CN114262336B - 一种用于溶酶体超分辨荧光成像的自闪荧光染料及其合成方法与应用 - Google Patents

一种用于溶酶体超分辨荧光成像的自闪荧光染料及其合成方法与应用 Download PDF

Info

Publication number
CN114262336B
CN114262336B CN202010972002.2A CN202010972002A CN114262336B CN 114262336 B CN114262336 B CN 114262336B CN 202010972002 A CN202010972002 A CN 202010972002A CN 114262336 B CN114262336 B CN 114262336B
Authority
CN
China
Prior art keywords
dihydroquinoline
trimethyl
super
lysosome
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010972002.2A
Other languages
English (en)
Other versions
CN114262336A (zh
Inventor
徐兆超
许宁
尹文婷
乔庆龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN202010972002.2A priority Critical patent/CN114262336B/zh
Publication of CN114262336A publication Critical patent/CN114262336A/zh
Application granted granted Critical
Publication of CN114262336B publication Critical patent/CN114262336B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明提供一种用于溶酶体超分辨荧光成像的自闪荧光染料及其合成方法与应用。该荧光染料以罗丹明600为荧光团母体,在2’位引入2‑氨基‑6甲基吡啶基团进行螺酰胺化修饰,设计合成了一种新型溶酶体超分辨自闪荧光染料—LysoSR‑600,其结构式如(1)所示,该染料具有良好的荧光开关性能,在pH>4的水溶液中均以闭环结构(暗态)存在,使得其在溶酶体中存在少量的开环结构(荧光态),在溶酶体中存在的荧光态与暗态的不断变化使其具有自闪性能。该染料实现了对溶酶体的精准定位,并且能够对溶酶体进行长时间的动态超分辨荧光成像,以及对溶酶体的大小、分布、pH等进行实时监测,在溶酶体相关生物化学、生物医学等领域有着十分广阔的应用前景。

Description

一种用于溶酶体超分辨荧光成像的自闪荧光染料及其合成方 法与应用
技术领域
本发明属于超分辨荧光染料技术领域,具体涉及一种用于溶酶体超分辨荧光成像的自闪荧光染料及其合成方法和应用。
背景技术
溶酶体是真核细胞中的一种细胞器,负责降解多种生物大分子,包括蛋白质,脂质,碳水化合物和核酸。这些大分子通过各种途径到达溶酶体,在溶酶体腔中被60多种酸性水解酶降解,随后被细胞的代谢过程所重新利用。因此,溶酶体在各种各样的细胞生命活动中,如细质膜修复、细胞内稳态、能量代谢和免疫反和细胞凋亡等,都发挥着重要作用,然而,在不同的细胞、组织和个体以及在不同的生理条件下,溶酶体行使功能是如何变化的,目前还知之甚少。近年来,随着对溶酶体的静态研究逐渐转变为更为广阔和动态的研究,活细胞内溶酶体的原位和实时监测,特别是长时间的监测溶酶体的动态,成为越来越多科研工作者研究的重点。而荧光显微镜则以其特有的优势成研究溶酶体的重要工具,尤其近年来迅猛发展的超分辨成像技术,更是将活细胞内溶酶体的研究提升至了纳米尺度的空间分辨率。
然而溶酶体的酸性内部环境(pH值在约4.5-5.0范围内),使得传统的溶酶体荧光染料很难在此环境条件下继续保持其本身良好的荧光性能,极大的限制了此类染料在超分辨成像,特别是单分子定位方面的应用。要实现活细胞内溶酶体的原位和实时监测,并且不会对溶酶体行使功能造成额外的影响,这对荧光染料提出了更高的要求。而自闪荧光染料因其自身具有开环结构和闭环结构的往复转换,能够实现自身从荧光态“开”与暗态“关”的转变,从而可用于单分子定位显微镜的超分辨成像。然而,目前用于标记溶酶体的超分辨自闪荧光染料种类稀少,亟待开发可以实现纳米尺度下溶酶体的长时间原位动态监测的超分辨荧光染料,也为更多的生理过程的分析提供更有力的研究工具。
发明内容
本发明的目的是提供一种用于溶酶体超分辨荧光成像的自闪荧光染料及其合成方法和应用,该染料所涉及的合成操作简单,合成原料廉价易得,染料的荧光性能优异且具有良好的荧光闪烁性能,可用于超分辨成像。
本发明提供一种用于溶酶体超分辨荧光成像的自闪荧光染料,该荧光染料以罗丹明600为荧光团母体,在2’位引入2-氨基-6甲基吡啶基团进行螺酰胺化修饰,设计合成了一种新型溶酶体超分辨荧光染料—LysoSR-600,该染料具有良好的荧光开关性能,在pH>4的水溶液中均以闭环结构(暗态)存在,使得该染料只有在溶酶体中存在少量的开环结构(荧光态),在溶酶体中存在荧光态与暗态的不断变化而达到自闪的效果。该染料实现了对溶酶体的精准定位,并且可以实现对溶酶体长时间的动态超分辨荧光成像,以及对溶酶体的大小、分布、pH等进行监测。
一种用于溶酶体超分辨荧光成像的自闪荧光染料,该荧光染料具有如下结构:
Figure BDA0002684420700000021
一种用于溶酶体超分辨荧光成像的自闪荧光染料的合成方法,其合成路线,如下:
Figure BDA0002684420700000031
具体合成步骤如下:
(1)中间体1-乙基-7-甲氧基-2,2,4-三甲基-1,2-二氢喹啉的合成:
将碘乙烷、7-甲氧基-2,2,4-三甲基-1,2-二氢喹啉和碳酸钾加入到乙腈中。将混合物加热至60-120℃并搅拌6-18h后,停止反应,减压除去溶剂,残余物通过硅胶色谱法分离,以石油醚为洗脱剂,减压除去溶剂,得到无色液体中间体1-乙基-7-甲氧基-2,2,4-三甲基-1,2-二氢喹啉。
(2)中间体1-乙基-7-羟基-2,2,4-三甲基-1,2-二氢喹啉的合成:
将中间产物1-乙基-7-甲氧基-2,2,4-三甲基-1,2-二氢喹啉溶解在二氯甲烷中,将反应液液氮浴下冷却至-78℃。然后将三溴化硼缓慢添加到混合反应液中。将反应液升温至室温,并搅拌1-10小时后,用去离子水淬灭反应,并用氯化铵溶液洗涤,合并有机相,无水硫酸钠干燥,减压除去溶剂,得到棕色固体中间体1-乙基-7-羟基-2,2,4-三甲基-1,2-二氢喹啉。
(3)中间体Rho600的合成:
将中间体1-乙基-7-羟基-2,2,4-三甲基-1,2-二氢喹啉和邻苯二甲酸酐溶解在1,2-二氯苯中,并将反应液加热至90-150℃,反应液变为红色液体。30分钟后,将反应加热至160-240℃并搅拌1-10小时后,将反应液冷却至室温后,加入浓盐酸。将混合物通过硅胶色谱法分离,以体积比为100-2:1的甲醇和二氯甲烷为洗脱剂,,得到深蓝色固体中间体Rho600。
(4)染料LysoSR-600的合成:
将三氯氧磷滴加到中间体Rho 600和二氯乙烷的混合溶液中,然后将混合物加热至45-120℃并搅拌1-5h。减压除去溶剂,得到固体残余物,无需进一步纯化,将残余物溶解在乙腈中,然后将三乙胺和2-氨基-6-甲基吡啶加入到该溶液中。在50-120℃下搅拌0.5-3小时后,将反应混合物冷却至室温并搅拌5-16小时。减压除去溶剂,将残余物通过碱性氧化铝(200-300目)色谱柱分离,得到白色固体LysoSR-600。
步骤(1)中,7-甲氧基-2,2,4-三甲基-1,2-二氢喹啉:碳酸钾的质量比为2:1-6;7-甲氧基-2,2,4-三甲基-1,2-二氢喹啉的质量与碘乙烷的体积比为3:1-9g/mL;7-甲氧基-2,2,4-三甲基-1,2-二氢喹啉的质量与乙腈的体积比为1:5-30g/mL。
步骤(2)中,1-乙基-7-甲氧基-2,2,4-三甲基-1,2-二氢喹啉的质量与三溴化硼的体积比为1:2-10g/mL;1-乙基-7-甲氧基-2,2,4-三甲基-1,2-二氢喹啉的质量与二氯甲烷的体积比为1:2-10g/mL。
步骤(3)中,1-乙基-7-羟基-2,2,4-三甲基-1,2-二氢喹啉:邻苯二甲酸酐的质量比为10:1-5;1-乙基-7-羟基-2,2,4-三甲基-1,2-二氢喹啉的质量与1,2-二氯苯的体积比为1:5-50g/mL。
步骤(4)中,中间体Rho600的质量与三氯氧磷的体积比为1:3-18g/mL;中间体Rho600的质量与二氯乙烷的体积比为1:80-200g/mL;中间体Rho600的质量与三乙胺的体积比为1:1-10g/mL;中间体Rho600:2-氨基-6-甲基吡啶的质量比为5:1-12;中间体Rho600的质量与乙腈的体积比为1:75-200g/mL。
一种用于溶酶体超分辨荧光成像的自闪荧光染料在活细胞内对溶酶体的荧光成像应用。
一种自闪荧光染料在活细胞内能够对溶酶体进行长时间、动态的超分辨荧光成像,在纳米尺度下对溶酶体动态变化进行监测。
本发明优点和有益效果:
本发明所涉及的超分辨自闪荧光染料具有合成方法简单、原料价格低廉等优点。
该染料通过在罗丹明600的2’位引入2-氨基-6-甲基吡啶,降低了染料分子的pKa值,使其在溶酶体中仅存在少量开环形式的荧光态分子。
该染料能够对溶酶体进行精准的定位,实现了溶酶体的超分辨荧光成像。
该染料在溶酶体中大部分以闭环的暗态形式存在,能够在溶酶体中保持较高稳定性。荧光态(开环形式)与暗态(闭环形式)的不断转换,使得该染料能够实现自闪,对溶酶体进行长时间的动态超分辨荧光成像,从而对溶酶体的大小、分布、pH变化、和相互作用等进行实时监测。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为实施例1制备的1-乙基-7-甲氧基-2,2,4-三甲基-1,2-二氢喹啉的核磁共振氢谱。
图2为实施例1制备的1-乙基-7-羟基-2,2,4-三甲基-1,2-二氢喹啉的核磁共振氢谱。
图3为实施例1制备的Rho600的核磁共振氢谱。
图4为实施例1制备的Rho600的核磁共振碳谱。
图5为实施例1制备的LysoSR-600的核磁共振氢谱。
图6为实施例1制备的LysoSR-600的核磁共振碳谱。
图7为实施例1制备的LysoSR-600在不同pH下的荧光谱图。
图8为实施例1制备的LysoSR-600在628nm处荧光强度随不同pH值变化的曲线图;
图9为实施例1制备的LysoSR-600对活细胞内溶酶体的超分辨成像图;
图10为实施例1中染料LysoSR-600对单个溶酶体的超分辨成像图及强度分析图;
图11为实施例1制备的LysoSR-600对活细胞内动态溶酶体的长时间超分辨成像图。
图12为实施例1制备的LysoSR-600对活细胞内溶酶体重构2000张的超分辨成像图。
具体实施方式
下面将结合附图对本发明的制备方法进行详细描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
实施例1
溶酶体超分辨染料LysoSR-600的合成方法。
中间体1-乙基-7-甲氧基-2,2,4-三甲基-1,2-二氢喹啉的合成:
Figure BDA0002684420700000061
将2.00mL碘乙烷,2.00g 7-甲氧基-2,2,4-三甲基-1,2-二氢喹啉和2.12g碳酸钾加入到30mL乙腈中。将混合物加热至90℃并搅拌12h。减压除去溶剂,并将残余物通过硅胶色谱法(洗脱剂为石油醚)分离,得到无色液体1-乙基-7-甲氧基-2,2,4-三甲基-1,2-二氢喹啉2.20g,收率95%。其核磁谱图氢谱如图1所示,具体数据如下:
1H NMR(400MHz,CDCl3)δ6.96(d,J=8.3Hz,1H),6.21–6.12(m,1H),6.07(d,J=2.3Hz,1H),5.09(d,J=1.1Hz,1H),3.78(s,3H),3.29(q,J=7.0Hz,2H),1.94(d,J=1.2Hz,3H),1.30(s,6H),1.20(t,J=7.0Hz,3H).
中间体1-乙基-7-羟基-2,2,4-三甲基-1,2-二氢喹啉的合成:
Figure BDA0002684420700000071
将1-乙基-7-甲氧基-2,2,4-三甲基-1,2-二氢喹啉(2.0g,8.66mmol)溶解在20mL二氯甲烷中,将反应液在氮气气氛下冷却至-78℃。然后将9mL三溴化硼缓慢添加到反应液中。将反应混合物移至室温,并搅拌4小时。用2mL去离子水淬灭反应,并用氯化铵溶液(50mL×3)洗涤。合并有机相,并用无水硫酸钠干燥。减压除去溶剂,得到棕色固体1-乙基-7-羟基-2,2,4-三甲基-1,2-二氢喹啉1.32g,收率70%。其核磁谱图氢谱如图2所示,具体数据如下:
1H NMR(400MHz,CDCl3)δ6.88(d,J=7.9Hz,1H),6.05(dt,J=6.6,2.3Hz,2H),5.07(d,J=1.3Hz,1H),3.27(q,J=7.1Hz,2H),1.92(d,J=1.3Hz,3H),1.29(s,6H),1.17(t,J=7.1Hz,3H).13C NMR(101MHz,CDCl3)δ156.60,145.27,127.42,126.61,124.73,116.15,101.65,97.75,56.90,38.21,28.67,18.80,14.26.
中间体Rho600的合成:
Figure BDA0002684420700000072
将1-乙基-7-羟基-2,2,4-三甲基-1,2-二氢喹啉(650mg,3.00mmol)和邻苯二甲酸酐(222mg,1.50mmol)溶解在10mL 1,2-二氯苯中,将反应加热至130℃,反应液颜色变为红色。30分钟后,将反应加热至190℃并搅拌6小时。将混合物冷却至室温后,加入200μL浓盐酸。接下来将混合物通过硅胶色谱法(洗脱剂为甲醇:二氯甲烷=50:1-5:1;V/V)进一步纯化,得到深蓝色固体Rho 600,为510mg,收率58%。其核磁谱图氢谱和碳谱如图3、4所示,具体数据如下:
1H NMR(400MHz,MeOD)δ8.03(dd,J=6.3,2.6Hz,1H),7.57(pd,J=7.5,3.8Hz,2H),7.23–7.11(m,1H),6.82(s,2H),6.68(s,2H),5.48(s,2H),3.61(q,J=7.0Hz,4H),1.67(d,J=0.9Hz,6H),1.39(s,12H),1.27(t,J=7.0Hz,6H).
13C NMR(101MHz,MeOD)δ158.09,157.29,152.20,133.24,132.62,131.87,130.72,130.58,130.50,129.98,129.94,125.06,123.47,121.80,113.73,95.40,60.08,39.78,28.20,28.17,16.81,12.25.
Rho 600的高分辨质谱具体数据如下:
C36H39N2O3(M)+理论值:547.2955,实际值:533.2966。
染料LysoSR-600的合成:
Figure BDA0002684420700000081
将1mL三氯氧磷滴加到溶解有100mg Rho 600的15mL二氯乙烷中,然后将混合物加热至80℃并搅拌2h。减压除去溶剂,得到的残余物溶于15mL乙腈中,然后向反应液中加入500μL三乙胺和55mg 2-氨基-6-甲基吡啶,在80℃下搅拌1小时后,将反应混合物冷却至室温并搅拌10小时。减压除去溶剂,并将残余物通过碱性氧化铝(200-300目)色谱柱(洗脱剂为二氯甲烷)进一步纯化,得到白色固体LysoSR-600,为35mg,收率58%。其核磁谱图氢谱和碳谱如图5、6所示,具体数据如下:
1H NMR(400MHz,CDCl3)δ8.25(d,J=8.4Hz,1H),8.05–7.95(m,1H),7.55–7.43(m,2H),7.38(t,J=7.9Hz,1H),7.19–7.11(m,1H),6.62(d,J=7.4Hz,1H),6.22(s,2H),6.13(s,2H),4.99(s,2H),3.32(q,J=6.8Hz,4H),2.23(s,3H),1.54(s,6H),1.27(s,6H),1.22(br,12H).
13C NMR(101MHz,CDCl3)δ168.14,155.82,153.66,153.24,149.65,144.23,136.99,133.30,130.97,128.07,127.56,127.06,124.58,122.98,122.10,118.22,118.09,111.86,108.37,96.69,66.34,56.90,38.37,29.08,28.43,23.12,18.49,14.10.
LysoSR-600的高分辨质谱具体数据如下:
C41H43N4O2(M)+理论值:623.3386,实际值:533.2966。
经检测,其结构如上式LysoSR-600所示,其荧光性能如下:
将该染料LysoSR-600溶解于DMSO溶液中,配制成浓度为2mM的母液,根据需要制配成不同浓度测试溶液,对其在pH下荧光光谱进行检测。
染料LysoSR-600对不同pH值的荧光响应的测试。取20μL母液置于4mL不同pH值的缓冲溶液中,配制成10μM的染料测试液,用于测试不同pH值条件下的荧光光谱。
实施例2
溶酶体超分辨染料LysoSR-600的合成方法。
中间体1-乙基-7-甲氧基-2,2,4-三甲基-1,2-二氢喹啉的合成:
Figure BDA0002684420700000091
将1.00mL碘乙烷,3.00g 7-甲氧基-2,2,4-三甲基-1,2-二氢喹啉和1.5碳酸钾加入到15mL乙腈中。将混合物加热至60℃并搅拌18h。减压除去溶剂,并将残余物通过硅胶色谱法(洗脱剂为石油醚)分离,得到无色液体1-乙基-7-甲氧基-2,2,4-三甲基-1,2-二氢喹啉0.6g,收率26%。
中间体1-乙基-7-羟基-2,2,4-三甲基-1,2-二氢喹啉的合成:
Figure BDA0002684420700000101
将1-乙基-7-甲氧基-2,2,4-三甲基-1,2-二氢喹啉(2.0g)溶解在6mL二氯甲烷中,将反应液在氮气气氛下冷却至-78℃。然后将4mL三溴化硼缓慢添加到反应液中。将反应混合物移至室温,并搅拌1小时。用2mL去离子水淬灭反应,并用氯化铵溶液(50mL×3)洗涤。合并有机相,并用无水硫酸钠干燥。减压除去溶剂,得到棕色固体1-乙基-7-羟基-2,2,4-三甲基-1,2-二氢喹啉0.56g,收率30%。
中间体Rho600的合成:
Figure BDA0002684420700000102
将1-乙基-7-羟基-2,2,4-三甲基-1,2-二氢喹啉(500mg)和邻苯二甲酸酐(50mg)溶解在2.5mL1,2-二氯苯中,将反应加热至90℃,反应液颜色变为红色。30分钟后,将反应加热至160℃并搅拌1小时。将混合物冷却至室温后,加入200μL浓盐酸。接下来将混合物通过硅胶色谱法(洗脱剂为甲醇:二氯甲烷=50:1-5:1;V/V)进一步纯化,得到深蓝色固体Rho600,为8mg,收率9%。
染料LysoSR-600的合成:
Figure BDA0002684420700000111
将0.3mL三氯氧磷滴加到溶解有100mg Rho 600的8mL二氯乙烷中,然后将混合物加热至45℃并搅拌1h。减压除去溶剂,得到的残余物溶于30mL乙腈中,然后向反应液中加入100μL三乙胺和20mg 2-氨基-6-甲基吡啶,在50℃下搅拌0.5小时后,将反应混合物冷却至室温并搅拌5小时。减压除去溶剂,并将残余物通过碱性氧化铝(200-300目)色谱柱(洗脱剂为二氯甲烷)进一步纯化,得到白色固体LysoSR-600,为6mg,收率9%。
实施例3
溶酶体超分辨染料LysoSR-600的合成方法。
中间体1-乙基-7-甲氧基-2,2,4-三甲基-1,2-二氢喹啉的合成:
Figure BDA0002684420700000112
将6.00mL碘乙烷,2.00g 7-甲氧基-2,2,4-三甲基-1,2-二氢喹啉和6g碳酸钾加入到60mL乙腈中。将混合物加热至120℃并搅拌6h。减压除去溶剂,并将残余物通过硅胶色谱法(洗脱剂为石油醚)分离,得到无色液体1-乙基-7-甲氧基-2,2,4-三甲基-1,2-二氢喹啉1.27g,收率55%。
中间体1-乙基-7-羟基-2,2,4-三甲基-1,2-二氢喹啉的合成:
Figure BDA0002684420700000113
将1-乙基-7-甲氧基-2,2,4-三甲基-1,2-二氢喹啉(2.0g)溶解在40mL二氯甲烷中,将反应液在氮气气氛下冷却至-78℃。然后将20mL三溴化硼缓慢添加到反应液中。将反应混合物移至室温,并搅拌10小时。用2mL去离子水淬灭反应,并用氯化铵溶液(50mL×3)洗涤。合并有机相,并用无水硫酸钠干燥。减压除去溶剂,得到棕色固体1-乙基-7-羟基-2,2,4-三甲基-1,2-二氢喹啉0.96g,收率51%。
中间体Rho600的合成:
Figure BDA0002684420700000121
将1-乙基-7-羟基-2,2,4-三甲基-1,2-二氢喹啉(500mg)和邻苯二甲酸酐(250mg)溶解在25mL 1,2-二氯苯中,将反应加热至150℃,反应液颜色变为红色。30分钟后,将反应加热至240℃并搅拌10小时。将混合物冷却至室温后,加入200μL浓盐酸。接下来将混合物通过硅胶色谱法(洗脱剂为甲醇:二氯甲烷=50:1-5:1;V/V)进一步纯化,得到深蓝色固体Rho600,为11mg,收率13%。
染料LysoSR-600的合成:
Figure BDA0002684420700000122
将1.8mL三氯氧磷滴加到溶解有100mg Rho 600的20mL二氯乙烷中,然后将混合物加热至120℃并搅拌5h。减压除去溶剂,得到的残余物溶于20mL乙腈中,然后向反应液中加入1mL三乙胺和240mg 2-氨基-6-甲基吡啶,在120℃下搅拌3小时后,将反应混合物冷却至室温并搅拌16小时。减压除去溶剂,并将残余物通过碱性氧化铝(200-300目)色谱柱(洗脱剂为二氯甲烷)进一步纯化,得到白色固体LysoSR-600,为13mg,收率18%。
实施例4
超分辨自闪荧光染料LysoSR-600在不同pH下的荧光光谱测试。取20μL浓度为2mM的LysoSR-600的DMSO母液,加入到4mL不同pH缓冲液中,配成终浓度为10μM的荧光探针测试液,进行荧光光谱的测试。
如图7所示,染料LysoSR-600在不同pH下的荧光发射光谱。染料LysoSR-600在pH值4以上基本处于无荧光的闭环状态;随着pH值降低至4以下,染料分子逐渐由无荧光的闭环结构变为具有荧光的开环结构。如图7所示,LysoSR-600的开环结构荧光最大发射峰位于620nm左右。
如图8所示,染料LysoSR-600在628nm处的荧光最大值随pH变化的曲线。随着pH的降低,LysoSR-600的荧光逐渐增强,且当pH值在2.5时,LysoSR-600荧光强度达到最高,实验结果表明,此条件下染料LysoSR-600分子的开环结构占比达到最大。
实施例5
超分辨自闪荧光染料LysoSR-600对活细胞内溶酶体的超分辨成像图。取0.5μLLysoSR-600母液加入含1mL培养液的细胞培养皿中,在37℃,5%CO2下孵育0.5h,而后在超分辨显微镜下对溶酶体进行荧光成像。
如图9所示,染料LysoSR-600实现了对溶酶体的精准定位。
如图10所示,(a)为染料LysoSR-600对单个溶酶体的超分辨成像;(b)为单个溶酶体的强度分析,可见染料LysoSR-600对单个溶酶体分辨率可达100nm。
如图11所示,染料LysoSR-600实现了对单个溶酶体的实时追踪。在0-100s内该溶酶体从起点到终点运动了1.89μm。实验结果表明,染料LysoSR-600能够对溶酶体进行超分辨荧光成像,并可以实现长时间监测溶酶体的动态变化。
实施例6
超分辨自闪荧光染料LysoSR-600对活细胞内溶酶体重构2000张的超分辨成像图。取2.5μL LysoSR-600母液加入含1mL培养液的细胞培养皿中,在37℃,5%CO2下孵育2h,而后在超分辨显微镜下对溶酶体进行荧光成像。
如图12所示,染料LysoSR-600实现了对溶酶体的精准定位。虽然对溶酶体重构了2000张图片,但是仍能够收集足够光子对溶酶体成像。这说明LysoSR-600闪烁过程中拥有足够的亮度及光子数。

Claims (7)

1.一种用于溶酶体超分辨荧光成像的自闪荧光染料,其特征在于,该荧光染料的结构如下:
Figure FDA0004227266620000011
2.如权利要求1所述的用于溶酶体超分辨荧光成像的自闪荧光染料的合成方法,其特征在于,该方法包含合成步骤如下:
(1)中间体1-乙基-7-甲氧基-2,2,4-三甲基-1,2-二氢喹啉的合成:
将碘乙烷、7-甲氧基-2,2,4-三甲基-1,2-二氢喹啉和碳酸钾加入到乙腈中,将混合物加热至60-120℃并搅拌6-18h后,停止反应,减压除去溶剂,残余物通过硅胶色谱法分离,以石油醚为洗脱剂,减压除去溶剂,得到无色液体中间体1-乙基-7-甲氧基-2,2,4-三甲基-1,2-二氢喹啉;
(2)中间体1-乙基-7-羟基-2,2,4-三甲基-1,2-二氢喹啉的合成:
将中间产物1-乙基-7-甲氧基-2,2,4-三甲基-1,2-二氢喹啉溶解在二氯甲烷中,将反应液在液氮浴下冷却至-78℃;然后将三溴化硼缓慢添加到混合反应液中;将反应液升温至室温,并搅拌1-10小时后,用去离子水淬灭反应,并用氯化铵溶液洗涤,合并有机相,无水硫酸钠干燥,减压除去溶剂,得到棕色固体中间体1-乙基-7-羟基-2,2,4-三甲基-1,2-二氢喹啉;
(3)中间体Rho600的合成:
将中间体1-乙基-7-羟基-2,2,4-三甲基-1,2-二氢喹啉和邻苯二甲酸酐溶解在1,2-二氯苯中,并将反应液加热至90-150℃,反应液变为红色液体;30分钟后,将反应加热至160-240℃并搅拌1-10小时后,将反应液冷却至室温后,加入浓盐酸,将混合物通过硅胶色谱法分离,以体积比为100-2:1的甲醇和二氯甲烷为洗脱剂,得到深蓝色固体中间体Rho600;其结构式为:
Figure FDA0004227266620000021
(4)染料LysoSR-600的合成:
将三氯氧磷滴加到中间体Rho 600和二氯乙烷的混合溶液中,然后将混合物加热至45-120℃并搅拌1-5h;减压除去溶剂,得到固体残余物,无需进一步纯化,将残余物溶解在乙腈中,然后将三乙胺和2-氨基-6-甲基吡啶加入到该溶液中;在50-120℃下搅拌0.5-3小时后,将反应混合物冷却至室温并搅拌5-16小时;减压除去溶剂,将残余物通过碱性氧化铝色谱柱分离,得到白色固体LysoSR-600。
3.根据权利要求2所述的用于溶酶体超分辨荧光成像的自闪荧光染料的合成方法,其特征在于步骤(1)中,7-甲氧基-2,2,4-三甲基-1,2-二氢喹啉:碳酸钾的质量比为2:1-6;
7-甲氧基-2,2,4-三甲基-1,2-二氢喹啉的质量与碘乙烷的体积比为3g:1-9mL;
7-甲氧基-2,2,4-三甲基-1,2-二氢喹啉的质量与乙腈的体积比为1g:5-30mL。
4.根据权利要求2所述的用于溶酶体超分辨荧光成像的自闪荧光染料的合成方法,其特征在于步骤(2)中,1-乙基-7-甲氧基-2,2,4-三甲基-1,2-二氢喹啉的质量与三溴化硼的体积比为1g:2-10mL;
1-乙基-7-甲氧基-2,2,4-三甲基-1,2-二氢喹啉的质量与二氯甲烷的体积比为1g:2-10mL。
5.根据权利要求2所述的用于溶酶体超分辨荧光成像的自闪荧光染料的合成方法,其特征在于步骤(3)中,1-乙基-7-羟基-2,2,4-三甲基-1,2-二氢喹啉:邻苯二甲酸酐的质量比为10:1-5;
1-乙基-7-羟基-2,2,4-三甲基-1,2-二氢喹啉的质量与1,2-二氯苯的体积比为1g:5-50mL。
6.根据权利要求2所述的用于溶酶体超分辨荧光成像的自闪荧光染料的合成方法,其特征在于步骤(4)中,中间体Rho600的质量与三氯氧磷的体积比为1g:3-18mL;
中间体Rho600的质量与二氯乙烷的体积比为1g:80-200mL;
中间体Rho600的质量与三乙胺的体积比为1g:1-10mL;
中间体Rho600:2-氨基-6-甲基吡啶的质量比为5:1-12;
中间体Rho600的质量与乙腈的体积比为1g:75-200mL。
7.一种如权利要求1所述的用于溶酶体超分辨荧光成像的自闪荧光染料在溶酶体超分辨、细胞荧光成像及荧光开关材料中的非疾病诊断与治疗性应用。
CN202010972002.2A 2020-09-16 2020-09-16 一种用于溶酶体超分辨荧光成像的自闪荧光染料及其合成方法与应用 Active CN114262336B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010972002.2A CN114262336B (zh) 2020-09-16 2020-09-16 一种用于溶酶体超分辨荧光成像的自闪荧光染料及其合成方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010972002.2A CN114262336B (zh) 2020-09-16 2020-09-16 一种用于溶酶体超分辨荧光成像的自闪荧光染料及其合成方法与应用

Publications (2)

Publication Number Publication Date
CN114262336A CN114262336A (zh) 2022-04-01
CN114262336B true CN114262336B (zh) 2023-06-20

Family

ID=80824206

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010972002.2A Active CN114262336B (zh) 2020-09-16 2020-09-16 一种用于溶酶体超分辨荧光成像的自闪荧光染料及其合成方法与应用

Country Status (1)

Country Link
CN (1) CN114262336B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105567216A (zh) * 2015-10-27 2016-05-11 西北大学 一类溶酶体靶向荧光探针及其制备方法和应用
CN110272431A (zh) * 2018-03-16 2019-09-24 中国科学院大连化学物理研究所 一种溶酶体靶向的光控荧光分子开关及其合成方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105567216A (zh) * 2015-10-27 2016-05-11 西北大学 一类溶酶体靶向荧光探针及其制备方法和应用
CN110272431A (zh) * 2018-03-16 2019-09-24 中国科学院大连化学物理研究所 一种溶酶体靶向的光控荧光分子开关及其合成方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
超分辨率成像荧光探针材料应用进展;刘志贺,等;《中国光学》;20180630;第11卷(第3期);第344-362页 *

Also Published As

Publication number Publication date
CN114262336A (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
Wang et al. Rational design of novel near-infrared fluorescent DCM derivatives and their application in bioimaging
Wang et al. Design and synthesis of an AIEgen with multiple functions: Solvatochromism, chromism, lipid droplet imaging
CN106632063B (zh) 基于菲并咪唑的化合物i和化合物ii及其制备方法和应用
CN111334067B (zh) 用于超分辨荧光成像的自闪烁荧光染料及其合成和应用
CN114262336B (zh) 一种用于溶酶体超分辨荧光成像的自闪荧光染料及其合成方法与应用
CN114262333B (zh) 一类用于溶酶体超分辨成像的近红外荧光染料及其制备方法和应用
CN110272437B (zh) 可见光光控的snap蛋白标签类耐酸荧光分子开关及其合成
CN114262334B (zh) 一类用于纳米分辨率下实时监测溶酶体动态的超分辨成像自闪荧光染料及其合成方法与应用
CN114262335B (zh) 一类靶向溶酶体的超分辨自闪染料及其合成方法和生物应用
CN112939960B (zh) 羰基氮杂环丁烷取代的nbd类荧光染料及其合成方法和应用
CN114907311A (zh) 一种基于aie性能的脂滴特异性荧光探针及制备方法和应用
CN112939978B (zh) 一种高亮度、快速标记的snap蛋白标签及其合成与生物应用
CN108997403B (zh) 一种异氟硼二吡咯化合物及其制法和用途
CN111333574B (zh) 一类高亮度、高光稳定性的碳酸酐酶检测荧光探针
CN111333623B (zh) 一种用于溶酶体标记的荧光染料及其合成方法和应用
CN112939950A (zh) 羰基氮杂环丁烷取代的香豆素类荧光染料及其合成方法和应用
CN111333660B (zh) 一类550nm激发的罗丹明类染料及其制备方法
CN111334068A (zh) 一种基于SNAP-tag技术的自闪烁超分辨荧光染料及其合成和应用
CN115073487B (zh) 一种罗丹明衍生物及其制备方法和应用
CN115477654B (zh) 一种大Stokes位移的近红外罗丹明染料及其合成方法
CN115991696B (zh) 一种聚集诱导发光荧光染料MG-Rho及其制备方法和应用
CN112940714B (zh) 一种高荧光量子产率的免洗Halo-tag探针及其合成方法和应用
CN114605405B (zh) 一种基于喹吖啶酮骨架的细胞脂滴荧光成像探针及其应用
CN114262609A (zh) 一类用于溶酶体长时间超分辨荧光成像的自闪荧光染料及其合成方法与应用
CN112047977B (zh) 一种线粒体靶向荧光探针及其合成方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant