CN106893991B - 一种Zr-B-O-N纳米复合涂层制备工艺 - Google Patents

一种Zr-B-O-N纳米复合涂层制备工艺 Download PDF

Info

Publication number
CN106893991B
CN106893991B CN201710106499.8A CN201710106499A CN106893991B CN 106893991 B CN106893991 B CN 106893991B CN 201710106499 A CN201710106499 A CN 201710106499A CN 106893991 B CN106893991 B CN 106893991B
Authority
CN
China
Prior art keywords
coating
target
metal
nano
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710106499.8A
Other languages
English (en)
Other versions
CN106893991A (zh
Inventor
王铁钢
杨祖兵
阎兵
郭玉垚
刘艳梅
范其香
李彤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology
Original Assignee
Tianjin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology filed Critical Tianjin University of Technology
Priority to CN201710106499.8A priority Critical patent/CN106893991B/zh
Publication of CN106893991A publication Critical patent/CN106893991A/zh
Application granted granted Critical
Publication of CN106893991B publication Critical patent/CN106893991B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/067Borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及硬质涂层及其制备技术,具体地说是一种Zr‑B‑O‑N纳米复合涂层及其制备工艺,采用高功率脉冲和脉冲直流磁控共溅射技术在金属或合金基体上沉积Zr‑B‑O‑N涂层。为提高涂层中Zr元素含量,靶材分别选用金属Zr和化合物ZrB2(纯度均为wt. 99.9%),镀膜前先通入Ar气,利用高功率脉冲磁控溅射Zr靶对基体表面进行轰击清洗,然后沉积金属Zr过渡层,最后再通入反应气体N2和O2,将Zr和ZrB2靶同时起辉,开始沉积Zr‑B‑O‑N涂层。本发明涉及的Zr‑B‑O‑N涂层制备重复性好,并且容易工业化生产;制备出的Zr‑B‑O‑N涂层具有较高的硬度和弹性模量,良好的耐磨性能和抗氧化性能,而且组织结构致密、涂层与基体间的结合力强。

Description

一种Zr-B-O-N纳米复合涂层制备工艺
技术领域
本发明涉及涂层制备技术,具体地说是一种纳米复合Zr-B-O-N涂层的制备工艺。
背景技术
近年来, 在机械、锻造和成型器件上使用耐磨硬质涂层变得越来越重要, 不仅可以节约成本, 而且还能提高材料的使用寿命。Zr-B-N纳米复合涂层具有硬度高,韧性好的优点,还有比其他涂层更好的耐磨性能,向Zr-B-N涂层中添加氧元素制备出的Zr-B-O-N纳米复合涂层,可进一步提高涂层的耐热能力和抗氧化性能。经研究发现,添加氧元素后涂层硬度略有下降,但耐磨性能和抗氧化能力均得到了提升。对于刀具涂层而言,硬度不是影响其使用性能的唯一因素,而涂层组织结构的高温稳定性、与被加工材料之间的摩擦系数和化学反应、以及抗磨损性能对涂层刀具的使用寿命影响更大。
在Zr-B-O-N涂层中,氧含量的多少决定它的存在方式,氧元素若固溶于晶格会引起离子键比例增大和晶格畸变,若偏析于晶界或析出氧化物会造成涂层中微结构缺陷的改变,这些都将影响涂层的各种性能,因此在Zr-B-N 涂层中添加氧元素后,涂层组织结构发生转变、化学键的变化、以及位错和晶界等晶体缺陷的引入将严重影响涂层的力学性能、摩擦学行为和涂层刀具的切削性能;涂层中氧元素的含量和分布将影响高温下涂层元素扩散和表面化学反应,从而改变涂层的热稳定性和抗氧化能力。
为研制结构致密、高硬度、高韧性、高耐热性能的涂层,本专利采用高功率脉冲和脉冲直流共溅射技术沉积纳米复合Zr-B-O-N涂层。高功率脉冲磁控溅射技术利用较高的脉冲峰值功率(超出传统磁控溅射2 ~ 3个数量级)和较低的脉冲占空比(0.5 % ~ 10 %)来实现高金属离化率,这样在偏压电场的作用下,带电粒子会加速轰击基体表面起到清洗作用;在涂层沉积过程中,也为保障涂层硬度提供了大量的金属Zr离子。基体表面经高能离子轰击后, 产生清洁的活化界面并促进局部表面的外延生长, 增强涂层的粘附性能。脉冲直流磁控溅射能有效地抑制电弧产生进而消除由此产生的涂层缺陷,同时可以提高涂层沉积速率、降低沉积温度。
发明内容
本发明的目的在于提供一种具有良好的热稳定性和抗氧化能力的Zr-B-O-N涂层制备工艺。
本发明的技术方案为:
采用高功率脉冲和脉冲直流共溅射技术在金属或合金基体上沉积Zr-B-O-N纳米复合涂层,为提高涂层与基体间的结合强度,在沉积Zr-B-O-N涂层之前,先利用高功率脉冲磁控溅射技术轰击清洗基体,之后沉积约300 nm的金属Zr过渡层,起缓冲内应力的作用。由于金属或合金基体与Zr-B-O-N的热膨胀系数差异较大,当镀膜结束冷却到室温后,会引入较大的热应力,金属Zr过渡层可使内应力呈梯度分布,从而改善涂层与基体间的结合,避免局部应力过大导致涂层剥落。为保持高硬度,需增加涂层中Zr元素的含量,高功率脉冲磁控溅射靶选用金属Zr,脉冲直流磁控溅射靶选用化合物ZrB2,通过适量添加N和O元素形成纳米复合结构来提升涂层的耐高温能力和抗氧化性能。镀膜时严格控制反应气体O2和N2的流量以及各个靶的电源功率,反应沉积结构致密、高硬度、高韧性、高耐热性能的纳米复合涂层。
沉积参数:
先将真空室的本底真空抽至3.0×10-3 Pa,然后在真空室内通入氩气,工作压强保持在1.2 Pa,加-800 V直流偏压对试样表面进行辉光放电清洗10 min;之后降低氩气流量,将工作压强保持在6.0×10-1 Pa,开通高功率脉冲磁控溅射电源,平均输出功率1 kW,开启金属Zr靶,靶电压约为520 V,电流约为2.4 A,再轰击清洗5 min,逐渐降低偏压至-600V、-400V、-200V,分别轰击清洗2 min;之后降低偏压至-50 V,先沉积金属Zr过渡层10 min,Zr靶基距保持在75 mm,沉积温度300 ℃;随后通入反应气体N2和O2(纯度均为99.999%),保持氧气流量比O2/(Ar+N2+O2) =8%和氮气流量比N2/(Ar+ N2+O2) =10%,并利用喉阀将工作压力调至6.0×10-1 Pa,维持高功率脉冲电源输出功率1 kW,再开启脉冲直流电源,输出功率0.8kW,靶电流约2.6A,靶电压约350 V,开启ZrB2化合物靶,开始沉积Zr-B-O-N涂层,靶基距保持75 mm不变,基体偏压仍为-50 V;沉积时间根据具体使用要求设定。
该纳米复合Zr-B-O-N涂层可应用于各种金属及合金表面;也可应用于陶瓷材料表面。
本发明的优点如下:
1.本发明研制的纳米复合Zr-B-O-N涂层具有良好的抗氧化性能,通过氧原子的固溶或析出ZrO2 相来阻挡外界氧进入涂层,也能阻止或减缓涂层内氧元素的扩散。
2.本发明研制的纳米复合Zr-B-O-N涂层化学性能稳定,不与常见的化学腐蚀介质反应。
3.本发明研制的Zr-B-O-N涂层具有较高的硬度和弹性模量,耐磨性能优良。
4.本发明研制的Zr-B-O-N涂层厚度均匀且结构致密,与基体具有良好的
结合强度。
5.本发明研制的Zr-B-O-N涂层热稳定性和抗热冲击性能良好。
6.本发明研制的Zr-B-O-N涂层制备工艺重复性好,应用范围广,实用性强,适用于高速切削刀具表面。
附图说明
图1为高功率脉冲磁控溅射和脉冲直流磁控溅射靶材布局图。
图2为单晶Si片((100)取向)上沉积Zr-B-O-N涂层的X射线衍射分析结果(XRD)。
图3为Zr-B-O-N涂层的断面形貌。
图4为Zr-B-O-N涂层的微观表面形貌。
图5为不锈钢基体上沉积Zr-B-O-N涂层的表面硬度测试结果。
图6为不锈钢基体上沉积Zr-B-O-N涂层的摩擦系数曲线。
图7为Zr-B-O-N涂层和Zr-B-N涂层在空气中的热重分析曲线。
具体实施方式
下面通过实例对本发明作进一步详细说明。
实施例1
本实施例为在已镜面抛光的单晶Si片((100)取向)上沉积Zr-B-O-N涂层,试样尺寸为50×10×0.66mm。基片先分别在丙酮和酒精溶液中各超声清洗20分钟,然后用高纯氮气吹干,再放置于真空室内试样架上。镀膜过程在V-TECH AS610型高功率脉冲和脉冲直流复合磁控溅射镀膜机上进行,阴极靶材选用金属Zr和化合物ZrB2(纯度均为wt. 99.9%),保护气体选用Ar(纯度为99.999%),反应气体分别选用O2和N2(纯度均为99.999%)。图1为高功率脉冲磁控溅射和脉冲直流磁控溅射靶材布局图。
先将真空室的本底真空抽至3.0×10-3 Pa,然后在真空室内通入氩气对试样表面进行辉光放电清洗,工作压强保持在1.2 Pa,加-800 V直流偏压,辉光放电清洗10 min;之后降低氩气流量,将工作压强保持在6.0×10-1 Pa,开通高功率脉冲磁控溅射电源,平均输出功率1 kW,开启金属Zr靶,靶电压约为520 V,电流约为2.4 A,再轰击清洗5 min,逐渐降低偏压至-600V、-400V、-200V,分别轰击清洗2 min;之后降低偏压至-50 V,先沉积金属Zr过渡层10 min,Zr靶基距保持在75 mm,沉积温度300 ℃;随后通入反应气体N2和O2(纯度均为99.999%),保持氧气流量比O2/(Ar+N2+O2) =8%和氮气流量比N2/(Ar+ N2+O2) =10%,并利用喉阀将工作压力调至6.0×10-1 Pa,维持高功率脉冲电源输出功率1 kW,再开启脉冲直流电源,输出功率0.8 kW,靶电流约2.6A,靶电压约350 V,开启ZrB2化合物靶,开始沉积Zr-B-O-N涂层,靶基距保持75 mm不变,基体偏压仍为-50 V,镀膜时间持续180 min。图2为采用本发明工艺制备的Zr-B-O-N涂层的X射线衍射结果,可见涂层内存在不同取向的ZrO2相及Zr2N相。图3和图4分别为采用本发明工艺制备的Zr-B-O-N涂层的断面形貌和微观表面形貌。
实施例2
本实施例为在镜面抛光的304不锈钢基片(Cr-18.5,Ni-9.4,Mn-0.8,Si-0.4,P-0.1,Fe余量,均为重量百分比)上沉积Zr-B-O-N涂层,试样尺寸为30×25×2 mm。基片先经金相砂纸研磨、抛光后,再分别用丙酮和酒精溶液超声清洗,吹干后正对靶材放置于真空室内试样架上。沉积参数同实施例1。图5为不锈钢基体上沉积Zr-B-O-N涂层的表面硬度测试结果,可以看出涂层平均显微硬度约为16 GPa,涂层硬度较高。图6为Zr-B-O-N涂层与直径为6 mm的氧化铝陶瓷球对磨后的摩擦系数,此时法向载荷为2 N,滑动速度为0.1 m/s,采用旋转式运动,磨痕轨道半径为6 mm,在稳定摩擦阶段的平均摩擦系数为0.8。图7为Zr-B-O-N涂层和Zr-B-N涂层在空气中的热重分析曲线,可见采用本发明工艺制备的Zr-B-O-N涂层具有较好的抗氧化性能。

Claims (2)

1.一种 Zr-B-O-N 纳米复合涂层的制备工艺,其特征在于:该工艺首先利用高功率脉冲技术溅射金属Zr 靶,对金属基体表面进行轰击清洗;随后沉积Zr 过渡层;再采用高功率脉冲和脉冲直流磁控共溅射技术分别溅射金属Zr靶和化合物ZrB2 靶,在氮气和氧气的混合气氛中反应沉积Zr-B-O-N涂层;
该工艺的具体过程如下:
先将真空室的本底真空抽至3×10-3 Pa,然后在真空室内通入氩气对试样表面进行辉光放电清洗,工作压强控制在 1.2Pa,加-800V 直流偏压,放电清洗时间10min;之后降低氩气流量,将工作压强保持在6.0×10 -1 Pa,开通高功率脉冲电源,平均输出功率1 kW,控制金属Zr靶起辉,靶电流2.4A,再轰击清洗5 min,依次降低偏压至-600V、-400V、-200V,分别轰击清洗2min;之后降低偏压至-50V,先沉积金属Zr过渡层10 min,靶基距保持在75mm,沉积温度300 ℃;随后通入反应气体 N2 和 O2 ,保持氧气流量比 O2 /(Ar+N2 +O 2 )=8%和氮气流量比N2 /(Ar+N2 +O2 )=10%,并利用喉阀将工作压强调至6.0×10 -1 Pa,维持高功率脉冲电源输出功率1kW,再开启脉冲直流电源,输出功率0.8 kW,靶电流2.6A,靶电压 350 V,控制 ZrB 2 化合物靶材起辉,开始沉积 Zr-B-O-N 涂层,靶基距保持在75 mm,基体偏压仍为-50 V;沉积时间根据具体使用要求而定;
所制备的Zr-B-O-N纳米复合涂层内存在不同取向的ZrO2 相及Zr2N相,涂层平均显微硬度为16GPa,涂层平均摩擦系数为0.8。
2.根据权利要求1所述的Zr-B-O-N纳米复合涂层的制备工艺,其特征在于:该Zr-B-O-N涂层应用于金属材料表面,或者应用于陶瓷材料表面。
CN201710106499.8A 2017-02-27 2017-02-27 一种Zr-B-O-N纳米复合涂层制备工艺 Active CN106893991B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710106499.8A CN106893991B (zh) 2017-02-27 2017-02-27 一种Zr-B-O-N纳米复合涂层制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710106499.8A CN106893991B (zh) 2017-02-27 2017-02-27 一种Zr-B-O-N纳米复合涂层制备工艺

Publications (2)

Publication Number Publication Date
CN106893991A CN106893991A (zh) 2017-06-27
CN106893991B true CN106893991B (zh) 2019-03-15

Family

ID=59184941

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710106499.8A Active CN106893991B (zh) 2017-02-27 2017-02-27 一种Zr-B-O-N纳米复合涂层制备工艺

Country Status (1)

Country Link
CN (1) CN106893991B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108118304A (zh) * 2017-12-22 2018-06-05 富耐克超硬材料股份有限公司 纳米复合涂层及其制备工艺
CN111500990B (zh) * 2020-06-01 2022-05-24 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种Zr-Ti-B-N纳米复合涂层及其制备方法
CN113403597A (zh) * 2021-06-16 2021-09-17 西安交通大学 一种Zr-B-O-N薄膜、Cu互连结构及其制备方法
CN114855135B (zh) * 2022-04-22 2023-05-05 湖南工学院 一种金属材料表面CeO2复合薄膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101338411A (zh) * 2008-08-15 2009-01-07 江苏科技大学 Zr-Si-N硬质复合涂层及其制备方法
CN101775577A (zh) * 2010-03-25 2010-07-14 西安交通大学 Zr-Si-N纳米双相结构表面传导电子发射薄膜的制备方法
JP2012040615A (ja) * 2010-08-12 2012-03-01 Mitsubishi Materials Corp 硬質難削材の高速切削加工で硬質被覆層がすぐれた耐剥離性とすぐれた耐摩耗性を発揮する表面被覆切削工具
CN103668095A (zh) * 2013-12-26 2014-03-26 广东工业大学 一种高功率脉冲等离子体增强复合磁控溅射沉积装置及其使用方法
CN105887012A (zh) * 2016-01-11 2016-08-24 天津职业技术师范大学 一种Zr-B-N纳米复合涂层制备工艺

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105463391B (zh) * 2015-01-09 2018-02-06 天津职业技术师范大学 一种纳米晶ZrB2超硬涂层及制备方法
EP3053968B1 (en) * 2015-02-06 2017-05-17 Schaeffler Baltic, SIA A nanocomposite solid lubricant coating

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101338411A (zh) * 2008-08-15 2009-01-07 江苏科技大学 Zr-Si-N硬质复合涂层及其制备方法
CN101775577A (zh) * 2010-03-25 2010-07-14 西安交通大学 Zr-Si-N纳米双相结构表面传导电子发射薄膜的制备方法
JP2012040615A (ja) * 2010-08-12 2012-03-01 Mitsubishi Materials Corp 硬質難削材の高速切削加工で硬質被覆層がすぐれた耐剥離性とすぐれた耐摩耗性を発揮する表面被覆切削工具
CN103668095A (zh) * 2013-12-26 2014-03-26 广东工业大学 一种高功率脉冲等离子体增强复合磁控溅射沉积装置及其使用方法
CN105887012A (zh) * 2016-01-11 2016-08-24 天津职业技术师范大学 一种Zr-B-N纳米复合涂层制备工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Influence of Nitrogen Flow Ratio on the Microstructure, Composition, and Mechanical Properties of DC Magnetron Sputtered Zr-B-O-N Films;Tie-Gang Wang.et.al;《JMST》;20121130;第28卷(第11期);第981~991页

Also Published As

Publication number Publication date
CN106893991A (zh) 2017-06-27

Similar Documents

Publication Publication Date Title
CN106893991B (zh) 一种Zr-B-O-N纳米复合涂层制备工艺
CN107130222B (zh) 高功率脉冲磁控溅射CrAlSiN纳米复合涂层及其制备方法
CN106893986B (zh) 一种高硬度AlCrN纳米复合涂层及其制备工艺
CN105887012B (zh) 一种Zr-B-N纳米复合涂层制备工艺
CN104928638A (zh) 一种AlCrSiN基多层纳米复合刀具涂层及其制备方法
CN107858647B (zh) 一种Al含量呈梯度变化的CrAlSiN纳米复合涂层及其制备方法
CN106244986B (zh) 功能梯度的类金刚石碳薄膜及其制备方法和制品
CN103212729B (zh) 一种具有CrAlTiN超晶格涂层的数控刀具及其制备方法
CN110004409B (zh) 具有高硬度和高结合力的CrAlN纳米梯度涂层及其制备工艺
CN111647851B (zh) 兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法
CN109402564A (zh) 一种AlCrSiN和AlCrSiON双层纳米复合涂层及其制备方法
CN112410728B (zh) 高Cr含量CrB2-Cr涂层的制备工艺
CN105463391B (zh) 一种纳米晶ZrB2超硬涂层及制备方法
CN106119783B (zh) 功能梯度的类金刚石碳薄膜及其制备方法和制品
Cao et al. Microstructure, mechanical and tribological properties of multilayer TiAl/TiAlN coatings on Al alloys by FCVA technology
CN108977775A (zh) 一种TiAlSiN涂层刀具制备工艺
CN110670038A (zh) 具有自润滑和耐磨性能的AlCrN/MoS2纳米复合薄膜及其制备方法
CN108977781A (zh) 一种硬质合金表面磁控溅射复合技术沉积w-n硬质膜的方法
CN107815643A (zh) 一种用于高温服役的纳米多层涂层及其制备方法
CN106756841A (zh) 一种刀具复合涂层的制备方法
CN110484883A (zh) 一种硬质Zr-B-O纳米复合薄膜的合成方法及应用
CN112391593B (zh) 一种高Cr含量、韧性好的CrB2-Cr涂层及其制备工艺
CN107227447B (zh) 一种钛合金/二硼化锆纳米多层膜及其制备方法与应用
CN111647859B (zh) 一种还原性气氛中Zr-Ti-B-N纳米复合涂层的制备工艺
CN111500990B (zh) 一种Zr-Ti-B-N纳米复合涂层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170627

Assignee: Dalian weitike nanotechnology Co., Ltd

Assignor: TIANJIN University OF TECHNOLOGY AND EDUCATION

Contract record no.: X2020120000003

Denomination of invention: Preparation technology of Zr-B-O-N nanometer composite coating

Granted publication date: 20190315

License type: Common License

Record date: 20200701

EE01 Entry into force of recordation of patent licensing contract