CN114316223B - 一种导电聚乙烯二氧噻吩的醇分散液及其制备方法和应用 - Google Patents

一种导电聚乙烯二氧噻吩的醇分散液及其制备方法和应用 Download PDF

Info

Publication number
CN114316223B
CN114316223B CN202111666148.5A CN202111666148A CN114316223B CN 114316223 B CN114316223 B CN 114316223B CN 202111666148 A CN202111666148 A CN 202111666148A CN 114316223 B CN114316223 B CN 114316223B
Authority
CN
China
Prior art keywords
polyethylene dioxythiophene
alcohol
conductive polyethylene
oxidant
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111666148.5A
Other languages
English (en)
Other versions
CN114316223A (zh
Inventor
周印华
蒋友宇
董馨韵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN202111666148.5A priority Critical patent/CN114316223B/zh
Publication of CN114316223A publication Critical patent/CN114316223A/zh
Application granted granted Critical
Publication of CN114316223B publication Critical patent/CN114316223B/zh
Priority to PCT/CN2022/124484 priority patent/WO2023124367A1/zh
Priority to US18/264,652 priority patent/US11965088B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/22Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/18Homopolymers or copolymers of tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/22Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/79Post-treatment doping
    • C08G2261/794Post-treatment doping with polymeric dopants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/50Aqueous dispersion, e.g. containing polymers with a glass transition temperature (Tg) above 20°C
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/204Applications use in electrical or conductive gadgets use in solar cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明属于光电材料技术领域,具体涉及一种导电聚乙烯二氧噻吩的醇分散液及其制备方法和应用。本发明包括导电聚乙烯二氧噻吩和醇,所述导电聚乙烯二氧噻吩包括聚乙烯二氧噻吩阳离子和氟化磺酸离子聚合物对阴离子。本发明通过采用可醇分散的高氟化磺酸离子聚合物作为对阴离子取代PSS,制备了PEDOT醇分散液,克服了传统水分散液存在吸湿性问题,克服了传统导电聚乙烯二氧噻吩水分散液由于具有较大表面张力而在疏水表面不能均匀涂覆,合成工艺简单,可适用于不同基底以及不同种类的光电器件、热电器件、电致变色薄膜和抗静电涂层中,应用前景广阔。

Description

一种导电聚乙烯二氧噻吩的醇分散液及其制备方法和应用
技术领域
本发明属于光电材料技术领域,具体涉及一种导电聚乙烯二氧噻吩的醇分散液及其制备方法和应用。
背景技术
导电聚合物聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸)(PEDOT:PSS)具有高电导率和离子电导率,高光学透过性和可溶液加工等优点,可广泛应用于抗静电涂层、光电子器件、储能器件以及生物电子器件等。由于PEDOT为不溶性聚合物,水溶性阴离子聚合物PSS具有两方面作用:(1)作为平衡对阴离子与带正电荷的PEDOT发生静电作用;(2)作为分散剂形成稳定的水分散液。目前,德国贺利氏(Heraeus)和比利时爱克发公司(Agfa)等开发了不同导电率的PEDOT:PSS水分散液。然而,PEDOT:PSS水分散液存在以下缺点:(1)浸润性差。水具有较高表面张力(72mN m-1at 25℃),因此PEDOT:PSS水溶液涂布在表面能较低的疏水表面时难以形成均匀的膜;(2)酸性。PEDOT:PSS水分散液的pH值为1.5-2.5,会腐蚀金属、金属氧化物等材料;(3)吸湿性。PSS易吸水,PEDOT:PSS薄膜吸湿后导致电学性能降低,同时易酸化腐蚀其他功能层材料,导致器件性能和寿命降低。
上述问题均与分散溶剂水有关:PSS在水中具有非常高的解离速率,进而产生高酸性和吸湿性;水表面张力大,导致PEDOT:PSS水分散液浸润性差。相比于水,醇具有低的表面张力(比如甲醇和乙醇的表面张力为22-23mN m-1)。此外,酸在醇中的解离速率远低于在水中的解离速率【Proc.R.Soc.Lond.A 1929,126,84-106】。因此醇分散的PEDOT有利于提高浸润性和降低酸性,进而提高器件的性能和稳定性。然而,PSS在醇中的分散浓度低于5mg/mL,因此采用PSS作为对阴离子难以获得稳定的PEDOT:PSS醇分散液。目前文献报道的均为水或者水/醇混合的PEDOT:PSS分散液,因此亟需开发稳定的醇分散的PEDOT溶液。
综述所述,现有技术仍缺乏稳定的导电聚乙烯二氧噻吩的醇分散液。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种导电聚乙烯二氧噻吩的醇分散液,通过采用可醇分散的高氟化磺酸离子聚合物作为对阴离子取代PSS,制备了PEDOT醇分散液。通过控制合成过程中高氟磺酸离子聚合物和噻吩单体的投料比得到不同电导率的醇分散液。该醇分散液具有弱酸性,不会腐蚀ZnO等金属氧化物和金属。具有高浸润性,不需要加入表面活性剂即可通过旋涂、刮涂、狭缝涂布等涂布工艺制备均匀的导电薄膜。
为实现上述目的,按照本发明的一个方面,提供了一种导电聚乙烯二氧噻吩,包括聚乙烯二氧噻吩阳离子和氟化磺酸离子聚合物对阴离子,结构如式(一)所示:
Figure BDA0003451181450000021
其中,n为聚乙烯二氧噻吩的聚合度,为2-100的任一整数,p为氟化磺酸聚合物的聚合度,为2-100的任一整数,m为1-20的任一实数,x为0或1,y为1-5的任一整数,R为氢原子、羟基、烷基、烷氧基、氟代烷基、酯基、羧基、硫代烷基、芳基或杂芳基。
本发明式(一)中m为平均聚合度,聚合物中含有聚合度不同的同系聚合物分子构成,m为按分子数平均而得的数均聚合度,可为非整数。
作为优选,所述R为氢原子或氟代烷基。
作为优选,式(一)中的m为4.5-10,x为1,y为1-3。
按照本发明的另一方面,提供了一种导电聚乙烯二氧噻吩的制备方法,其特征在于,将氟化磺酸离子聚合物和噻吩单体溶于溶剂中配成质量浓度为1%-30%分散液,然后加入氧化剂反应获得蓝黑色液体,半透膜渗析去除未反应的单体和氧化剂后离心分离,即可获得所述的导电聚乙烯二氧噻吩。
作为优选,所述溶剂为水或者醇。
作为优选,所述溶剂为水时,所述氧化剂为水溶性氧化剂或醇溶性氧化剂;
所述溶剂醇水时,所述氧化剂为醇溶性氧化剂;
其中,所述水溶性氧化剂包括三价铁盐,过硫酸盐,过氧化物,V2O5,VOCl3和SbCl5中的至少一种;所述醇溶性氧化剂包括过氧化二苯甲酰和磷钼酸中的至少一种。
按照本发明的另一方面,提供了一种导电聚乙烯二氧噻吩的醇分散液的制备方法,将所述的导电聚乙烯二氧噻吩通过超声分散到醇溶液中,即可得到导电聚乙烯二氧噻吩的醇分散液。
作为优选,所述醇溶液为脂肪醇溶液、脂环醇溶液和芳香醇溶液中的一种或两种以上的混合。
按照本发明的另一方面,提供了一种导电聚乙烯二氧噻吩的醇分散液的制备方法,将氟化磺酸离子聚合物和噻吩单体加入到醇溶液中配成质量浓度为1%-30%分散液,然后加入氧化剂反应获得蓝黑色液体,半透膜渗析去除未反应的单体和氧化剂后,即可得到导电聚乙烯二氧噻吩的醇分散液。
按照本发明的另一方面,提供了一种导电聚乙烯二氧噻吩的醇分散液的应用,所述应用包括太阳能电池、发光二极管、电致变色膜、热电材料、抗静电涂层、柔性电子器件或可拉伸弹性体传感器。
由于阴离子聚合物作为分散剂,因此制备PEDOT醇分散液的关键是得到可醇分散的对阴离子聚合物。然而,目前文献报道的阴离子聚合物在醇中的分散浓度非常低(<5mg/mL),不能用于制备PEDOT醇分散液。通过进一步筛选发现一类高氟化磺酸离子聚合物有两个溶解度参数:16.71-17.37cal0.5 cm-1.5和9.61-10.08cal0.5 cm-1.5,前者归结于亲水性的酸根离子基团,后者归结于疏水性的聚四氟乙烯基团。上述两个溶解度参数分别与水(23.4cal0.5 cm-1.5)和乙醇(12.7cal0.5 cm-1.5)的溶解度参数相似,因此高氟化磺酸离子聚合物在水和醇中的分散浓度均大于20mg/mL。因此,本发明通过采用可醇分散的高氟化磺酸离子聚合物作为对阴离子取代PSS,制备了PEDOT醇分散液。通过控制合成过程中高氟磺酸离子聚合物和噻吩单体的投料比得到不同电导率的醇分散液。该醇分散液具有弱酸性,不会腐蚀ZnO等金属氧化物和金属。具有高浸润性,不需要加入表面活性剂即可通过旋涂、刮涂、狭缝涂布等涂布工艺制备均匀的导电薄膜。此外,由于该阴离子聚合物含有大量疏水性的-CF2-基团,因此制备的PEDOT薄膜具有高疏水性。因此,导电聚乙烯二氧噻吩醇分散液可用于光电器件(如太阳能电池、发光二极管、光电探测器等)中的空穴传输层和电极、抗静电涂层、电致变色器件、热电材料、生物电子器件等。
综述所述,本发明的有益效果有:
(1)本发明通过采用可醇分散的高氟化磺酸离子聚合物作为对阴离子取代PSS,制备了PEDOT醇分散液。通过控制合成过程中高氟磺酸离子聚合物和噻吩单体的投料比得到不同电导率的醇分散液,具有弱酸性,不会腐蚀ZnO等金属氧化物和金属,而且具有高浸润性,不需要加入表面活性剂即可通过旋涂、刮涂、狭缝涂布等涂布工艺制备均匀的导电薄膜,克服了传统水分散液存在吸湿性问题,克服了传统导电聚乙烯二氧噻吩水分散液(PEDOT:PSS)由于具有较大表面张力而在疏水表面不能均匀涂覆。
(2)本发明提供的导电聚乙烯二氧噻吩醇分散液呈弱酸性或中性,解决了传统水分散液强酸性对金属氧化物、金属电极以及金属纳米线的腐蚀问题;而醇分散液具有较小表面张力,能够在任意表面涂布加工制备均匀的导电薄膜;
(3)本发明合成工艺简单,可适用于不同基底以及不同种类的光电器件、热电器件、电致变色薄膜、抗静电涂层及生物电子器件中,应用前景广阔。
附图说明
图1是导电聚乙烯二氧噻吩结构示意图;
图2实施例1制备的46.1nm PEDOT:F薄膜的吸收率及透过率曲线测试图。
图3是实施例1制备的46.1nm PEDOT:F薄膜的电导性能测试,其中,图3中的左图为电导率的测试,图3中的右图为电阻及其拟合曲线测试。
图4是应用实施例1反式结构的有机太阳能电池的结构及测试图,其中,图4中的左图为反式有机太阳能电池的器件结构示意图,图中4的右图为有机太阳能电池的电流密度-电压测试图。
图5是应用实施例2正式结构的有机太阳能电池的结构及测试图,其中,图5中的左图为正式有机太阳能电池的器件结构示意图,图中5的右图为有机太阳能电池的电流密度-电压测试图。
图6是应用实施例3全溶液加工的有机太阳能电池的结构及测试图,其中,图6中的左图为全溶液加工的有机太阳能电池的器件结构示意图,图中6的右图为有机太阳能电池的电流密度-电压测试图。
图7是应用实施例4热电器件温差-电压曲线图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例
一种导电聚乙烯二氧噻吩,包括聚乙烯二氧噻吩阳离子和氟化磺酸离子聚合物对阴离子,结构如式(一)所示:
Figure BDA0003451181450000061
其中,n为聚乙烯二氧噻吩的聚合度,为2-100的任一整数,p为氟化磺酸聚合物的聚合度,为2-100的任一整数,m为1-20的任一数,x为0或1,y为1-5的任一整数,R为氢原子、羟基、烷基、烷氧基、氟代烷基、酯基、羧基、硫代烷基、芳基或杂芳基。
优选的,所述R为氢原子或氟代烷基。
优选的,式(一)中的m为4.5-10,x为1,y为1-3。
实施例1
导电聚乙烯二氧噻吩醇分散液,通过以下方法合成:在6mL去离子水中加入2mL的10wt%的高氟磺酸离子聚合物(PFI,单体的分子量为1094g/mol,其分子结构如式(二)所示)水溶液和20μL的3,4-乙烯二氧噻吩单体,室温下搅拌1h。待搅拌成乳白色液体后,逐滴缓慢加入氧化剂。氧化剂的配置方法为将60.75mg的三氯化铁(FeCl3)溶解于3mL的去离子水中。氧化剂加入后乳白色液体开始逐渐变为蓝色,反应持续12h后变为蓝黑色液体。将蓝黑色液体放置在半透膜中渗析除去小分子杂质和多余氧化剂,18h后取出液体,通过10000rpm高速离心得到蓝黑色固体。蓝黑色固体加入到醇溶剂中,通过细胞超声粉碎处理10h后得到导电聚乙烯二氧噻吩醇分散液(PEDOT:F)。该导电聚乙烯二氧噻吩醇分散液的质量分数为1.3-1.8wt.%。
Figure BDA0003451181450000071
其中,p为1-20的任一整数。
使用旋涂的方法加工成膜,在干净的玻璃上动态旋涂制备得到的PEDOT:F溶液,旋涂速度分别为1000rpm、2000rpm、3500rpm及5000rpm。旋涂完成后再100℃退火5分钟,得到的PEDOT:F薄膜厚度分别为53.0nm,46.1nm,35.8nm及25.2nm。
以厚度为46.1nm的PEDOT:F薄膜为例,其吸收率及透过率曲线如图2所示,功函数测试为5.4eV。
使用该46.1nm的薄膜计算电导率,如图3所示,图3中的左图为电导率的测试,图3中的右图为电阻及其拟合曲线测试,计算得薄膜电导率为5.4×10-2S/cm。
实施例2
导电聚乙烯二氧噻吩醇分散液,通过以下方法合成:在10mL的乙醇中加入10mL的20wt%的高氟磺酸离子聚合物(PFI,单体的分子量为1094g/mol)水醇混合溶液和0.6g的3,4-乙烯二氧噻吩单体氧化剂及1.05g的氧化剂过氧化二苯甲酰(BPO)。持续搅拌48h后变为蓝黑色液体。后处理阶段将蓝黑色液体放置在半透膜中渗析,渗析溶剂为体积比为乙醇:水=1:1的混合溶液,渗析24h除去小分子杂质和多余氧化剂,得到醇分散液。制备的导电聚乙烯二氧噻吩醇分散液的质量分数为1.3-1.8wt.%。
使用旋涂的方法加工成膜,在干净的玻璃上动态旋涂制备得到的PEDOT:F溶液,旋涂速度分别为2000rpm、3500rpm及5000rpm。旋涂完成后再100℃退火5分钟,得到的PEDOT:F薄膜厚度分别为37.0nm,28.4nm及18.2nm。以厚度为37.0nm的PEDOT:F薄膜为例,其功函数测试为5.3eV,其电导率测试为4.2×10-3S/cm。
实施例3
本实施例与实施例1制备方法相同,主要区别在于,高氟磺酸离子聚合物的结构如式(三)所示。
Figure BDA0003451181450000081
实施例3
本实施例与实施例4制备方法相同,主要区别在于,高氟磺酸离子聚合物的结构如式(四)所示。
Figure BDA0003451181450000091
应用实施例
应用实施例1将实施例1所述的导电聚乙烯二氧噻吩醇分散液制备的薄膜直接作为反式结构的有机太阳能电池的空穴传输层:
反式有机太阳能电池的器件结构如图4左图所示,为glass/ITO/ZnO/PM6:Y6:PCBM/PEDOT:F/Ag。其中,ITO玻璃为阴极层,ZnO作为电子传输层,PM6:Y6:PCBM作为光活性层,PEDOT:F作为空穴传输层,Ag作为阳极层。具体制备方法如下:
将切割好的透明电极氧化铟锡(ITO)玻璃依次用去离子水、丙酮及异丙醇超声清洗15分钟。在洗净的ITO玻璃片上旋涂氧化锌溶胶凝胶溶液,3000转/分钟,然后200℃下加热15分钟;在上述基底上旋涂PM6:Y6:PCBM溶液(总浓度为15.4mg/mL,质量比为1:1.2,溶剂为氯仿),转速为2500转/分钟,然后100℃退火10分钟;在上述活性层上旋涂导电聚乙烯二氧噻吩醇分散液,转速为3000转/分钟,然后100℃退火5分钟,导电聚乙烯二氧噻吩醇分散液制备的薄膜其电导率为5.4×10-2S/cm,其功函数为5.4eV;最后把器件移到蒸镀舱内,在真空压力小于5×10-7Torr后蒸镀100nm的银电极。
制备的有机太阳能电池的电流密度-电压如图中4的右图所示,Voltage代表电压,current density代表电流密度,开路电压VOC=0.85V,电流密度JSC=25.40mA/cm2,填充因子FF=0.76,效率PCE=16.40%。
应用实施例2
将实施例1所述的导电聚乙烯二氧噻吩醇分散液制备的薄膜直接作为正式结构的有机太阳能电池的空穴传输层。
正式结构的有机太阳能电池的制备:正式有机太阳能电池的器件结构如图5中的左图所示,为glass/ITO/PEDOT:F/D18-Cl:N3:PCBM/PDINN/Ag。其中,ITO玻璃为阳极层,PEDOT:F作为空穴传输层,D18-Cl:N3:PCBM作为光活性层,PDINN作为电子传输层,Ag作为阴极层。具体制备方法如下:
将切割好的透明电极氧化铟锡(ITO)玻璃依次用去离子水、丙酮及异丙醇超声清洗15分钟。在洗净的ITO玻璃片上旋涂导电聚乙烯二氧噻吩醇分散液(PEDOT:F),3000转/分钟,然后100℃下加热5分钟,导电聚乙烯二氧噻吩醇分散液制备的薄膜其电导率为5.4×10-2S/cm,其功函数为5.4eV;在上述基底上旋涂D18-Cl:N3:PCBM溶液(总浓度为15mg/ml,质量比为1:1.4:0.1,溶剂为氯仿),转速为4000转/分钟,不退火;在上述活性层上旋涂PDINN溶液(总浓度为1mg/mL,溶剂为甲醇),转速为3000转/分钟,不退火;最后把器件移到蒸镀舱内,在真空压力小于5×10-7Torr后蒸镀100nm的银电极。
制备的有机太阳能电池的电流密度-电压如图5中的右图所示,Voltage代表电压,current density代表电流密度,开路电压VOC=0.85V,电流密度JSC=27.54mA/cm2,填充因子FF=0.75,效率PCE=17.67%。
应用实施例3
将实施例1所述的导电聚乙烯二氧噻吩醇分散液制备的薄膜直接作为全溶液加工的有机太阳能电池的空穴传输层。
全溶液加工的有机太阳能电池的制备:全溶液有机太阳能电池的器件如图6中的左图所示,为glass/Ag NWs/PEI-Zn/PM6:Y6:PCBM/PEDOT:F/Ag NWs。其中,玻璃为衬底,银纳米线(Ag NWs)为阴极层,PEI-Zn作为电子传输层,PM6:Y6:PCBM作为光活性层,PEDOT:F作为空穴传输层,Ag NWs作为阳极层。具体制备方法如下:
将切割好的玻璃依次用去离子水、丙酮及异丙醇超声清洗15分钟。在洗净的玻璃片上刮涂浓度为10mg/mL的Ag NWs乙醇分散液,刮涂的基板温度为35℃,刮涂速度为10mm/s,狭缝宽度为100μm。重复刮涂多次直至Ag NWs的方块电阻达到20Ω/sq,再使用激光刻蚀Ag NWs使其图案化;在图案化的透明电极上,刮涂电子传输层PEI-Zn,刮涂的基板温度为50℃,刮涂速度为10mm/s,刮涂狭缝宽度为150μm,刮涂完成后150℃后退火10min;在上述电子传输层上刮涂活性层材料PM6:Y6:PCBM(总浓度为15.4mg/mL,质量比为1:1:0.2,溶剂为氯仿),其刮涂速度为20mm/s,刮涂狭缝宽度为150μm,刮涂完毕后在氮气氛围手套箱中100℃下加热10分钟;在上述活性层上刮涂PEDOT:F作为空穴传输层,其刮涂条件为刮涂的基板温度为35℃,刮涂速度为10mm/s,刮涂狭缝宽度为150μm,导电聚乙烯二氧噻吩醇分散液制备的薄膜其电导率为6.8×10-4S/cm,其功函数为5.7eV;最后,将2mg/ml的Ag NWs乙醇分散液通过喷涂的方式沉积在PEDOT:F上作为阳极层,阳极层Ag NWs的方块电阻为17Ω/sq。
有机太阳能电池的电流密度-电压如图6中的右图所示,Voltage代表电压,current density代表电流密度,开路电压VOC=0.84V,电流密度JSC=22.25mA/cm2,填充因子FF=0.72,效率PCE=13.45%。
应用实施例4
将实施例1所述的导电聚乙烯二氧噻吩醇分散液制备的薄膜采用刮涂工艺制备抗静电涂层。
抗静电涂层具体制备过程:将2.5×7.5cm2的玻璃依次用去离子水、丙酮及异丙醇超声清洗15分钟。将干净的玻璃放置于基底温度为50℃的刮涂台,取50μL的导电聚乙烯二氧噻吩醇分散液,设置狭缝高度为150μm,刮涂速度为10mm/s,刮涂1次后100℃下加热5min,在该刮涂条件下正反交替刮涂1-20次,刮涂得到的薄膜膜厚在40-10,000nm之间可调,方阻在103-106Ω之间可调。
应用实施例5
将实施例1所述的导电聚乙烯二氧噻吩醇分散液制备的薄膜采用旋涂的方式制备热电器件。
热电器件具体制备过程:将2.5×5cm2的玻璃依次用去离子水、丙酮及异丙醇超声清洗15分钟。在洗净的玻璃片上旋涂导电聚乙烯二氧噻吩醇分散液,转速为800rpm,45s后100℃下加热10min。将薄膜两端蒸镀面积为2.5×0.2cm2的金属银作为电极引出。
制备的热电器件温差-电压曲线如图7所示,拟合曲线得到其塞贝克系数为29.9μV/K,其功率因子为4.83×10-3μW/mK2
总体而言,本发明提供的导电聚乙烯二氧噻吩醇分散液不仅合成工艺简单、易于加工、与各种加工表面及加工工艺兼容,同时由所述分散液制备的薄膜在有机太阳能电池、抗静电图层、热电器件等器件结构中展现了巨大的应用潜力。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种导电聚乙烯二氧噻吩,其特征在于,包括聚乙烯二氧噻吩阳离子和氟化磺酸离子聚合物对阴离子,结构如式(一)所示:
Figure FDA0003787663360000011
其中,n为聚乙烯二氧噻吩的聚合度,为2-100的任一整数,p为氟化磺酸聚合物的聚合度,为2-100的任一整数,m为1-20的任一实数,x为0或1,y为1-5的任一整数,R为氢原子、羟基、烷基、烷氧基、氟代烷基、酯基、羧基、硫代烷基、芳基或杂芳基。
2.根据权利要求1所述的导电聚乙烯二氧噻吩,其特征在于,所述R为氢原子或氟代烷基。
3.根据权利要求1所述的导电聚乙烯二氧噻吩,其特征在于,式(一)中的m为4.5-10,x为1,y为1-3。
4.一种导电聚乙烯二氧噻吩的制备方法,其特征在于,将氟化磺酸离子聚合物和含有R基侧链的3,4-乙烯二氧噻吩单体溶于溶剂中配成质量浓度为1%-30%分散液,然后加入氧化剂反应获得蓝黑色液体,半透膜渗析去除未反应的单体和氧化剂后离心分离,即可获得权利要求1-3任一项所述的导电聚乙烯二氧噻吩。
5.根据权利要求4所述的导电聚乙烯二氧噻吩的制备方法,其特征在于,所述溶剂为水或者醇。
6.根据权利要求5所述的导电聚乙烯二氧噻吩的制备方法,其特征在于,所述溶剂为水时,所述氧化剂为水溶性氧化剂或醇溶性氧化剂;
所述溶剂为醇时,所述氧化剂为醇溶性氧化剂;
其中,所述水溶性氧化剂包括三价铁盐,过硫酸盐,过氧化物,V2O5,VOCl3和SbCl5中的至少一种;所述醇溶性氧化剂包括过氧化二苯甲酰和磷钼酸中的至少一种。
7.一种导电聚乙烯二氧噻吩的醇分散液的制备方法,其特征在于,将权利要求1-3任一项所述的导电聚乙烯二氧噻吩通过超声分散到醇溶液中,即可得到导电聚乙烯二氧噻吩的醇分散液。
8.根据权利要求7所述的导电聚乙烯二氧噻吩的醇分散液的制备方法,其特征在于,所述醇溶液为脂肪醇溶液、脂环醇溶液和芳香醇溶液中的一种或两种以上的混合。
9.如权利要求1-3任一项所述导电聚乙烯二氧噻吩的醇分散液的制备方法,其特征在于,将氟化磺酸离子聚合物和含有R基侧链的3,4-乙烯二氧噻吩单体加入到醇溶液中配成质量浓度为1%-30%分散液,然后加入氧化剂反应获得蓝黑色液体,半透膜渗析去除未反应的单体和氧化剂后,即可得到导电聚乙烯二氧噻吩的醇分散液。
10.利用如权利要求9所述方法制得的导电聚乙烯二氧噻吩的醇分散液的应用,其特征在于,所述应用包括太阳能电池、发光二极管、电致变色膜、热电材料、抗静电涂层、柔性电子器件或可拉伸弹性体传感器。
CN202111666148.5A 2021-12-31 2021-12-31 一种导电聚乙烯二氧噻吩的醇分散液及其制备方法和应用 Active CN114316223B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202111666148.5A CN114316223B (zh) 2021-12-31 2021-12-31 一种导电聚乙烯二氧噻吩的醇分散液及其制备方法和应用
PCT/CN2022/124484 WO2023124367A1 (zh) 2021-12-31 2022-10-11 一种导电聚乙烯二氧噻吩的醇分散液及其制备方法和应用
US18/264,652 US11965088B2 (en) 2021-12-31 2022-10-11 Alcohol dispersion of conductive polyethylenedioxythiophene, and method for preparing same and use of same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111666148.5A CN114316223B (zh) 2021-12-31 2021-12-31 一种导电聚乙烯二氧噻吩的醇分散液及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114316223A CN114316223A (zh) 2022-04-12
CN114316223B true CN114316223B (zh) 2022-09-27

Family

ID=81021842

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111666148.5A Active CN114316223B (zh) 2021-12-31 2021-12-31 一种导电聚乙烯二氧噻吩的醇分散液及其制备方法和应用

Country Status (3)

Country Link
US (1) US11965088B2 (zh)
CN (1) CN114316223B (zh)
WO (1) WO2023124367A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114316223B (zh) * 2021-12-31 2022-09-27 华中科技大学 一种导电聚乙烯二氧噻吩的醇分散液及其制备方法和应用
CN114744153B (zh) * 2022-04-20 2023-07-25 吉林大学 一种具有储能和生物降解性质的导电聚合物、制备方法、柔性电极及可降解锌离子电池
CN116634786B (zh) * 2023-07-25 2023-10-03 北京理工大学 一种电流-电压测试用有机太阳能电池及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7390438B2 (en) * 2003-04-22 2008-06-24 E.I. Du Pont De Nemours And Company Water dispersible substituted polydioxythiophenes made with fluorinated polymeric sulfonic acid colloids
DE102005060159A1 (de) * 2005-12-14 2007-06-21 H. C. Starck Gmbh & Co. Kg Transparente polymere Elektrode für elektro-optische Aufbauten
US20100270055A1 (en) * 2009-04-27 2010-10-28 Air Products And Chemicals, Inc. Electrically Conductive Films Formed From Dispersions Comprising Conductive Polymers and Polyurethanes
WO2012140881A1 (ja) * 2011-04-13 2012-10-18 パナソニック株式会社 導電性高分子分散溶液の製造方法及び電解コンデンサ
WO2014007299A1 (ja) * 2012-07-03 2014-01-09 東ソー株式会社 ポリチオフェン類、それを用いた水溶性導電性ポリマー、及びその製造方法
US20150263285A1 (en) * 2012-09-28 2015-09-17 Ocean's King Lighting Science & Technology Co., Ltd. Polymer solar cell and preparation method thereof
CN103304783B (zh) 2013-05-17 2015-05-13 中科院广州化学有限公司 一种聚噻吩分散体系及其制备方法和应用
CN104211969B (zh) * 2014-09-10 2017-02-01 万星光电子(东莞)有限公司 Pedot/pss分散液的制备方法、高压固态电容的制备方法
CN104448257B (zh) * 2014-12-02 2016-09-07 浙江中科立德新材料有限公司 减小pedot:pss溶液粒径的方法
CN107603217B (zh) * 2017-05-23 2019-12-10 华南理工大学 一种聚二苯胺-4-磺酸分散聚3,4-乙撑二氧噻吩导电复合物及制备与应用
CN107146842B (zh) * 2017-06-13 2019-07-05 同济大学 自支撑柔性PEDOT纳米纤维/SWCNTs复合热电材料薄膜及其制备方法
CN108089366B (zh) 2017-12-06 2021-04-23 Tcl华星光电技术有限公司 一种彩膜基板及其制备方法
CN114316223B (zh) 2021-12-31 2022-09-27 华中科技大学 一种导电聚乙烯二氧噻吩的醇分散液及其制备方法和应用

Also Published As

Publication number Publication date
US11965088B2 (en) 2024-04-23
WO2023124367A1 (zh) 2023-07-06
CN114316223A (zh) 2022-04-12
US20240043682A1 (en) 2024-02-08

Similar Documents

Publication Publication Date Title
CN114316223B (zh) 一种导电聚乙烯二氧噻吩的醇分散液及其制备方法和应用
Kim et al. Humidity‐tolerant roll‐to‐roll fabrication of perovskite solar cells via polymer‐additive‐assisted hot slot die deposition
KR101189857B1 (ko) 중합체 산 콜로이드 및 수혼화성 유기 액체 존재하의 수분산성 폴리디옥시티오펜
KR101176716B1 (ko) 전자제품 응용을 위한 중합체 산 콜로이드와 함께 제조된수분산성 폴리피롤
DeLongchamp et al. Influence of a water rinse on the structure and properties of poly (3, 4-ethylene dioxythiophene): poly (styrene sulfonate) films
Hou et al. Improvement of the power conversion efficiency and long term stability of polymer solar cells by incorporation of amphiphilic Nafion doped PEDOT-PSS as a hole extraction layer
JP5199662B2 (ja) 導電性ポリマー複合体
Li et al. A facile process to produce highly conductive poly (3, 4-ethylenedioxythiophene) films for ITO-free flexible OLED devices
TW200539195A (en) Electrically conducting organic polymer/nanoparticle composites and methods for use thereof
CN109524548A (zh) 一种钙钛矿太阳能电池及其制备方法
Im et al. Improved stability of interfacial energy-level alignment in inverted planar perovskite solar cells
Xia et al. Functionalized ionic liquid-crystal additive for perovskite solar cells with high efficiency and excellent moisture stability
KR20130018436A (ko) 전도성 고분자의 상대이온으로서의 술폰화된 폴리케톤
Yuan et al. Enhanced p-Type Conductivity of NiO x Films with Divalent Cd Ion Doping for Efficient Inverted Perovskite Solar Cells
CN110581221A (zh) 一种掺杂离子添加剂的钙钛矿太阳能电池的电子传输层及制备方法和应用
Maruthamuthu et al. Multilayer photoactive nanocolloidal PPy: PSS as a novel substitute for Pt free counter electrode in DSSC
JP6287845B2 (ja) 有機薄膜太陽電池
JP4049839B2 (ja) 帯電防止処理材の製造方法
US20130092878A1 (en) Thermoplastic based electronic conductive inks and method of making the same
KR101543258B1 (ko) 불규칙한 나노구조 표면의 전극을 가지는 역상 폴리머 태양전지 및 그 제조 방법
Kim et al. Excellent optical and interfacial performance of a PEDOT-b-PEG block copolymer counter electrode for polymer electrolyte-based solid-state dye-sensitized solar cells
NO20161150A1 (en) Organic-inorganic hybrid material and method for silicon surface passivation
US20230054698A1 (en) Solar cell upper electrode and manufacturing method therefor
CN112531118B (zh) 钙钛矿光电元件
Wen et al. Environmentally friendly cathode interlayer modification on edible bio‐acids with enhanced electron extraction and improved power conversion efficiency

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant