 (ja) 被覆切削工具
CN108796453B (zh) 一种高温耐磨的AlCrSiN纳米复合涂层及其制备方法
Zhao et al. Ti–Cu–N hard nanocomposite films prepared by pulse biased arc ion plating
CN106119783B (zh) 功能梯度的类金刚石碳薄膜及其制备方法和制品
WO2022172954A1 (ja) 被覆工具
CN216712213U (zh) 一种抗击打性能优异的高尔夫球头
CN102560338B (zh) 一种金属陶瓷涂层及其制备方法
CN109097731A (zh) 一种AlCrN/AlCrYN多元多层涂层及其制备方法和应用
CN106893991B (zh) 一种Zr-B-O-N纳米复合涂层制备工艺
Gorokhovsky et al. Characterization of large area filtered arc deposition technology: part II—coating properties and applications
CN109023264B (zh) 一种高硬TiCN纳米复合薄膜及其制备方法、模具
TW201339331A (zh) 鍍膜件及其製備方法
CN110106478B (zh) 一种抗冲蚀涂层及其制备方法与应用、工程材料
CN114107905A (zh) 一种抗冲击高硬度涂层和制备方法及应用
JP2000514869A (ja) 硬い有色な層による真ちゅうのコーティング方法
CN106467959B (zh) 一种基体表面的固体润滑复合涂层及其制备方法
GB2385062A (en) Method of Applying Hard Coatings
CN111020497A (zh) 一种周期性多层结构AlTiN/AlCrO涂层及其制备方法
CN102031483B (zh) 碳氮钛铬复合涂层表面处理高尔夫球头的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination