CN114221024B - 一种锂离子电池 - Google Patents

一种锂离子电池 Download PDF

Info

Publication number
CN114221024B
CN114221024B CN202210034517.7A CN202210034517A CN114221024B CN 114221024 B CN114221024 B CN 114221024B CN 202210034517 A CN202210034517 A CN 202210034517A CN 114221024 B CN114221024 B CN 114221024B
Authority
CN
China
Prior art keywords
cofe
mno
lithium ion
ion battery
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210034517.7A
Other languages
English (en)
Other versions
CN114221024A (zh
Inventor
王震
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Shunyingsen Energy Co ltd
Original Assignee
Guangdong Shunyingsen Energy Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Shunyingsen Energy Co ltd filed Critical Guangdong Shunyingsen Energy Co ltd
Priority to CN202210034517.7A priority Critical patent/CN114221024B/zh
Publication of CN114221024A publication Critical patent/CN114221024A/zh
Application granted granted Critical
Publication of CN114221024B publication Critical patent/CN114221024B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请涉及一种锂离子电池,其特征在于,采用Y‑CoFe2O4/γ‑MnO2作为负极材料,其制备工艺如下:将硝酸钴、硝酸铁以及醋酸钇溶于去离子水中,随后加入六亚甲基四胺和尿素,搅拌均匀,将混合液置于高压水热反应釜中进行水热反应,温度为180‑200摄氏度,反应时间为10‑20h;得到纳米球状的Y掺杂CoFe2O4;将Y掺杂CoFe2O4采用去离子水和乙醇交替洗涤,随后溶于乙二醇中形成悬浮液,在悬浮液中加入高锰酸钾和甘氨酸,90‑100摄氏度下加热回流12‑20h,产物在200‑400℃下煅烧30‑60min,从而得到纳米核壳球状的Y掺杂CoFe2O4/γ‑MnO2

Description

一种锂离子电池
技术领域
本发明涉及锂离子二次电池,尤其是空心核壳球结构负极材料及其制备方法。
背景技术
随着传统的化石能源匮乏以及环境污染、气候变暖等问题日益加剧,环境友好的新型能源技术也成了目前开发和应用的热点之一;可充电锂离子二次电池由于工作电压高、比能量高、比功率高、循环寿命长、自放电小、无记忆效应等优点,已经被广泛应用在便携式电子设备、电动工具、储能装置、电动车以及混合电动车上。
纳米级过渡金属氧化物由于具有较高的理论比容量,近年来引起了广泛的关注。但是,将其作为负极材料存在一系列的问题:(1)电子导电性差;(2)循环过程中有明显的体积膨胀/收缩现象,从而造成电极材料的粉化,影响倍率和循环性能。
发明内容
一种锂离子电池,其特征在于,采用Y-CoFe2O4/γ-MnO2作为负极材料,其制备工艺如下:
将硝酸钴、硝酸铁以及醋酸钇溶于去离子水中,随后加入六亚甲基四胺和尿素,搅拌均匀,将混合液置于高压水热反应釜中进行水热反应,温度为180-200摄氏度,反应时间为10-20h;得到纳米球状的Y掺杂CoFe2O4
将Y掺杂CoFe2O4采用去离子水和乙醇交替洗涤,随后溶于乙二醇中形成悬浮液,在悬浮液中加入高锰酸钾和甘氨酸,90-100摄氏度下加热回流12-20h,产物在200-400℃下煅烧30-60min,从而得到纳米核壳球状的Y掺杂CoFe2O4/γ-MnO2
优选的,硝酸钴、硝酸铁以及醋酸钇的摩尔比为1:2:(0.05-0.1);
优选的,硝酸钴、六亚甲基四胺和尿素的摩尔比为1:(0.1-1):(0.1-1);
优选的,纳米核壳球状的Y掺杂CoFe2O4/γ-MnO2粒径为10-30nm。
有益效果:
在水热过程中加入六亚甲基四胺和尿素,从而得到中空结构纳米级的Y掺杂CoFe2O4,纳米的中空结构具有较大的比表面积,不仅提高了材料与电解液的接触面积,从而提升锂离子的传输速度,并且便于MnO2的高度分散负载;Y掺入CoFe2O4的晶格中,有利于进一步提升离子传输效率;空心的结构解决了CoFe2O4在循环过程中容易粉化的问题,从而提高了电池的循环性能以及稳定性。
附图说明
附图1为本申请实施例1中Y掺杂CoFe2O4/γ-MnO2的SEM图。
具体实施方式
实施例1
将10mmol的硝酸钴、20mmol硝酸铁以及0.5mmol的醋酸钇溶于20ml去离子水中,随后加入3mmol六亚甲基四胺和8mmol尿素,搅拌均匀,将混合液置于高压水热反应釜中进行水热反应,温度为180摄氏度,反应时间为10h;得到中空纳米球状的Y掺杂CoFe2O4
将Y掺杂CoFe2O4采用去离子水和乙醇交替洗涤,随后溶于20ml乙二醇中形成悬浮液,在悬浮液中加入3mmol高锰酸钾和1mmol甘氨酸,100摄氏度下加热回流12h,产物在250℃下煅烧30min,从而得到纳米核壳球状的Y掺杂CoFe2O4/γ-MnO2
对比例1
将10mmol的硝酸钴、20mmol硝酸铁以及0.5mmol的醋酸钇溶于20ml去离子水中,随后加入3mmol六亚甲基四胺和8mmol尿素,搅拌均匀,将混合液置于高压水热反应釜中进行水热反应,温度为180摄氏度,反应时间为10h;产物在250℃下煅烧30min,得到中空纳米球状的Y掺杂CoFe2O4
对比例2
在20ml乙二醇中加入3mmol高锰酸钾和1mmol甘氨酸,100摄氏度下加热回流12h,产物在250℃下煅烧30min,从而得到γ-MnO2
对比例3
其与对比例1的区别在于并未加入醋酸钇。
将以上实施例和对比例的活性材料与导电剂乙炔黑、粘结剂PVDF以8:1:1的比例混合浆料,将浆料涂覆于集流体上。以其作为负极,锂片为对电极,PP为隔膜,1M LiPF6-EC/DMC/DMC(体积比1:1:1)为电解液组成扣式电池。
Figure BDA0003467771120000011
Figure BDA0003467771120000021
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (3)

1.一种锂离子电池,其特征在于,采用Y-CoFe2O4/γ-MnO2作为负极材料,其制备工艺如下:
将硝酸钴、硝酸铁以及醋酸钇溶于去离子水中,随后加入六亚甲基四胺和尿素,搅拌均匀,将混合液置于高压水热反应釜中进行水热反应,温度为180-200摄氏度,反应时间为10-20h;得到中空纳米球状的Y掺杂CoFe2O4
将Y掺杂CoFe2O4采用去离子水和乙醇交替洗涤,随后溶于乙二醇中形成悬浮液,在悬浮液中加入高锰酸钾和甘氨酸,90-100摄氏度下加热回流12-20h,产物在200-400℃下煅烧30-60min,从而得到纳米核壳球状的Y掺杂CoFe2O4/γ-MnO2;硝酸钴、硝酸铁以及醋酸钇的摩尔比为1:2:(0.05-0.1);硝酸钴、六亚甲基四胺和尿素的摩尔比为1:(0.1-1):(0.1-1)。
2.根据权利要求1所述的一种锂离子电池,纳米核壳球状的Y掺杂CoFe2O4/γ-MnO2粒径为10-30nm。
3.根据权利要求1所述的一种锂离子电池,高锰酸钾和甘氨酸的摩尔比为1:(0.1-2)。
CN202210034517.7A 2022-01-13 2022-01-13 一种锂离子电池 Active CN114221024B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210034517.7A CN114221024B (zh) 2022-01-13 2022-01-13 一种锂离子电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210034517.7A CN114221024B (zh) 2022-01-13 2022-01-13 一种锂离子电池

Publications (2)

Publication Number Publication Date
CN114221024A CN114221024A (zh) 2022-03-22
CN114221024B true CN114221024B (zh) 2022-11-18

Family

ID=80708131

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210034517.7A Active CN114221024B (zh) 2022-01-13 2022-01-13 一种锂离子电池

Country Status (1)

Country Link
CN (1) CN114221024B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243392A (ja) * 1999-02-16 2000-09-08 Mitsubishi Electric Corp 正極活物質およびその製造方法並びに上記正極活物質を用いたリチウムイオン二次電池
CN104852042A (zh) * 2014-12-20 2015-08-19 青岛科技大学 一种用于锂离子电池负极材料的钴铁复合氧化物纳米棒的制备方法及应用
CN107004841A (zh) * 2014-12-05 2017-08-01 株式会社Lg 化学 正极活性材料、制备其的方法以及包含其的锂二次电池
CN108190963A (zh) * 2017-12-15 2018-06-22 郑州大学 一种多级中空CoFe2O4材料、CoFe2O4/C复合材料的制备方法及应用
CN108557902A (zh) * 2018-04-16 2018-09-21 中南大学 一种CoFe2O4量子点的制备方法及其应用
CN110227531A (zh) * 2019-05-23 2019-09-13 太原理工大学 一种钼掺杂钴铁氧化物纳米片双功能电催化剂的制备方法
CN112670499A (zh) * 2020-12-23 2021-04-16 浙江理工大学 一种多孔层状CoFe2O4/C纳米复合材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080167414A1 (en) * 2006-09-29 2008-07-10 Amit Biswas Polycarbonate composition comprising nanomaterials
WO2019008134A2 (en) * 2017-07-07 2019-01-10 The Provost, Fellows, Foundation Scholars And The Other Members Of Board, Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth, Near Dublin HEART-SHELL NANOPARTICLES AND THEIR USE IN ADHESIVE FORMULATIONS

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243392A (ja) * 1999-02-16 2000-09-08 Mitsubishi Electric Corp 正極活物質およびその製造方法並びに上記正極活物質を用いたリチウムイオン二次電池
CN107004841A (zh) * 2014-12-05 2017-08-01 株式会社Lg 化学 正极活性材料、制备其的方法以及包含其的锂二次电池
CN104852042A (zh) * 2014-12-20 2015-08-19 青岛科技大学 一种用于锂离子电池负极材料的钴铁复合氧化物纳米棒的制备方法及应用
CN108190963A (zh) * 2017-12-15 2018-06-22 郑州大学 一种多级中空CoFe2O4材料、CoFe2O4/C复合材料的制备方法及应用
CN108557902A (zh) * 2018-04-16 2018-09-21 中南大学 一种CoFe2O4量子点的制备方法及其应用
CN110227531A (zh) * 2019-05-23 2019-09-13 太原理工大学 一种钼掺杂钴铁氧化物纳米片双功能电催化剂的制备方法
CN112670499A (zh) * 2020-12-23 2021-04-16 浙江理工大学 一种多孔层状CoFe2O4/C纳米复合材料及其制备方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
Boosting the catalytic performance of pristine CoFe2O4 with yttrium (Y3+) inclusion in the spinel structure;Rimi Sharma;《Materials Research Bulletin》;20170630;第90卷;第94-103页 *
Enhanced electrochemical performance of hierarchical CoFe2O4/MnO2/C nanotubes as anode materials for lithium-ion batteries;Zhou Junjie;《J. Mater. Chem. A》;20151231;第3卷(第23期);第12328-12333页 *
Ferrimagnetism in cobalt ferrite (CoFe2O4) nanoparticles;B. Jansi Rani;《Nano-Structures & Nano-Objects》;20170830;第14卷;第84-91页 *
Hierarchical Core-Shell Nanosheet Arrays with MnO2 Grown on Mesoporous CoFe2O4 Support for High-Performance Asymmetric Supercapacitors;Gao Hongyan;《Electrochimica Acta》;20170620;第240卷;第31-42页 *
Lanthanum ion (La3+) substituted CoFe2O4 anode material for lithium ion battery applications;Indhrajothi, Rajendran;《NewJ.Chem》;20151231;第39卷(第6期);第4601-4610页 *
One-step accurate synthesis of shell controllable CoFe2O4 hollow microspheres as high-performance electrode materials in supercapacitor;Wang Zhuo;《Nano Research》;20160731;第9卷(第7期);第2026-2033页 *
One-step synthesis of MFe2O4 (M = Fe, Co) hollow spheres by template-free solvothermal method;Li Wangchang;《Journal of Alloys and Compounds》;20110526;第509卷(第21期);第6206-6211页 *
The effect of Y3+ substitution on the structural, optical band-gap, and magnetic properties of cobalt ferrite nanoparticles;Alves, TEP;《Physical Chemistry Chemical Physics》;20170707;第19卷(第25期);第16395-16405页 *
Yttrium-Doped Cobalt Nanoferrites Prepared by Sol–Gel Combustion Method and Its Characterization;M. K. Shobana;《 Journal of Nanoscience and Nanotechnology》;20130531;第13卷(第5期);第3535-3538页 *

Also Published As

Publication number Publication date
CN114221024A (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
CN105958131B (zh) 一种长循环寿命和高能量密度的可充水系锌离子电池
WO2014153957A1 (zh) 一种水系碱金属离子储能器件
CN108598394B (zh) 碳包覆磷酸钛锰钠微米球及其制备方法和应用
WO2015021789A1 (zh) 一种高倍率水系碱金属电化学电池正极材料及其制备方法
CN116119730A (zh) 原位包覆硼酸盐的氧化物复合正极材料、制备方法和用途
CN112242526B (zh) 一种Mo掺杂VS4镁离子电池正极材料
CN110668428B (zh) 一种储能用锂离子电池负极材料及其制备方法
CN112279309A (zh) 一种NaNixMnyM1-x-yO2材料的制备方法与应用
CN108832114B (zh) 一种石墨烯包覆CuFeO2复合负极材料的制备方法
WO2014169717A1 (zh) 一种水系碱金属离子电化学储能器件
CN106935830B (zh) 一种锂离子电池复合正极材料及其制备方法和应用
CN109461917B (zh) 一种锆酸镧原位包覆高镍三元正极材料的制备方法
CN109309191A (zh) 一种新型的长寿命储能锂离子电池极片及锂离子电池
CN107742701A (zh) 石墨烯‑二氧化钛气凝胶复合材料及其制备和应用
CN106384674A (zh) 一种基于钛磷氧化物负极材料的水系可充钠离子电容电池
CN109950529A (zh) 一种水系离子电池正极材料及其制备方法
CN103441239A (zh) 一种纳米级三元正极材料的合成方法
CN104852042A (zh) 一种用于锂离子电池负极材料的钴铁复合氧化物纳米棒的制备方法及应用
CN107720822B (zh) 一种海胆状锂离子电池正极材料的制备方法
CN110233254B (zh) 一种锂离子电池负极材料用摇铃状Fe3O4/C/MoS2杂化微粒
CN109461920B (zh) 镧铝掺杂的高镍层状氧化物材料及其制备方法和应用
CN114221024B (zh) 一种锂离子电池
CN113517438B (zh) 内部限域异质结蛋黄-壳电极材料及其制备方法与应用
CN114864916A (zh) 一种五氧化二铌包覆石墨复合负极材料及其制备方法
CN113675398A (zh) 一种锂离子电池负极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20221031

Address after: 526000 Building 20, Plot 4, Yingtian Zhigu, Pingfeng Town, Guangdong Guangxi Cooperation Special Experimental Zone, Pingfeng Development Zone, Fengkai County, Zhaoqing City, Guangdong Province

Applicant after: Guangdong shunyingsen Energy Co.,Ltd.

Address before: 273400 Wanping science and Technology Park, Fei County, Linyi City, Shandong Province

Applicant before: Feixian weishang new energy technology center

GR01 Patent grant
GR01 Patent grant