CN105887012A - 一种Zr-B-N纳米复合涂层制备工艺 - Google Patents
一种Zr-B-N纳米复合涂层制备工艺 Download PDFInfo
- Publication number
- CN105887012A CN105887012A CN201610310464.1A CN201610310464A CN105887012A CN 105887012 A CN105887012 A CN 105887012A CN 201610310464 A CN201610310464 A CN 201610310464A CN 105887012 A CN105887012 A CN 105887012A
- Authority
- CN
- China
- Prior art keywords
- coating
- target
- metal
- preparation technology
- nano
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/021—Cleaning or etching treatments
- C23C14/022—Cleaning or etching treatments by means of bombardment with energetic particles or radiation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
- C23C14/0647—Boron nitride
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/067—Borides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
- C23C14/352—Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明涉及纳米复合涂层及其制备技术,具体地说是一种Zr‑B‑N纳米复合涂层的制备工艺,采用高功率脉冲和脉冲直流复合磁控溅射技术在金属或合金基体上沉积Zr‑B‑N纳米复合涂层。为提高涂层中Zr元素含量,靶材同时选用金属Zr和化合物ZrB2(纯度均为wt.99.9%,直径均为80 mm),镀膜前先通入Ar气,利用高功率脉冲磁控溅射Zr靶对基体表面进行轰击清洗,然后沉积金属Zr过渡层,最后再通入反应气体N2,将Zr和ZrB2靶同时起辉,开始沉积Zr‑B‑N涂层。本发明涉及的Zr‑B‑N纳米复合涂层制备工艺简单,重复性好,并且容易工业化生产;制备出的Zr‑B‑N涂层具有较高的韧性和强度,良好的耐磨性能,且组织结构致密、涂层与基体间的结合力强。
Description
技术领域
本发明涉及涂层制备技术,具体地说是一种Zr-B-N纳米复合涂层的制备工艺。
背景技术
近年来, 在机械、锻造和成型器件上使用耐磨硬质涂层变得越来越重要, 不仅可以节约成本, 而且还能提高材料的使用寿命。ZrB2涂层具有较高的化学稳定性、高的电导率和热导率、良好的阻燃性及高的抗氧化和抗腐蚀性能等优点,更具有超高的硬度。但是,ZrB2涂层作为耐磨涂层在使用过程中很容易破碎, 柱状晶的( 001) 织构使其具有各向异性, 而且其垂直于表面的晶界提供了短的裂纹扩展路径, 使涂层韧性大大降低。为了提高ZrB2涂层的韧性和耐磨性能, 可以在ZrB2涂层中掺杂适量氮元素, 制备具有纳米复合结构的Zr-B-N涂层。
纳米复合涂层是由孤立的纳米晶(如nc-ZrN)镶嵌在很薄的非晶层(如a-BN)中形成的一种复合结构涂层,纳米晶硬度较高,非晶相塑性好,两相界面内聚能高,晶体相和非晶相在热力学上呈分离趋势;另外,细小的纳米晶内无法形成位错,晶粒间的薄非晶层可阻挡晶界滑移,大量的两相界面增加了微裂纹扩展阻力。故这种涂层具有高硬度、高韧性、优异的耐磨性能和高温热稳定性,适合用于切削刀具、模具,及机械零部件表面。纳米复合Zr-B-N涂层是将适量的氮元素掺杂于ZrB2涂层中,形成以非晶BN相包裹着纳米晶ZrN/ZrB2的复合结构。
为研制结构致密、高硬度、高韧性的纳米复合涂层,本专利采用高功率脉冲和脉冲直流复合磁控溅射技术沉积纳米复合Zr-B-N涂层。高功率脉冲磁控溅射技术利用较高的脉冲峰值功率(超出传统磁控溅射2 ~ 3个数量级)和较低的脉冲占空比(0.5 % ~ 10 %)来实现高金属离化率,这样在偏压电场的作用下,带电粒子会加速轰击基体表面起到清洗作用,同时也为保障涂层硬度提供了大量的金属Zr离子。基体表面经高能离子轰击后, 产生清洁的活化界面并促进局部表面的外延生长, 增强涂层的粘附性能。脉冲直流磁控溅射能有效地抑制电弧产生进而消除由此产生的涂层缺陷,同时可以提高涂层沉积速率、降低沉积温度。利用脉冲直流磁控溅射技术提供涂层中的B元素,由于BN的标准吉布斯自由能较低(-250.3 kJ/mol),反应气体N2在离化后很容易与B元素形成塑性较好的非晶BN相。
本发明利用高功率脉冲和脉冲直流复合磁控溅射技术在金属或合金基体上沉积纳米复合Zr-B-N涂层,在保证涂层硬度的前提下,进一步改善其韧性。本工作实现了利用大量的两相(非晶和纳米晶)界面阻挡微裂纹的萌生和扩展,从而提高了涂层的韧性。
发明内容
本发明的目的在于提供一种兼具高硬度和高韧性的Zr-B-N涂层及其制备工艺。
本发明的技术方案为:
采用高功率脉冲和脉冲直流复合磁控溅射技术在金属或合金基体上沉积纳米复合Zr-B-N涂层,为提高涂层与基体间的结合强度,在沉积Zr-B-N涂层之前,先利用高功率脉冲磁控溅射技术轰击清洗基体,之后沉积约300 nm厚的金属Zr过渡层,起缓冲内应力的作用。为增加涂层中Zr元素的含量,高功率脉冲磁控溅射靶选用金属Zr,脉冲直流磁控溅射靶选用化合物ZrB2,通过适量添加N元素形成纳米复合结构来改善涂层的韧性。镀膜时严格控制反应气体N2流量和各个靶的电源功率,以制备出结构致密、高硬度、高韧性的纳米复合涂层(nc-ZrN, ZrB2/a-BN)。
沉积参数:
先将真空室的本底真空抽至2.0×10-3 Pa,然后在真空室内通入氩气对试样表面进行辉光放电清洗,工作压强保持在3.0×10-1 Pa,加-600 V直流偏压,放电清洗时间5 min;之后开通高功率脉冲磁控溅射电源,平均输出功率0.8 kW,控制金属Zr靶起辉,靶电流约65A,再轰击清洗5 min;之后降低偏压至-100 V,先沉积金属Zr过渡层10 min,Zr靶基距保持在100 mm,沉积温度300 ℃;随后通入反应气体N2(纯度99.999%),保持氮气流量比N2/(Ar+N2) =0.5,并利用喉阀将工作压力调至4.0×10-1 Pa,同时开启脉冲直流磁控溅射电源,控制ZrB2靶起辉,ZrB2靶基距离120 mm,输出功率0.3 kW,靶电流约2.6 A,靶电压约370 V,占空比60 %,基体偏压仍为-100 V,开始沉积Zr-B-N涂层;沉积时间根据工件技术要求而定。
该纳米复合Zr-B-N涂层可应用于各种金属及合金基体;也可应用于陶瓷材料表面。
本发明的优点如下:
1、 本发明研制的纳米复合Zr-B-N涂层化学性能稳定,不与常见的化学腐蚀介质反应。涂层中非晶BN相可有效阻挡微裂纹的萌生与扩展,极大地提高了涂层韧性。
2、 本发明研制的纳米复合Zr-B-N涂层具有较高的硬度和韧性,摩擦系数低,耐磨性能好。
3、 本发明研制的Zr-B-N涂层厚度均匀且结构致密,与基体具有良好的结合强度。
4、 本发明研制的Zr-B-N涂层抗冲击载荷性能良好。
5、 本发明研制的纳米复合Zr-B-N涂层制备工艺重复性好,与多层膜相比,前者应用范围更广,实用性更强,尤其应用于复杂的零部件表面,具有独特优势。
附图说明
图1为高功率脉冲和脉冲直流磁控溅射靶材布局图。
图2为单晶Si片((100)取向)上沉积Zr-B-N涂层的断面形貌图。
图3为单晶Si片((100)取向)上沉积Zr-B-N涂层的透射电镜高分辨图像及选区电子衍射斑点图。
图4为单晶Si片((100)取向)上沉积Zr-B-N涂层的X射线衍射谱图
图5为不锈钢基体上沉积ZrB2涂层划痕测试后的形貌图。
图6为不锈钢基体上沉积Zr-B-N涂层的摩擦系数测试曲线图。
具体实施方式
下面通过实例对本发明作进一步详细说明。
实施例1
本实施例为在已镜面抛光的单晶Si片((100)取向)上沉积Zr-B-N涂层,试样尺寸为40×30×0.7 mm。基片先分别在丙酮和酒精溶液中各超声清洗20分钟,然后用高纯氮气吹干,再正对靶材放置于真空室内试样架上。镀膜过程在V-TECH AS610型高功率脉冲和脉冲直流复合磁控溅射镀膜机上进行,阴极靶材分别选用金属Zr和化合物ZrB2(纯度均为wt.99.9%),工作气体和反应气体分别选用Ar和N2(纯度均为99.999%),图1为高功率脉冲和脉冲直流磁控溅射靶材布局图。
先将真空室的本底真空抽至2.0×10-3 Pa,然后在真空室内通入氩气对试样表面进行辉光放电清洗,压强升至3.0×10-1 Pa,加-600 V直流偏压,放电清洗时间5 min;之后开通高功率脉冲磁控溅射电源,设置平均输出功率为0.8 kW,控制金属Zr靶起辉,靶电流约65 A,再轰击清洗5 min;之后降低偏压至-100 V,先沉积金属Zr过渡层10 min,Zr靶基距保持在100 mm,沉积温度300 ℃;随后通入反应气体N2(纯度99.999%),保持氮气流量比N2/(Ar+ N2) =0.5,并利用喉阀将工作压力调至4.0×10-1 Pa,同时开启脉冲直流磁控溅射电源,调节ZrB2靶起辉,ZrB2靶基距离120 mm,输出功率0.3 kW,靶电流约2.6 A,靶电压约370 V,占空比60 %,基体偏压仍为-100 V,开始沉积Zr-B-N涂层;镀膜时间持续240分钟。
图2为Zr-B-N涂层的断面形貌,可以看出采用本发明工艺制备的Zr-B-N涂层组织致密均匀,截面无明显的特征,未见PVD涂层中常有的柱状晶,涂层/过渡层/基体间界面结合良好。图3是利用透射电子显微镜观察的高分辨图像及选区电子衍射图谱,可见一些呈不规则形状的ZrN纳米晶弥散分布于非晶相中,经电子衍射斑点确认了ZrN的多晶特征。同时可以发现,(111)晶面的衍射斑点要强于其他晶面,表明涂层沿该晶面择优生长。图4为采用本发明工艺制备的Zr-B-N涂层的X射线衍射结果,可见涂层内存在不同取向的ZrN相及少量的ZrB2相,其中(111)晶面的衍射峰最强,为涂层的择优生长方向,这与图3中衍射斑点的结果一致。X射线衍射曲线也存在局部宽化现象,表明涂层中含有非晶相。
实施例2
本实施例为在镜面抛光的AISI 304不锈钢基片(Cr-18.5,Ni-9.4,Mn-0.8,Si-0.4,P-0.1,Fe余量,均为重量百分比)上沉积Zr-B-N涂层,试样尺寸为30×25×1 mm。基片先经金相砂纸研磨、抛光后,再分别用丙酮和酒精溶液超声清洗,吹干后正对靶材放置于真空室内试样架上。沉积参数同实施例1。与实施例1相同,涂层内存在沿(001)晶面择优生长的ZrN相和非晶BN相。
利用纳米压痕技术,采用连续刚度法测试沉积在不锈钢基体上Zr-B-N涂层的硬度,测量结果在45.4~50.2 GPa范围内,十次测量的平均值为48.2 GPa,涂层具有较高的硬度。涂层与基体的结合强度采用划痕法进行测试,金刚石划头的针尖半径为200 μm,法向载荷以1 N/s的速率由0逐渐增加到100 N,划痕长度为15 mm,测试速度0.2 mm/s。经5次测试,Zr-B-N涂层与基体间临界载荷的平均值为52.6 N。图5为划痕测试后Zr-B-N涂层上的划痕形貌,图中箭头处标出了涂层完全从基体上剥离的位置,经能谱分析确认,箭头左侧灰色区域为残余的涂层,右侧白色区域为不锈钢基体。图6为Zr-B-N涂层与直径为6 mm的氧化铝陶瓷球对磨后的摩擦系数,此时法向载荷为5 N,采用旋转式运动,速度为0.2 m/s,滑动距离300 m,磨痕轨道半径为5 mm。其中,稳定摩擦阶段的平均摩擦系数为0.47,经测算Zr-B-N涂层的平均磨损率为1.2 μm3/N.mm,展示了优异的耐磨性能。
Claims (4)
1.一种Zr-B-N纳米复合涂层的制备工艺,其特征在于:采用高功率脉冲和脉冲直流复合磁控溅射技术在金属或合金基体上沉积Zr-B-N涂层。
2.按照权利要求1所述Zr-B-N涂层的制备工艺,其特征在于:先利用高功率脉冲磁控溅射技术溅射金属Zr靶,对基体表面进行轰击清洗,随后沉积金属Zr过渡层,再同时采用高功率脉冲和脉冲直流磁控溅射技术分别溅射金属Zr靶和化合物ZrB2靶,在氮气气氛中反应沉积Zr-B-N涂层。
3.按照权利要求2所述Zr-B-N涂层的制备工艺,其特征在于:先将真空室的本底真空抽至2.0×10-3 Pa,然后在真空室内通入氩气对试样表面进行辉光放电清洗,工作压强保持在3.0×10-1 Pa,加-600 V直流偏压,放电清洗时间5 min;之后开通高功率脉冲磁控溅射电源,平均输出功率0.8 kW,控制金属Zr靶起辉,靶电流约65 A,再轰击清洗5 min;之后降低偏压至-100 V,先沉积金属Zr过渡层10 min,Zr靶基距保持在100 mm,沉积温度300 ℃;随后通入反应气体N2(纯度99.999%),保持氮气流量比N2/(Ar+ N2) =0.5,并利用喉阀将工作压力调至4.0×10-1 Pa,同时开启脉冲直流磁控溅射电源,控制ZrB2靶起辉,ZrB2靶基距离120 mm,输出功率0.3 kW,靶电流约2.6 A,靶电压约370 V,占空比60 %,基体偏压仍为-100V,开始沉积Zr-B-N涂层;沉积时间根据涂层厚度要求而定。
4.按照权利要求1所述的Zr-B-N涂层的制备工艺,其特征在于:该Zr-B-N涂层可应用于各种金属及合金基体;也可应用于陶瓷材料表面。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610011532 | 2016-01-11 | ||
CN2016100115324 | 2016-01-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105887012A true CN105887012A (zh) | 2016-08-24 |
CN105887012B CN105887012B (zh) | 2018-10-30 |
Family
ID=56702715
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610310464.1A Active CN105887012B (zh) | 2016-01-11 | 2016-05-11 | 一种Zr-B-N纳米复合涂层制备工艺 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105887012B (zh) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106893991A (zh) * | 2017-02-27 | 2017-06-27 | 天津职业技术师范大学 | 一种Zr‑B‑O‑N纳米复合涂层制备工艺 |
CN108118304A (zh) * | 2017-12-22 | 2018-06-05 | 富耐克超硬材料股份有限公司 | 纳米复合涂层及其制备工艺 |
CN111471973A (zh) * | 2020-06-15 | 2020-07-31 | 天津职业技术师范大学(中国职业培训指导教师进修中心) | 一种还原性气氛中制备Zr-B-N纳米复合涂层的工艺 |
CN111647851A (zh) * | 2020-06-15 | 2020-09-11 | 天津职业技术师范大学(中国职业培训指导教师进修中心) | 兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法 |
CN111647859A (zh) * | 2020-06-01 | 2020-09-11 | 天津职业技术师范大学(中国职业培训指导教师进修中心) | 一种还原性气氛中Zr-Ti-B-N纳米复合涂层的制备工艺 |
CN112626456A (zh) * | 2021-01-05 | 2021-04-09 | 天津职业技术师范大学(中国职业培训指导教师进修中心) | 一种兼具高硬度和高韧性的ZrB2-Ni涂层及其制备工艺 |
CN113293353A (zh) * | 2021-05-21 | 2021-08-24 | 西安文理学院 | 一种金属掺杂的二硼化锆薄膜及其制备方法 |
CN113667932A (zh) * | 2021-08-19 | 2021-11-19 | 重庆大学 | 一种镁合金防护涂层及其制备方法 |
CN113817984A (zh) * | 2021-11-24 | 2021-12-21 | 武汉中维创发工业研究院有限公司 | 纳米多层复合陶瓷涂层及其制备方法和应用 |
CN114438445A (zh) * | 2021-12-31 | 2022-05-06 | 广东工业大学 | 一种ZrBN涂层及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101338411A (zh) * | 2008-08-15 | 2009-01-07 | 江苏科技大学 | Zr-Si-N硬质复合涂层及其制备方法 |
CN101775577A (zh) * | 2010-03-25 | 2010-07-14 | 西安交通大学 | Zr-Si-N纳米双相结构表面传导电子发射薄膜的制备方法 |
JP2012040615A (ja) * | 2010-08-12 | 2012-03-01 | Mitsubishi Materials Corp | 硬質難削材の高速切削加工で硬質被覆層がすぐれた耐剥離性とすぐれた耐摩耗性を発揮する表面被覆切削工具 |
CN102373426A (zh) * | 2010-08-16 | 2012-03-14 | 鸿富锦精密工业(深圳)有限公司 | 涂层、具有该涂层的被覆件及该被覆件的制备方法 |
CN103668095A (zh) * | 2013-12-26 | 2014-03-26 | 广东工业大学 | 一种高功率脉冲等离子体增强复合磁控溅射沉积装置及其使用方法 |
CN104862653A (zh) * | 2015-05-20 | 2015-08-26 | 魏永强 | 电弧离子镀和高功率脉冲磁控溅射复合的沉积方法 |
-
2016
- 2016-05-11 CN CN201610310464.1A patent/CN105887012B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101338411A (zh) * | 2008-08-15 | 2009-01-07 | 江苏科技大学 | Zr-Si-N硬质复合涂层及其制备方法 |
CN101775577A (zh) * | 2010-03-25 | 2010-07-14 | 西安交通大学 | Zr-Si-N纳米双相结构表面传导电子发射薄膜的制备方法 |
JP2012040615A (ja) * | 2010-08-12 | 2012-03-01 | Mitsubishi Materials Corp | 硬質難削材の高速切削加工で硬質被覆層がすぐれた耐剥離性とすぐれた耐摩耗性を発揮する表面被覆切削工具 |
CN102373426A (zh) * | 2010-08-16 | 2012-03-14 | 鸿富锦精密工业(深圳)有限公司 | 涂层、具有该涂层的被覆件及该被覆件的制备方法 |
CN103668095A (zh) * | 2013-12-26 | 2014-03-26 | 广东工业大学 | 一种高功率脉冲等离子体增强复合磁控溅射沉积装置及其使用方法 |
CN104862653A (zh) * | 2015-05-20 | 2015-08-26 | 魏永强 | 电弧离子镀和高功率脉冲磁控溅射复合的沉积方法 |
Non-Patent Citations (1)
Title |
---|
喻利花等: "B靶功率对ZrBN复合膜的微结构、力学性能及摩擦性能的影响", 《B靶功率对ZRBN复合膜的微结构、力学性能及摩擦性能的影响》 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106893991A (zh) * | 2017-02-27 | 2017-06-27 | 天津职业技术师范大学 | 一种Zr‑B‑O‑N纳米复合涂层制备工艺 |
CN106893991B (zh) * | 2017-02-27 | 2019-03-15 | 天津职业技术师范大学 | 一种Zr-B-O-N纳米复合涂层制备工艺 |
CN108118304A (zh) * | 2017-12-22 | 2018-06-05 | 富耐克超硬材料股份有限公司 | 纳米复合涂层及其制备工艺 |
CN111647859A (zh) * | 2020-06-01 | 2020-09-11 | 天津职业技术师范大学(中国职业培训指导教师进修中心) | 一种还原性气氛中Zr-Ti-B-N纳米复合涂层的制备工艺 |
CN111647859B (zh) * | 2020-06-01 | 2022-09-06 | 天津职业技术师范大学(中国职业培训指导教师进修中心) | 一种还原性气氛中Zr-Ti-B-N纳米复合涂层的制备工艺 |
CN111471973A (zh) * | 2020-06-15 | 2020-07-31 | 天津职业技术师范大学(中国职业培训指导教师进修中心) | 一种还原性气氛中制备Zr-B-N纳米复合涂层的工艺 |
CN111647851A (zh) * | 2020-06-15 | 2020-09-11 | 天津职业技术师范大学(中国职业培训指导教师进修中心) | 兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法 |
CN112626456A (zh) * | 2021-01-05 | 2021-04-09 | 天津职业技术师范大学(中国职业培训指导教师进修中心) | 一种兼具高硬度和高韧性的ZrB2-Ni涂层及其制备工艺 |
CN113293353A (zh) * | 2021-05-21 | 2021-08-24 | 西安文理学院 | 一种金属掺杂的二硼化锆薄膜及其制备方法 |
CN113667932A (zh) * | 2021-08-19 | 2021-11-19 | 重庆大学 | 一种镁合金防护涂层及其制备方法 |
CN113817984A (zh) * | 2021-11-24 | 2021-12-21 | 武汉中维创发工业研究院有限公司 | 纳米多层复合陶瓷涂层及其制备方法和应用 |
CN114438445A (zh) * | 2021-12-31 | 2022-05-06 | 广东工业大学 | 一种ZrBN涂层及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105887012B (zh) | 2018-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105887012A (zh) | 一种Zr-B-N纳米复合涂层制备工艺 | |
CN108220880B (zh) | 一种高硬度高耐蚀性高熵合金氮化物涂层及其制备方法 | |
Chang et al. | Effect of interlayer design on the mechanical properties of AlTiCrN and multilayered AlTiCrN/TiSiN hard coatings | |
US8173278B2 (en) | Coated body | |
CN106987816B (zh) | 一种高铝含量超致密Al-Cr-Si-N涂层制备工艺 | |
Lin et al. | Effects of surface roughness of substrate on properties of Ti/TiN/Zr/ZrN multilayer coatings | |
Hovsepian et al. | Novel TiAlCN/VCN nanoscale multilayer PVD coatings deposited by the combined high-power impulse magnetron sputtering/unbalanced magnetron sputtering (HIPIMS/UBM) technology | |
CN104928638A (zh) | 一种AlCrSiN基多层纳米复合刀具涂层及其制备方法 | |
EP0289173A1 (en) | Wear-resistant coated object | |
CN104508171A (zh) | 特别是通过干法机械加工操作呈现月牙洼磨损降低的高性能刀具 | |
CN107278177B (zh) | 具有TiAlN-ZrN涂层的整体硬质合金端铣刀 | |
Zhang et al. | Microstructure evolution and wear resistance of nitride/aluminide coatings on the surface of Ti-coated 2024 Al alloy during plasma nitriding | |
Lin et al. | Thick CrN/AlN superlattice coatings deposited by hot filament assisted HiPIMS for solid particle erosion and high temperature wear resistance | |
WO2022172954A1 (ja) | 被覆工具 | |
CN108977775A (zh) | 一种TiAlSiN涂层刀具制备工艺 | |
CN104480443A (zh) | 一种硬韧纳米复合ZrAlCuN涂层及其制备方法 | |
CN107190233A (zh) | 一种具有超高硬度的Si掺杂纳米复合涂层的制备工艺 | |
CN105463391B (zh) | 一种纳米晶ZrB2超硬涂层及制备方法 | |
CN1962947A (zh) | 一种金属材料防护方法之一 | |
CN102912302B (zh) | 一种镁合金表面制备钇/氮化硅复合涂层材料的方法 | |
Fan et al. | Bias voltage optimization and cutting performance of AlCrN coatings deposited by a hybrid technology | |
CN106893991A (zh) | 一种Zr‑B‑O‑N纳米复合涂层制备工艺 | |
Hovsepian et al. | CrAlYCN/CrCN nanoscale multilayer PVD coatings deposited by the combined high power impulse magnetron sputtering/unbalanced magnetron sputtering (HIPIMS/UBM) technology | |
CN108018524A (zh) | 一种低应力wb2多层硬质涂层的制备方法 | |
CN111647859A (zh) | 一种还原性气氛中Zr-Ti-B-N纳米复合涂层的制备工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |