CN111659369A - 多孔二氧化钛/二氧化硅/碳纳米复合材料的制备方法 - Google Patents

多孔二氧化钛/二氧化硅/碳纳米复合材料的制备方法 Download PDF

Info

Publication number
CN111659369A
CN111659369A CN202010420141.4A CN202010420141A CN111659369A CN 111659369 A CN111659369 A CN 111659369A CN 202010420141 A CN202010420141 A CN 202010420141A CN 111659369 A CN111659369 A CN 111659369A
Authority
CN
China
Prior art keywords
solution
acetonitrile
porous
composite material
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010420141.4A
Other languages
English (en)
Other versions
CN111659369B (zh
Inventor
孟庆男
谢章雯
汤玉斐
赵康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN202010420141.4A priority Critical patent/CN111659369B/zh
Publication of CN111659369A publication Critical patent/CN111659369A/zh
Application granted granted Critical
Publication of CN111659369B publication Critical patent/CN111659369B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了多孔二氧化钛/二氧化硅/碳纳米复合材料的制备方法,具体为:首先,将醇溶剂、乙腈、有机硅源和钛源混合,得到溶液A;再将蒸馏水、醇溶剂、乙腈和碱液混合,搅拌,得到溶液B;将溶液A以一定速率加入溶液B中,加完溶液A后继续搅拌,洗涤,烘干,研磨,得到粉体,之后将粉体进行热处理,得到多孔二氧化钛/二氧化硅/碳纳米复合材料;在无外加碳源条件下,利用乙腈抑制有机钛源和硅源的不完全水解产物,将其作为碳源,乙腈可在前期添加少量氨水的条件下水解产生大量的氨水,降低氨水的用量,添加的SiO2可有效抑制高温条件下TiO2的晶粒的长大。另外,本发明工艺简单,绿色无毒,制备时间短,成本低,易放大体系生产。

Description

多孔二氧化钛/二氧化硅/碳纳米复合材料的制备方法
技术领域
本发明属于材料制备技术领域,具体涉及多孔二氧化钛/二氧化硅/碳纳米复合材料的制备方法。
背景技术
随着社会经济的快速发展,水污染问题一直困扰着人类,尤其是水中的染料、农药、抗生素等有机污染物大多结构稳定,很难进行生物降解,对人类生活及生物生存极为不利,为解决这一问题,科学家一直致力于开发去除水中有机污染物的有效方法以及合适的催化材料。其中,TiO2由于其化学和热稳定性,高折射率,无毒、成本低等特点在光降解领域、染料敏化太阳能电池、自清洁涂层和太阳能水分解方面已被广泛研究。但是由于TiO2宽带隙,光生能载体即电子和空穴很容易发生复合,极大地限制了其光催化应用。
为了调整TiO2的能带结构,研究者将TiO2与其他窄带隙半导体、金属、非金属复合。其中碳材料和TiO2复合具有其独特的优势:例如,制备方法相对简单、成本低、稳定性好,能有效地减小TiO2的带隙。此外,碳的引入可以促进电荷从TiO2内部转移表面,增加TiO2的导电性。目前有大量的研究报道了TiO2/C复合材料,例如中国专利(申请号:201811576854.9,公开号:CN108067214A)公开了一种碳掺杂二氧化钛光催化剂的制备方法,利用聚乙二醇(PEG)为分散剂,制出改性MOF-Al的金属有机骨架材料,且利用改性MOF-Al的金属有机骨架材料为模板制备了TiO2/C纳米复合材料。其不仅具有高比表面积、高孔容的特征,而且光催化活性高;Tang Y.B.等报道了用一种简单有效的分子接枝的方法合成石墨烯(GS)和TiO2纳米粒子复合薄膜,有效地提高了TiO2的光催化和水解氢的性能(Incorporation ofgraphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application,ACS nano,2010,4,3482-3488)。Zhang L.W.等人报道了将P25和葡萄糖在453K的条件下水热,制备新型TiO2/C复合光催化剂的方法(Efficient TiO2 photocatalysts from surface hybridization of TiO2 particleswith graphite-like carbon,Adv.Funct.Mater.,2008,18,2180-2189)。类似这样的报道还有很多,但是大多都是需要预制碳材料或者额外引入碳源和表面修饰剂,而且制备工艺复杂,成本高,很难放大体系生产。为此,中国专利(申请号为:201611115449.8,公开号:CN106673118B)提出一种无需添加外来碳源、采用溶剂热与热处理结合的方法制备锐钛矿TiO2/C复合材料的方法,但溶剂热往往需要高温高压的环境和反应釜等设备,对其大规模应用有一定的限制。Lettmann等采用酸催化溶胶凝胶法制备了TiO2/C复合材料,然而制备时间较长(Visible Light Photodegradation of 4-Chlorophenol with a Coke-Containing Titanium Dioxide Photocatalyst.Appl.Catal B:Environ,2001,32(4):215-227)。多孔材料内部分布有大量的方向性或随机分布的孔洞,能够提供更多的活性位点,广泛应用于工业催化领域。
发明内容
本发明的目的在于提供多孔二氧化钛/二氧化硅/碳纳米复合材料的制备方法,在无外加碳源条件下,制备出高催化活性的多孔TiO2/SiO2/C纳米复合材料。
本发明所采用的技术方案是,多孔二氧化钛/二氧化硅/碳纳米复合材料的制备方法,具体按照以下步骤实施:
步骤1:将体积比为3~4:1:0.1~1:0.4~4的醇溶剂、乙腈、有机硅源和钛源混合均匀,得到溶液A;
步骤2:将体积比为75~120:240~410:100~200:6~8的蒸馏水、醇溶剂、乙腈和碱液混合,搅拌0.5h-4h,得到溶液B;
步骤3:在20~60℃的温度下,将溶液A以一定速率加入溶液B中,加完溶液A后继续搅拌2~6h,得到混合液;
步骤4:依次采用蒸馏水和乙醇对混合溶液进行离心洗涤,烘干,研磨,得到粉体,之后将粉体放入高温炉内进行热处理,随炉冷却,得到多孔二氧化钛/二氧化硅/碳纳米复合材料。
本发明的特点还在于,
步骤1和步骤2中,醇溶剂均为乙醇、甲醇或者异丙醇。
步骤1中,有机硅源为正硅酸甲酯或者正硅酸乙酯。
步骤1中,钛源为钛酸四丁酯、异丙醇钛或者钛酸乙酯。
步骤2中,碱液为氨水或者乙二胺。
步骤3中,溶液A的滴加速率为1~4ml/h。
步骤4中,烘干温度为50~80℃,烘干时间为8-15h。
步骤4中,热处理时,升温速率为1~20℃/min,热处理温度为450~850℃,热处理时间为1~3h;热处理的气氛为真空、氮气或者氩气。
本发明的有益效果是,
在无外加碳源条件下,利用乙腈抑制有机钛源和硅源的不完全水解产物,将其作为碳源,其次,乙腈可在前期添加少量氨水的条件下水解产生大量的氨水,避免氨水的直接加入,惰性气氛下热处理可实现原位碳复合TiO2,且引入大量的氧空位,添加的SiO2可有效抑制高温条件下TiO2的晶粒的长大,并具有多孔结构,具有大的比表面积。另外,本发明工艺简单,绿色无毒,制备时间短,成本低,易放大体系生产。
附图说明
图1为本发明实施例1中复合材料的微观形貌图;
图2为本发明实施例1和实施例4中复合材料的XRD图谱;
图3为本发明实施例1中复合材料的宏观形貌图;
图4为本发明实施例4中复合材料的微观形貌图;
图5为本发明实施例4中复合材料的宏观形貌图。
具体实施方式
下面结合具体实施方式和附图对本发明进行详细说明。
本发明多孔二氧化钛/二氧化硅/碳纳米复合材料的制备方法,具体按照以下步骤实施:
步骤1:将体积比为3~4:1:0.1~1:0.4~4的醇溶剂、乙腈、有机硅源和钛源混合均匀,得到溶液A;
醇溶剂为乙醇、甲醇或者异丙醇;
有机硅源为正硅酸甲酯或者正硅酸乙酯;
钛源为钛酸四丁酯、异丙醇钛或者钛酸乙酯;
步骤2:将体积比为75~120:240~410:100~200:6~8的蒸馏水、醇溶剂、乙腈和碱液混合,搅拌0.5h-4h,得到溶液B;
醇溶剂为乙醇、甲醇或者异丙醇;
碱液为氨水或者乙二胺;
步骤3:在20~60℃的温度下,将溶液A以一定速率加入溶液B中,加完溶液A后继续搅拌2~6h,得到混合液;
溶液A的滴加速率为1~4ml/h;
步骤4:依次采用蒸馏水和乙醇对混合溶液进行离心洗涤,烘干,研磨,得到粉体,之后将粉体放入高温炉内进行热处理,随炉冷却,得到多孔二氧化钛/二氧化硅/碳纳米复合材料;
烘干温度为50~80℃,烘干时间为8-15h;
热处理时,升温速率为1~20℃/min,热处理温度为450~850℃,热处理时间为1~3h;热处理的气氛为真空、氮气或者氩气。
本发明利用溶胶-凝胶法与热处理结合的方法制备多孔TiO2/SiO2/C纳米复合材料。其方法具有以下优点:
1、乙腈可以抑制有机钛和有机硅源水解,其残留的有机组分为TiO2/SiO2/C纳米复合材料提供碳源,在前期添加少量氨水的条件下,乙腈可水解生成羧酸和氨水,避免大量氨水的直接加入;
2、在缺氧热处理过程中SiO2可有效地TiO2晶粒的快速长大,引入一定缺陷,并形成了多孔结构,具有大的比表面积;
3、设备工艺简单,耗时短,易于工业化生产。
实施例1:TiO2/SiO2/C复合材料
首先将4ml无水乙醇、1ml乙腈、1ml正硅酸乙酯和4ml钛酸四丁酯混合配制成溶液A;在将30ml蒸馏水、96ml无水乙醇、40ml乙腈和2.4ml氨水配制成溶液B,并搅拌30min;在40℃水浴条件下将溶液A每隔1h滴加1ml至溶液B中,加完溶液A,搅拌4h;随后将产物离心,将离心后的产物用水和无水乙醇各洗2次;随后在60℃鼓风干燥烘箱中干燥10h;通过研磨得到白色粉末,最后将其置于氮气做保护气氛的管式炉中,以5℃/min的升温速率升至300℃,在以3℃/min的升温速率升至650℃热处理2小时,冷却至室温再研磨得到灰色TiO2/SiO2/C纳米复合材料,其微观形貌如图1所示,由图可知,样品是球形的,尺寸在80nm左右,全部由小的纳米颗粒堆积而成,颗粒与颗粒之前存在空隙,具有明显多孔材料的特征。其XRD图谱如图2所示,与标准的PDF卡片对比后,所有衍射峰对应于锐钛矿相,未出现SiO2,说明SiO2以非晶相存在于复合物中。宏观微观形貌如图3所示,由图可知,与煅烧之前截然不同,其样品宏观表现出来的颜色为灰色,说明在热处理过程中,水解不完全的有机物被碳化。
实施例2:TiO2/SiO2/C复合材料
首先将4ml无水乙醇、1ml乙腈、1ml正硅酸乙酯和4ml钛酸四丁酯混合配制成溶液A;在将30ml蒸馏水、96ml无水乙醇、50ml乙腈和2.4ml氨水配制成溶液B,并搅拌1h;在40℃水浴条件下将溶液A每隔1h滴加1ml至溶液B中,加完溶液A,搅拌4h;随后将产物离心,将离心后的产物用水和无水乙醇各洗2次;随后在60℃鼓风干燥烘箱中干燥10h;通过研磨得到白色粉末,最后将其置于氮气做保护气氛的管式炉中,以5℃/min的升温速率升至300℃,在以3℃/min的升温速率升至650℃热处理2小时,冷却至室温再研磨得到灰色TiO2/SiO2/C纳米复合材料。
实施例3:TiO2/SiO2/C复合材料
首先将4ml无水乙醇、1ml乙腈、1ml正硅酸乙酯和4ml钛酸四丁酯混合配制成溶液A;在将30ml蒸馏水、96ml无水乙醇、60ml乙腈和2.4ml氨水配制成溶液B,并搅拌1h,在40℃水浴条件下将溶液A每隔1h滴加1ml至溶液B中,加完溶液A,搅拌4h;随后将产物离心,将离心后的产物用水和无水乙醇各洗2次;随后在60℃鼓风干燥烘箱中干燥10h;通过研磨得到白色粉末,最后将其置于氮气做保护气氛的管式炉中,以5℃/min的升温速率升至300℃,在以3℃/min的升温速率升至650℃热处理2小时,冷却至室温再研磨得到灰色TiO2/SiO2/C纳米复合材料。
对比实施例4:TiO2/SiO2复合材料
首先将4ml无水乙醇、1ml乙腈、1ml正硅酸乙酯和4ml钛酸四丁酯混合配制成溶液A;在将30ml蒸馏水、96ml无水乙醇、40ml乙腈和2.4ml氨水配制成溶液B,并搅拌30min,40℃水浴条件下将溶液A每隔1h滴加1ml至溶液B中,加完溶液A,搅拌4h;将产物离心,将离心后的产物用水和无水乙醇各洗2次;在60℃鼓风干燥烘箱中干燥10h;所得白色粉末,置于空气气氛中,以5℃/min的升温速率升至300℃,在以3℃/min的升温速率升至650℃热处理2小时,冷却至室温再研磨得到白色TiO2/SiO2纳米复合材料。其微观形貌如图4所示,由图可知,其形貌与实施例1的形貌类似,也是由小颗粒相互堆积而成大约85nm左右球状,颗粒与颗粒之前形成空隙。其XRD图谱如图2所示,所有衍射峰对应于锐钛矿相,说明SiO2以非晶相存在于复合物中。宏观微观形貌如图5所示,由图可知,该样品煅烧后显示出的颜色与煅烧前一致,都呈现白色,进一步印证了空气条件下煅烧有机物完全氧化。

Claims (8)

1.多孔二氧化钛/二氧化硅/碳纳米复合材料的制备方法,其特征在于,具体按照以下步骤实施:
步骤1:将体积比为3~4:1:0.1~1:0.4~4的醇溶剂、乙腈、有机硅源和钛源混合均匀,得到溶液A;
步骤2:将体积比为75~120:240~410:100~200:6~8的蒸馏水、醇溶剂、乙腈和碱液混合,搅拌0.5h-4h,得到溶液B;
步骤3:在20~60℃的温度下,将溶液A以一定速率加入溶液B中,加完溶液A后继续搅拌2~6h,得到混合液;
步骤4:依次采用蒸馏水和乙醇对混合溶液进行离心洗涤,烘干,研磨,得到粉体,之后将粉体放入高温炉内进行热处理,随炉冷却,得到多孔二氧化钛/二氧化硅/碳纳米复合材料。
2.根据权利要求1所述的多孔二氧化钛/二氧化硅/碳纳米复合材料的制备方法,其特征在于,所述步骤1和步骤2中,醇溶剂均为乙醇、甲醇或者异丙醇。
3.根据权利要求1所述的多孔二氧化钛/二氧化硅/碳纳米复合材料的制备方法,其特征在于,所述步骤1中,有机硅源为正硅酸甲酯或者正硅酸乙酯。
4.根据权利要求1所述的多孔二氧化钛/二氧化硅/碳纳米复合材料的制备方法,其特征在于,所述步骤1中,钛源为钛酸四丁酯、异丙醇钛或者钛酸乙酯。
5.根据权利要求1所述的多孔二氧化钛/二氧化硅/碳纳米复合材料的制备方法,其特征在于,所述步骤2中,碱液为氨水或者乙二胺。
6.根据权利要求1所述的多孔二氧化钛/二氧化硅/碳纳米复合材料的制备方法,其特征在于,所述步骤3中,溶液A的滴加速率为1~4ml/h。
7.根据权利要求1所述的多孔二氧化钛/二氧化硅/碳纳米复合材料的制备方法,其特征在于,所述步骤4中,烘干温度为50~80℃,烘干时间为8-15h。
8.根据权利要求1所述的多孔二氧化钛/二氧化硅/碳纳米复合材料的制备方法,其特征在于,所述步骤4中,热处理时,升温速率为1~20℃/min,热处理温度为450~850℃,热处理时间为1~3h;热处理的气氛为真空、氮气或者氩气。
CN202010420141.4A 2020-05-18 2020-05-18 多孔二氧化钛/二氧化硅/碳纳米复合材料的制备方法 Active CN111659369B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010420141.4A CN111659369B (zh) 2020-05-18 2020-05-18 多孔二氧化钛/二氧化硅/碳纳米复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010420141.4A CN111659369B (zh) 2020-05-18 2020-05-18 多孔二氧化钛/二氧化硅/碳纳米复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN111659369A true CN111659369A (zh) 2020-09-15
CN111659369B CN111659369B (zh) 2022-09-27

Family

ID=72383910

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010420141.4A Active CN111659369B (zh) 2020-05-18 2020-05-18 多孔二氧化钛/二氧化硅/碳纳米复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN111659369B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114039032A (zh) * 2021-11-08 2022-02-11 深圳市翔丰华科技股份有限公司 一种性能改善的二氧化钛(b)负极材料及其制备方法
CN114105475A (zh) * 2021-11-30 2022-03-01 汕头职业技术学院 一种纳米二氧化钛釉料及其制备方法
CN115532220A (zh) * 2021-06-29 2022-12-30 香港大学深圳研究院 一种介孔二氧化硅基脱氧剂及其制备方法和用途

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106607016A (zh) * 2016-12-29 2017-05-03 杭州禹净环境科技有限公司 纳米二氧化钛‑二氧化硅复合光催化剂及其制备方法
CN108906015A (zh) * 2018-06-12 2018-11-30 太原理工大学 一种纳米洋葱碳/二氧化钛/二氧化硅复合光催化材料及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106607016A (zh) * 2016-12-29 2017-05-03 杭州禹净环境科技有限公司 纳米二氧化钛‑二氧化硅复合光催化剂及其制备方法
CN108906015A (zh) * 2018-06-12 2018-11-30 太原理工大学 一种纳米洋葱碳/二氧化钛/二氧化硅复合光催化材料及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HENRY H. MUNGONDORI等: "Photo-catalytic activity of carbon/nitrogen doped TiO2-SiO2 under UV and visible light irradiation", 《MATERIALS SCIENCE FORUM》 *
JIE ZHONG等: "Meso/micro-porosity and phase separation in TiO2/SiO2/C nanocomposites", 《MICROPOROUS AND MESOPOROUS MATERIALS》 *
YING ZHANG等: "High photocatalytic activity of hierarchical SiO2@C-doped TiO2 hollow spheres in UV and visible light towards degradation of rhodamine B", 《JOURNAL OF HAZARDOUS MATERIALS》 *
ZHE-YING SHEN等: "Fabrication of hydroxyl group modified monodispersed hybrid silica particles and the h-SiO2/TiO2 core/shell microspheres as high performance photocatalyst for dye degradation", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115532220A (zh) * 2021-06-29 2022-12-30 香港大学深圳研究院 一种介孔二氧化硅基脱氧剂及其制备方法和用途
CN115532220B (zh) * 2021-06-29 2023-12-01 香港大学深圳研究院 一种介孔二氧化硅基脱氧剂及其制备方法和用途
CN114039032A (zh) * 2021-11-08 2022-02-11 深圳市翔丰华科技股份有限公司 一种性能改善的二氧化钛(b)负极材料及其制备方法
CN114105475A (zh) * 2021-11-30 2022-03-01 汕头职业技术学院 一种纳米二氧化钛釉料及其制备方法

Also Published As

Publication number Publication date
CN111659369B (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
CN111659369B (zh) 多孔二氧化钛/二氧化硅/碳纳米复合材料的制备方法
CN110773221B (zh) 一种静电自组装法合成SnO2/2D g-C3N4复合光催化剂的制备方法
CN103172030B (zh) 氧化物粉体及其制备方法、催化剂、以及催化剂载体
CN101670280B (zh) 一种高活性面二氧化钛微球光催化剂及其制备方法
CN102145280B (zh) 稻壳活性炭/二氧化硅/二氧化钛复合材料的制备方法
CN112007632B (zh) 一种花状SnO2/g-C3N4异质结光催化剂的制备方法
CN108355698A (zh) 一种o掺杂石墨相氮化碳纳米片粉末的制备方法
CN101205083A (zh) 一种经高温处理的锐钛矿相氧化钛纳米颗粒的制备方法
CN110152670B (zh) 一种Co3O4/CuO高效光热催化剂及其制备方法与应用
CN106732504A (zh) 石墨烯二氧化钛光催化复合材料的制备方法及应用
CN107522169A (zh) 一种常温制备纳米氧化物的纯有机均相沉积法
CN105944738A (zh) 一种基于表面改性的TiO2/MoS2复合材料的制备方法
CN106076390A (zh) 一种二氧化钛/石墨相氮化碳复合光催化剂的制备方法
CN110589886A (zh) 一种碳酸氧铋的制备方法
CN111054419B (zh) 一种用于CO2还原的半导体/g-C3N4光催化剂及其制备方法
CN107096537B (zh) 一种Fe2O3掺杂TiO2负载膨胀珍珠岩的漂浮型环境修复材料及其制备方法
CN104190465A (zh) 一种sapo-5分子筛负载金属氧化物的光催化剂
CN110745864A (zh) 一种钙钛矿型钛酸镧材料及其制备方法和应用
CN103253704A (zh) 半导体多孔氧化铋纳米球及其制备方法和应用
CN103212409A (zh) 一种多孔炭材料负载介孔TiO2-Ag复合体及其制备工艺
CN101507921B (zh) 碳掺杂五氧化二铌纳米结构可见光光催化剂及其非水体系低温制备
CN109772419B (zh) 在限域空间构筑氮化碳基超薄纳米片复合材料的制备方法
CN101696109B (zh) 二氧化钛介孔微球的制备方法
CN107892326B (zh) 金红石相TiO2纳米棒组装体的制备方法及产品
CN105271379B (zh) 一种基于化学固氮技术合成非化学计量的氟氧钛酸铵粉体的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant