CN114195511A - 一种表面水热生长二氧化钛纳米线阵列的钛酸钡陶瓷支架的制备方法及应用 - Google Patents

一种表面水热生长二氧化钛纳米线阵列的钛酸钡陶瓷支架的制备方法及应用 Download PDF

Info

Publication number
CN114195511A
CN114195511A CN202111306413.9A CN202111306413A CN114195511A CN 114195511 A CN114195511 A CN 114195511A CN 202111306413 A CN202111306413 A CN 202111306413A CN 114195511 A CN114195511 A CN 114195511A
Authority
CN
China
Prior art keywords
barium titanate
titanium dioxide
support
preparation
titanate ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111306413.9A
Other languages
English (en)
Other versions
CN114195511B (zh
Inventor
刘琼
张斗
罗行
胡权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202111306413.9A priority Critical patent/CN114195511B/zh
Publication of CN114195511A publication Critical patent/CN114195511A/zh
Application granted granted Critical
Publication of CN114195511B publication Critical patent/CN114195511B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • C02F1/36Treatment of water, waste water, or sewage with mechanical oscillations ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5041Titanium oxide or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种表面水热生长二氧化钛纳米线阵列的钛酸钡陶瓷支架的制备方法及应用,通过3D打印钛酸钡压电陶瓷,并在陶瓷表面生长二氧化钛纳米线阵列,得到表面生长二氧化钛纳米线阵列的钛酸钡陶瓷支架,将该支架应用于压电‑光催化降解有机染料。钛酸钡压电材料在外力作用下,发生形变,能够产生内建电场,从而影响光催化剂(二氧化钛)内部电荷的传输,电场能够有效的抑制光生电荷的复合,促进光催化材料的量子转换效率,大大提升催化性能,避免粉体催化难以回收的问题,避免造成二次污染。

Description

一种表面水热生长二氧化钛纳米线阵列的钛酸钡陶瓷支架的 制备方法及应用
技术领域
本发明涉及钛酸钡陶瓷支架光催化技术领域,具体涉及一种表面水热生长二氧化钛纳米线阵列的钛酸钡陶瓷支架的制备方法及应用。
背景技术
目前,已经发展了多种先进技术实现多孔陶瓷气孔结构的制备。主要包括有机泡沫浸渍法、发泡法、添加造孔剂法、机械搅拌法、溶胶凝胶法以及等离子交换法等。但是,这些制备技术很难实现气孔分布的周期性调控。最近,以3D打印为代表的增材制造技术为实现气孔结构的精确调控提供了一种可能。目前,3D技术在多孔活性生物陶瓷和复杂的结构陶瓷领域应用较为广泛。现有的3D打印压电陶瓷主要包括:新型铁电陶瓷铌钪酸钡-钛酸铅,PZT铁电陶瓷等,主要应用在传感器等方面。
专利公开号为CN112028628A,专利名称“一种通过3D打印制备具有周期性孔结构的PZT铁电陶瓷的方法”,通过3D打印技术制备的PZT多孔陶瓷,可以实现气孔结构周期性均匀分布和孔隙率可控。3D周期性微孔结构的构筑,可以显著提升PZT压电陶瓷在水声方面应用的探测率优值,抑或显著调控PZT铁电陶瓷抗冲击性能,更好地满足应用需求。专利公开号为CN101618964A,专利名称“新型铁电陶瓷铌钪酸钡-钛酸铅及其制备方法和用途”制备的新型铌钪酸钡-钛酸铅铁电陶瓷其具有高的介电电容率,压电常数,机电耦合系数以及居里点。但是上述现有技术中3D打印的压电铁电陶瓷大多含铅,铅是重金属,极容易造成环境污染,因此亟需制备出一种无铅的压电陶瓷材料并探明其具体的应用范围,为使后期广泛的利用做出指导基础。
发明内容
为解决现有技术中存在的问题,本发明提供了一种表面水热生长二氧化钛纳米线阵列的钛酸钡陶瓷支架的制备方法及应用,通过3D打印钛酸钡压电陶瓷,并在陶瓷表面生长二氧化钛纳米线阵列,应用于压电-光催化降解有机染料,解决了上述背景技术中提到的问题。
为实现上述目的,本发明提供如下技术方案:一种表面水热生长二氧化钛纳米线阵列的钛酸钡陶瓷支架的制备方法,包括如下步骤:
S1、在钛酸钡粉体中分别加入二甲苯、乙醇、聚乙烯醇缩丁醛、磷酸三乙酯、聚乙二醇、邻苯二甲酸二丁酯,充分混合后球磨24h得到混合浆料;
S2、将混合浆料装入打印针筒,放置于离心机中离心除泡得到待用压电陶瓷浆料,将装有压电陶瓷浆料装入针筒放置于直写成型平台上;调节针筒的浆料挤出压力至适宜值,然后开始3D打印,打印完成后将打印好的产品在室温下静置干燥24h,得到生坯支架;
S3、将支架在空气氛围下放置24h后,从基板上取下,置于马弗炉中烧结,完成烧结后自然冷却,得到钛酸钡陶瓷支架;
S4、在钛酸四丁酯中加入乙醇、甘油,混合搅拌后转移至水热反应釜中;
S5、将钛酸钡陶瓷支架放入反应釜中,浸没在溶液中水热反应24h,自然冷却后取出支架,洗涤,干燥;
S6、把干燥后的支架转移至马弗炉中,550℃退火2h,得到表面生长二氧化钛纳米线阵列的钛酸钡陶瓷支架。
优选的,所述步骤S1中钛酸钡粉体、二甲苯、乙醇、聚乙烯醇缩丁醛、磷酸三乙酯、聚乙二醇、邻苯二甲酸二丁酯的质量比为:50:10:15:5:1:1:1~150:30:45:5:1:1:1。
优选的,所述步骤S2中的离心除泡具体是在500-5000r/min下离心除泡1-5min。
优选的,所述3D打印的打印图案是计算机设计的3-3型木堆式支架结构。
优选的,所述步骤S3中烧结的具体过程是:升温至325℃,保持60min,再升温至500℃,保持100min,继续升温至600℃,保持120min,最后升温至1350℃,保持120min。
优选的,所述步骤S4中钛酸四丁酯、乙醇、甘油的摩尔比为:。
优选的,所述步骤S4中混合搅拌的时间为5~30min。
优选的,所述步骤S5中水热反应的温度为160~220℃。
另外,本发明还提供了另外一种技术方案:一种表面生长二氧化钛纳米线阵列的钛酸钡陶瓷支架的应用,将该支架应用于催化降解有机染料靛蓝胭脂红。
优选的,所述催化降解有机染料靛蓝胭脂红时,30min内降解效率达到95.735%,是纯BT的10倍。
本发明的有益效果是:本发明方法制备的是无铅钛酸钡压电陶瓷,并通过水热法在其表面生长二氧化钛纳米线阵列,利用压电陶瓷的压电效应对二氧化钛光生电荷的分离的促进作用,应用在压电-光催化降解有机染料领域,钛酸钡压电材料在外力作用下,发生形变,能够产生内建电场,从而影响光催化剂(二氧化钛)内部电荷的传输,电场能够有效的抑制光生电荷的复合,促进光催化材料的量子转换效率,大大提升催化性能,避免粉体催化难以回收的问题,避免造成二次污染。
附图说明
图1为本发明方法制备步骤流程图;
图2为本发明实施例1中3D打印纯BT支架和3D打印BT-TiO2NW支架的SEM对比图,图2(a)为纯BT支架扫描电镜图,图2(b)为纯BT支架微观结构扫描电镜图,图2(c)为BT-TiO2NW支架扫描电镜图,图2(d)为BT-TiO2 NW支架微观结构扫描电镜图;
图3为纯染料、纯BT、BT-TiO2 NW在超声和光照下的降解图,图3(a)为纯染料在超声和光照下的自降解性能,图3(b)为纯BT在超声和光照下的降解100mL10mg/L的靛蓝胭脂红,图3(c)为BT-TiO2 NW在超声和光照下的降解100mL10mg/L的靛蓝胭脂红。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
一种表面水热生长二氧化钛纳米线阵列的钛酸钡陶瓷支架的制备方法,整体制备流程如图1所示。
实施例1
3D打印钛酸钡(BT)陶瓷支架
(1)合成浆料:在30g钛酸钡粉体中,加入:6g二甲苯,9g乙醇,1.5g PVB(聚乙烯醇缩丁醛),0.3gTEP(磷酸三乙酯),0.3gPEG(聚乙二醇),0.3gDBP(邻苯二甲酸二丁酯),充分混合后球磨24h;
(2)3D打印支架:将浆料装入打印针筒,放置于离心机中,在5000r/min下离心除泡1min,得到待用压电陶瓷浆料;将装有压电陶瓷浆料装入针筒放置于直写成型平台上;调节针筒的浆料挤出压力至适宜值(能连续挤出不断线),然后开始3D打印;打印图案由计算机设计的3-3型木堆式支架结构,打印过程由计算机程序控制;打印完成后将打印好的产品在室温下静置干燥24h,得到生坯支架;
(3)烧结:将上述打印的支架在空气氛围下放置24h后,从基板上取下,马弗炉中烧结,烧结流程:升温至325℃,保持60min,再升温至500摄氏度,保持100min,继续升温至600℃,保持120min,最后升温至1350℃,保持120min,自然冷却,完成钛酸钡陶瓷支架的制备。
钛酸钡陶瓷支架表面水热生长二氧化钛(TiO2)纳米线阵列
(1)在1.991mLTBT(钛酸四丁酯)中加入30mL乙醇,再加入10mL甘油,混合后,搅拌五分钟,转移至水热反应釜中;
(2)将上述钛酸钡陶瓷支架放入反应釜中,浸没在溶液中;
(3)上述体系在180℃中水热反应24h,自然冷却,取出支架,洗涤,干燥;
(4)干燥后的支架转移至马弗炉中,550℃退火2h,制备完成得到表面生长二氧化钛纳米线阵列的钛酸钡陶瓷支架。
如图2所示,是3D打印纯BT支架和3D打印BT-TiO2NW支架的SEM对比图,由图可知,纯的钛酸钡支架表面颗粒物是光滑的,生长二氧化钛纳米线阵列后表面形貌发生明显变化,表面有明显的纳米线阵列结构,二氧化钛纳米线阵列的存在能够加大支架比表面积,增加反应的活性位点,从而提升体系的催化性能;此外,纯的BT支架和二氧化钛,其自身电荷分离效率低,表面修饰二氧化钛后,钛酸钡支架在外力的作用下能够产生内建电场,从而抑制二氧化钛光生载流子的复合,进一步提升体系的催化性能。
应用:催化降解有机染料
将该支架应用于催化降解100mL有机染料靛蓝胭脂红(染料浓度:10mg/L)。如图3所示,纯的BT支架在超声和光照作用下,120min的降解率为76.303%,对应的一级反应常数为0.010min-1;钛酸钡表面生长二氧化钛阵列(BT-TiO2NW)的支架30min内降解效率达到95.735%,对应的一级反应常数k=0.105min-1,是纯BT的10倍;在120min内,染料自降解几乎可以忽略,k值仅为0.003min-1
实施例2
3D打印钛酸钡(BT)陶瓷支架
(1)合成浆料:在40g钛酸钡粉体中,加入:8g二甲苯,12g乙醇,1.5gPVB(聚乙烯醇缩丁醛),0.3gTEP(磷酸三乙酯),0.3gPEG(聚乙二醇),0.3gDBP(邻苯二甲酸二丁酯),充分混合后球磨24h;
(2)3D打印支架:将浆料装入打印针筒,放置于离心机中,在500r/min下离心除泡5min,得到待用压电陶瓷浆料;将装有压电陶瓷浆料装入针筒放置于直写成型平台上;调节针筒的浆料挤出压力至适宜值(能连续挤出不断线),然后开始3D打印;打印图案由计算机设计的3-3型木堆式支架结构,打印过程由计算机程序控制;打印完成后将打印好的产品在室温下静置干燥24h,得到生坯支架;
(3)烧结:将上述打印的支架在空气氛围下放置24h后,从基板上取下,马弗炉中烧结,烧结流程:升温至325℃,保持60min,再升温至500摄氏度,保持100min,继续升温至600℃,保持120min,最后升温至1350℃,保持120min,自然冷却,完成钛酸钡陶瓷支架的制备。
钛酸钡陶瓷支架表面水热生长二氧化钛(TiO2)纳米线阵列
(1)在2mLTBT中加入30mL乙醇,再加入10mL甘油,混合后,搅拌五分钟,转移至水热反应釜中;
(2)将上述钛酸钡陶瓷支架放入反应釜中,浸没在溶液中;
(3)上述体系在180℃中水热反应24h,自然冷却,取出支架,洗涤,干燥;
(4)干燥后的支架转移至马弗炉中,550℃退火2h,制备完成得到表面生长二氧化钛纳米线阵列的钛酸钡陶瓷支架。
应用:催化降解有机染料
将该支架应用于催化降解100mL有机染料靛蓝胭脂红(染料浓度:10mg/L)。纯的BT支架在超声和光照作用下,120min的降解率为70.20%,对应的一级反应常数为0.009min-1;钛酸钡表面生长二氧化钛阵列(BT-TiO2NW)的支架30min内降解效率达到95.10%,对应的一级反应常数k=0.106min-1,是纯BT的11.7倍;在120min内,染料自降解几乎可以忽略,k值仅为0.002min-1
实施例3
3D打印钛酸钡(BT)陶瓷支架
(1)合成浆料:在35g钛酸钡粉体中,加入:7g二甲苯,10g乙醇,1.5g PVB(聚乙烯醇缩丁醛),0.3gTEP(磷酸三乙酯),0.3gPEG(聚乙二醇),0.3gDBP(邻苯二甲酸二丁酯),充分混合后球磨24h;
(2)3D打印支架:将浆料装入打印针筒,放置于离心机中,在500r/min下离心除泡5min,得到待用压电陶瓷浆料;将装有压电陶瓷浆料装入针筒放置于直写成型平台上;调节针筒的浆料挤出压力至适宜值(能连续挤出不断线),然后开始3D打印;打印图案由计算机设计的3-3型木堆式支架结构,打印过程由计算机程序控制;打印完成后将打印好的产品在室温下静置干燥24h,得到生坯支架;
(3)烧结:将上述打印的支架在空气氛围下放置24h后,从基板上取下,马弗炉中烧结,烧结流程:升温至325℃,保持60min,再升温至500摄氏度,保持100min,继续升温至600℃,保持120min,最后升温至1350℃,保持120min,自然冷却,完成钛酸钡陶瓷支架的制备。
钛酸钡陶瓷支架表面水热生长二氧化钛(TiO2)纳米线阵列
(1)在1.8mLTBT中加入30mL乙醇,再加入10mL甘油,混合后,搅拌10分钟,转移至水热反应釜中;
(2)将上述钛酸钡陶瓷支架放入反应釜中,浸没在溶液中;
(3)上述体系在190℃中水热反应24h,自然冷却,取出支架,洗涤,干燥;
(4)干燥后的支架转移至马弗炉中,550℃退火2h,制备完成得到表面生长二氧化钛纳米线阵列的钛酸钡陶瓷支架。
应用:催化降解有机染料
将该支架应用于催化降解100mL有机染料靛蓝胭脂红(染料浓度:10mg/L)。纯的BT支架在超声和光照作用下,120min的降解率为77.25%,对应的一级反应常数为0.010min-1;钛酸钡表面生长二氧化钛阵列(BT-TiO2NW)的支架30min内降解效率达到97.32%,对应的一级反应常数k=0.109min-1,是纯BT的11倍;在120min内,染料自降解几乎可以忽略,k值仅为0.002min-1
尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种表面水热生长二氧化钛纳米线阵列的钛酸钡陶瓷支架的制备方法,其特征在于,包括如下步骤:
S1、在钛酸钡粉体中分别加入二甲苯、乙醇、聚乙烯醇缩丁醛、磷酸三乙酯、聚乙二醇、邻苯二甲酸二丁酯,充分混合后球磨24h得到混合浆料;
S2、将混合浆料装入打印针筒,放置于离心机中离心除泡得到待用压电陶瓷浆料,将装有压电陶瓷浆料装入针筒放置于直写成型平台上;调节针筒的浆料挤出压力至适宜值,然后开始3D打印,打印完成后将打印好的产品在室温下静置干燥24h,得到生坯支架;
S3、将支架在空气氛围下放置24h后,从基板上取下,置于马弗炉中烧结,完成烧结后自然冷却,得到钛酸钡陶瓷支架;
S4、在钛酸四丁酯中加入乙醇、甘油,混合搅拌后转移至水热反应釜中;
S5、将钛酸钡陶瓷支架放入反应釜中,浸没在溶液中水热反应24h,自然冷却后取出支架,洗涤,干燥;
S6、把干燥后的支架转移至马弗炉中,550℃退火2h,得到表面生长二氧化钛纳米线阵列的钛酸钡陶瓷支架。
2.根据权利要求1所述的表面水热生长二氧化钛纳米线阵列的钛酸钡陶瓷支架的制备方法,其特征在于:所述步骤S1中钛酸钡粉体、二甲苯、乙醇、聚乙烯醇缩丁醛、磷酸三乙酯、聚乙二醇、邻苯二甲酸二丁酯的质量比为:50:10:15:5:1:1:1~150:30:45:5:1:1:1。
3.根据权利要求1所述的表面水热生长二氧化钛纳米线阵列的钛酸钡陶瓷支架的制备方法,其特征在于:所述步骤S2中的离心除泡具体是在500-5000r/min下离心除泡1-5min。
4.根据权利要求1所述的表面水热生长二氧化钛纳米线阵列的钛酸钡陶瓷支架的制备方法,其特征在于:所述3D打印的打印图案是计算机设计的3-3型木堆式支架结构。
5.根据权利要求1所述的表面水热生长二氧化钛纳米线阵列的钛酸钡陶瓷支架的制备方法,其特征在于:所述步骤S3中烧结的具体过程是:升温至325℃,保持60min,再升温至500℃,保持100min,继续升温至600℃,保持120min,最后升温至1350℃,保持120min。
6.根据权利要求1所述的表面水热生长二氧化钛纳米线阵列的钛酸钡陶瓷支架的制备方法,其特征在于:所述步骤S4中钛酸四丁酯的用量为:0.1~0.3M,乙醇、甘油的体积比为:4:1~2:1。
7.根据权利要求1所述的表面水热生长二氧化钛纳米线阵列的钛酸钡陶瓷支架的制备方法,其特征在于:所述步骤S4中混合搅拌的时间为5~30min。
8.根据权利要求1所述的表面水热生长二氧化钛纳米线阵列的钛酸钡陶瓷支架的制备方法,其特征在于:所述步骤S5中水热反应的温度为160~220℃。
9.一种根据权利要求1-8中任一项所述制备方法制备的表面生长二氧化钛纳米线阵列的钛酸钡陶瓷支架的应用,其特征在于:将该支架应用于催化降解有机染料靛蓝胭脂红。
10.根据权利要求9所述的应用,其特征在于:所述催化降解有机染料靛蓝胭脂红时,30min内降解效率达到95.735%,是纯BT的10倍。
CN202111306413.9A 2021-11-05 2021-11-05 一种表面水热生长二氧化钛纳米线阵列的钛酸钡陶瓷支架的制备方法及应用 Active CN114195511B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111306413.9A CN114195511B (zh) 2021-11-05 2021-11-05 一种表面水热生长二氧化钛纳米线阵列的钛酸钡陶瓷支架的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111306413.9A CN114195511B (zh) 2021-11-05 2021-11-05 一种表面水热生长二氧化钛纳米线阵列的钛酸钡陶瓷支架的制备方法及应用

Publications (2)

Publication Number Publication Date
CN114195511A true CN114195511A (zh) 2022-03-18
CN114195511B CN114195511B (zh) 2022-06-24

Family

ID=80646970

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111306413.9A Active CN114195511B (zh) 2021-11-05 2021-11-05 一种表面水热生长二氧化钛纳米线阵列的钛酸钡陶瓷支架的制备方法及应用

Country Status (1)

Country Link
CN (1) CN114195511B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115179387A (zh) * 2022-05-26 2022-10-14 中南大学 一种木堆式pzt支架结构复合材料驱动器3d打印制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007109304A2 (en) * 2006-03-20 2007-09-27 University Of Florida Research Foundation, Inc. Ceramic nanoparticles and methods for forming ceramic nanoparticles from electrospun nanofibers
WO2011066535A1 (en) * 2009-11-30 2011-06-03 Pinkerton Joseph F Piezoelectric energy conversion assemblies
CN104941618A (zh) * 2015-06-23 2015-09-30 南昌航空大学 一种二氧化钛纳米颗粒修补纳米线异质结复合材料
US20160214902A1 (en) * 2015-01-28 2016-07-28 Sandia Corporation Piezoelectric-effect-induced heterogeneous electrochemical reactions
WO2017004055A1 (en) * 2015-07-02 2017-01-05 Sabic Global Technologies B.V. Process and material for growth of adsorbed compound via nanoscale-controlled resistive heating and uses thereof
CN106316388A (zh) * 2016-09-07 2017-01-11 济南大学 一种用于激光烧结3d打印成型钛酸钡陶瓷粉体的制备
CN106830072A (zh) * 2017-03-20 2017-06-13 厦门大学 一种二氧化钛纳米线阵列的制备方法
CN107983327A (zh) * 2017-12-01 2018-05-04 西安理工大学 一种提高ZnO纳米棒阵列光催化性能的方法
CN111921517A (zh) * 2020-06-09 2020-11-13 西安理工大学 一种泡沫陶瓷基ZnO纳米棒阵列的制备方法及应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007109304A2 (en) * 2006-03-20 2007-09-27 University Of Florida Research Foundation, Inc. Ceramic nanoparticles and methods for forming ceramic nanoparticles from electrospun nanofibers
WO2011066535A1 (en) * 2009-11-30 2011-06-03 Pinkerton Joseph F Piezoelectric energy conversion assemblies
US20160214902A1 (en) * 2015-01-28 2016-07-28 Sandia Corporation Piezoelectric-effect-induced heterogeneous electrochemical reactions
CN104941618A (zh) * 2015-06-23 2015-09-30 南昌航空大学 一种二氧化钛纳米颗粒修补纳米线异质结复合材料
WO2017004055A1 (en) * 2015-07-02 2017-01-05 Sabic Global Technologies B.V. Process and material for growth of adsorbed compound via nanoscale-controlled resistive heating and uses thereof
CN106316388A (zh) * 2016-09-07 2017-01-11 济南大学 一种用于激光烧结3d打印成型钛酸钡陶瓷粉体的制备
CN106830072A (zh) * 2017-03-20 2017-06-13 厦门大学 一种二氧化钛纳米线阵列的制备方法
CN107983327A (zh) * 2017-12-01 2018-05-04 西安理工大学 一种提高ZnO纳米棒阵列光催化性能的方法
CN111921517A (zh) * 2020-06-09 2020-11-13 西安理工大学 一种泡沫陶瓷基ZnO纳米棒阵列的制备方法及应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HUANG, R ET AL.: "A new strategy for large-scale synthesis of Na0.5Bi0.5TiO3 nanowires and their application in piezocatalytic degradation", 《NANOSCALE ADVANCES》 *
LIU Q ET AL.: "Three dimensional BaTiO3 piezoelectric ceramics coated with TiO2 nanoarray for high performance of piezo-photoelectric catalysis", 《NANO ENERGY》 *
PAN C ET AL.: "Piezotronics and piezo-phototronics of third generation semiconductor nanowires", 《CHEMICAL REVIEWS》 *
YANG W ET AL.: "Ferroelectric polarization-enhanced photoelectrochemical water splitting in TiO2–BaTiO3 core–shell nanowire photoanodes", 《NANO LETTERS》 *
杨菲: "多孔陶瓷基ZnO纳米棒阵列的制备及压电光催化性能研究", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115179387A (zh) * 2022-05-26 2022-10-14 中南大学 一种木堆式pzt支架结构复合材料驱动器3d打印制备方法

Also Published As

Publication number Publication date
CN114195511B (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
CN108889329B (zh) 一种氮化碳量子点改性多级孔TiO2-SiO2光催化剂
CN103730259B (zh) 一种双尺度孔隙结构的纳米晶二氧化钛薄膜及其制备方法
CN102744059B (zh) 一种有序介孔二氧化钛/银光催化剂的制备方法
CN114195511B (zh) 一种表面水热生长二氧化钛纳米线阵列的钛酸钡陶瓷支架的制备方法及应用
CN102531050A (zh) 制备TiO2(B)纳米线的方法及制得的TiO2(B)纳米线的用途
KR20210135455A (ko) 중공사형 광촉매 및 이의 제조방법
CN108043378B (zh) 一种非金属掺杂多孔壁钛纳米管阵列可见光催化剂及其制备方法与应用
CN100570902C (zh) 染料敏化纳晶薄膜太阳能电池高孔隙柔性碳对电极及制备方法
KR101346960B1 (ko) 다공성 이트리아 안정화 지르코니아의 제조방법
CN111659369A (zh) 多孔二氧化钛/二氧化硅/碳纳米复合材料的制备方法
CN111185152A (zh) 一种多功能耦合的PAC/Bi2O3/TiO2复合材料制备方法
JP2007022858A (ja) 細孔構造を有する窒化物及びその製造方法
CN115364852B (zh) 一种负载有纳米贵金属氧化物催化剂的多孔陶瓷及其制备方法和应用
KR100980590B1 (ko) 다공성 이트리아 안정화 지르코니아 담체에 담지된 니켈 촉매, 그 제조방법 및 상기 촉매를 이용한 에탄올의 자열개질반응에 의한 수소 제조방법
CN113578296B (zh) 一种片层状灰色TiO2光催化材料及其制备方法
CN111774056B (zh) 一种银修饰的二氧化钛-钛酸钙晶体薄膜材料的制备方法
CN112047437B (zh) 一种光电极材料降解废水的方法
CN112246249B (zh) 一种多孔CeO2负载钙钛矿复合催化材料的化学腐蚀制备方法
KR20110078223A (ko) 금속이 담지된 균일한 중형 기공성 탄소 촉매, 그 제조 방법 및 상기 촉매를 이용하여 글리세롤로부터 프로판디올을 제조하는 방법
CN111617755A (zh) 基于原位裂解技术的纳米光触媒的制备方法
CN106040212B (zh) 一种砖头上沉积高光催化性能碳氮掺杂二氧化钛的制备方法
Guan et al. Asymmetric Mesoporous Rutile TiO2 Microspheres with Single-Crystal-like Frameworks
CN112028184B (zh) 一种介孔氧化钛中空微球电极材料的制备方法
CN112028185B (zh) 一种介孔氧化钛中空微球电极材料
KR101144676B1 (ko) 섬유성 산화티타늄 입자, 그의 제조방법 및 입자의 이용

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant