CN114153019B - 一种红外隐身透波一体化超材料涂层及其制备方法 - Google Patents

一种红外隐身透波一体化超材料涂层及其制备方法 Download PDF

Info

Publication number
CN114153019B
CN114153019B CN202111271865.8A CN202111271865A CN114153019B CN 114153019 B CN114153019 B CN 114153019B CN 202111271865 A CN202111271865 A CN 202111271865A CN 114153019 B CN114153019 B CN 114153019B
Authority
CN
China
Prior art keywords
layer
coating
refractive
infrared stealth
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111271865.8A
Other languages
English (en)
Other versions
CN114153019A (zh
Inventor
王萌
王秀兰
贺晨
孙理理
姜舟
雷辉
李俊峰
孟凡辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerospace Research Institute of Materials and Processing Technology
Original Assignee
Aerospace Research Institute of Materials and Processing Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerospace Research Institute of Materials and Processing Technology filed Critical Aerospace Research Institute of Materials and Processing Technology
Priority to CN202111271865.8A priority Critical patent/CN114153019B/zh
Publication of CN114153019A publication Critical patent/CN114153019A/zh
Application granted granted Critical
Publication of CN114153019B publication Critical patent/CN114153019B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • C23C14/0629Sulfides, selenides or tellurides of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0694Halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • G02B1/005Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials made of photonic crystals or photonic band gap materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本发明公开了一种红外隐身透波一体化超材料涂层及其制备方法,本发明制备方法中,以一维光子晶体作为涂层结构,以两种天线罩材料作为基材,通过材料体系和工艺参数的优化,实现了涂层制备质量和性能的有效控制,通过基材刮平、打磨、抛光的方式降低了天线罩基材的表面粗糙度,提升了涂层的制备效果和工艺稳定性,制备出了由高折射率和低折射率膜层交替组成的一维光子晶体结构涂层,该涂层在红外双波段(3‑5μm、8‑14μm)具有超低红外发射率、对2‑18GHz雷达波具有高透过特性,同时能够耐受450℃高温,可满足各类航天器型号产品雷达透波部位的耐高温、雷达透波和红外隐身一体化的需求。

Description

一种红外隐身透波一体化超材料涂层及其制备方法
技术领域
本发明涉及一种高温红外隐身透波一体化超材料涂层及其制备方法,属于特种功能涂层领域。
背景技术
随着红外探测技术和各国探测防御系统的发展,红外侦查、红外夜视等技术广泛地应用于军事领域,导致武器装备的生存受到巨大考验,具备高突防能力的隐身武器成为各个国家研究的重点。常见传统的红外隐身手段中,红外隐身涂料的使用最为广泛,在发射率的降低方面效果非常明显。这些涂料大多是依靠添加金属填料来实现红外低发射率,由于金属的电磁屏蔽效应,在天线窗这类需具有雷达透波功能的部位则不能喷涂,因此这些部位目前还无法实现红外隐身和雷达透波的兼容。
发明内容
本发明的目的在于克服上述缺陷,提供一种红外隐身透波一体化超材料涂层及其制备方法,本发明制备方法中,以一维光子晶体作为涂层结构,以两种天线罩材料作为基材,通过材料体系和工艺参数的优化,实现了涂层制备质量和性能的有效控制,通过基材刮平、打磨、抛光的方式降低了天线罩基材的表面粗糙度,提升了涂层的制备效果和工艺稳定性,制备出了由高折射率和低折射率膜层交替组成的一维光子晶体结构涂层,该涂层在红外双波段(3-5μm、8-14μm)具有超低红外发射率、对2-18GHz雷达波具有高透过特性,同时能够耐受450℃高温,可满足各类航天器型号产品雷达透波部位的耐高温、雷达透波和红外隐身一体化的需求。
为实现上述发明目的,本发明提供如下技术方案:
一种红外隐身透波一体化超材料涂层的制备方法,包括以下步骤:
(1)将无机粉体和有机树脂混合后研磨,得到刮平料;
(2)将刮平料与固化剂混合并搅拌均匀,得到混合料,利用混合料按照面密度200~350g/m2对基材进行刮平处理;
(3)将刮平处理后的基材依次进行研磨和抛光处理;
(4)利用高折射层膜料和低折射率层膜料在抛光处理后的基材表面进行交替镀膜,得到一种红外隐身透波一体化超材料涂层;所述用高折射层膜料为Ge或Si,所述低折射率层膜料为ZnS,SiO2或YbF3的一种或一种以上。
进一步的,所述基材为石英纤维增强二氧化硅或石英纤维增强聚酰亚胺。
进一步的,所述步骤(1)中,无机粉体为SiO2或SiN4中的一种或两种的混合物;有机树脂为有机硅树脂或有机氟树脂中的一种或两种的混合物。
进一步的,所述步骤(1)中,无机粉体和有机树脂的质量比为1.0~1.5:1。
进一步的,所述步骤(1)中,将无机粉体和有机树脂混合后研磨的具体方法为,采用三辊研磨法研磨≥3遍;
所述步骤(1)中,所得刮平料的细度≤80μm。
进一步的,所述步骤(2)中,固化剂为二月桂酸二丁基锡,将刮平料与固化剂按照质量比为100:1~3混合并搅拌,得到混合料;
所述步骤(2)中,利用混合料按照面密度200~350g/m2对基材进行刮平处理的具体方法为,利用细刮板将混合料按照面密度200~350g/m2在基材表面刮平,并在80~100℃下固化4h。
进一步的,所述步骤(3)中,研磨处理的具体方法为,将刮平处理后的基材置于转速为30~50r/min的研磨盘上,使用直径为5~10μm的金刚石颗粒,在0.8~1.2MPa压力下对刮平处理后的基材研磨20~30min;
所述步骤(3)中,抛光处理的具体方法为,将研磨处理后的基材置于转速为40~80r/min的抛光盘上,使用直径0.8~1.2μm的BN颗粒,在1.5~2.5MPa压力下对研磨处理后的基材抛光40~60min,得到表面粗糙度≤5000A的基材。
进一步的,所述步骤(4)中,利用高折射层膜料和低折射率层膜料在抛光处理后的基材表面进行交替镀膜的方法为:
(41)将抛光处理后的基材置于镀膜机的工件盘内,将镀膜机腔室真空度降至≤4×10-4Pa;
(42)利用离子源对抛光处理后的基材进行离子清洁,具体条件为,离子束流为180~220mA,电子束流为330~370mA,屏极电压为380~320V,氩气流量为8~12sccm;
(43)使工件盘以20~40r/min的速度进行公转并保持烘烤温度为50~70℃,使离子束流保持为180~220mA,利用电子枪轰击高折射层膜料或低折射率层膜料进行交替蒸发镀膜;
(44)蒸发镀膜完成后,继续保持镀膜机腔室真空度和烘烤温度≥20min,得到一种红外隐身透波一体化超材料涂层。
进一步的,所述步骤(4)中,高折射层膜料和低折射率层膜料的纯度均为4N;
所述步骤(4)所得一种红外隐身透波一体化超材料涂层包括交替的高折射率层和低折射率层,所述高折射率层和低折射率层共17层,记远离基材的一层为第1层,第1层为高折射率层;各层的厚度如下:
第1层:195~215nm,第2层:415~420nm,第3层:195~215nm,第4层:415~420nm,第5层:195~215nm,第6层:415~420nm,第7层:195~215nm,第8层:415~420nm,第9层:400~405nm,第10层:960~970nm,第11层:490~500nm,第12层:1140~1145nm,第13层:585~560nm,第14层:1320~1330nm,第15层:670~675nm,第16层:1505~1515nm,第17层:765~775nm。
一种红外隐身透波一体化超材料涂层,采用上述一种高温红外隐身透波一体化超材料涂层的制备方法得到,所述涂层的基材为石英纤维增强二氧化硅或石英纤维增强聚酰亚胺材质的天线罩。
本发明与现有技术相比具有如下有益效果:
(1)本发明一种红外隐身透波一体化超材料涂层,以一维光子晶体作为天线罩基材的红外隐身涂层,依据光子晶体的光子禁带特征和材料自身透雷达波的属性,制备出≥300℃高温下,在红外双波段具有低发射率(3-5μm波段发射率≤0.21、8-14μm波段发射率≤0.48)、对雷达波具有超高透过特性(2-18GHz透波率>80%)的光子晶体涂层材料,克服了传统红外隐身涂层透波性差的缺点,实现了天线罩材料红外隐身、雷达透波的兼容;
(2)本发明一种红外隐身透波一体化超材料涂层的制备方法,采用刮平、研磨加抛光的基材预处理方法,降低了石英纤维增强聚酰亚胺和石英纤维增强二氧化硅基材的粗糙度,提高了涂层在这两种基材表面的制备的适应性和匹配性;
(3)本发明一种红外隐身透波一体化超材料涂层的制备方法,通过合理的工艺参数控制,制备的高温红外隐身透波一体化超材料涂层表面平整光滑、结合力好,解决了在天线罩材料表面制备涂层后表面粗糙、容易掉渣等技术难题,能够满足天线罩材料的红外隐身雷达透波一体化需求,在红外隐身和雷达透波领域具有广阔的应用前景。
附图说明
图1为本发明450℃下涂层发射率曲线(基材为石英纤维增强二氧化硅);其中图1(a)为实施例1所得涂层3-5μm波段发射率曲线,其中图1(b)为实施例1所得涂层8-14μm波段发射率曲线;
图2本发明一种高温红外隐身透波一体化超材料涂层的制备流程图。
具体实施方式
下面通过对本发明进行详细说明,本发明的特点和优点将随着这些说明而变得更为清楚、明确。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
本发明提供一种高温红外隐身透波一体化超材料涂层体系,实现涂层与两种天线罩基材匹配,同时达到红外双波段低发射率和雷达高透波性能兼容的目标。采用自身具有低介电损耗的物质作为涂层材料,通过制备中材料的选择和工艺参数的优化,以3mm厚石英纤维增强二氧化硅为基材时为例,制备出的涂层450℃下红外双波段(3-5μm、8-14μm)发射率最低为0.12,2-18GHz雷达波为80.3%,解决了现有天线罩材料红外隐身和透波不能兼顾的技术难题,为天线罩基材的红外隐身提供新的思路。
本发明一种高温红外隐身透波一体化超材料涂层的制备方法,该方法包括以下步骤:
一、刮平料制备与刮涂:
(1)刮平料的制备
按照质量比为1.0~1.5:1,称取无机粉体和有机树脂通过三辊研磨法研磨3遍,既得到刮平料。
(2)刮平
刮平料与固化剂按照质量比为100:1的比例搅拌均匀,用细刮板按照面密度200~350g/m2在基体表面刮平,并在80~100℃下固化4h。
二、基材研磨与抛光:
首先,在转速为40r/min的粗制玻璃研磨盘上,使用直径5~10μm的金刚石颗粒,在1MPa压力下对上一步处理后的基材进行粗研磨;然后在使用转速为60r/min的光滑玻璃抛光盘上,使用直径1μm的BN颗粒,在2MPa压力下对上一步处理后的基材进行抛光,抛光后得到表面平滑的基材。
三、涂层制备:
将经前两步预处理过的基材放入工件盘内,将高折射层和低折射率层膜料放入坩埚内,启动镀膜机,密封腔门进行抽真空,利用抽真空系统将腔室气压降至4×10-4Pa或更低;开始蒸镀前,利用离子源对基材进行离子清洁,其中,调节离子束流至200mA,电子束流至350mA,屏极电压至300V,调节氩气流量至10sccm;开始蒸镀时为保证膜厚的均匀性和一致性,将工件盘以30r/min的速度进行公转并保持一定烘烤温度,使离子束流保持为200mA以辅助镀膜,打开电子枪轰击膜料进行蒸发镀膜;镀膜作业结束后,继续保持真空状态和烘烤温度20min,待成膜稳定后放气取出样件。
在一种优选的实施方式中,步骤一中的无机粉体为SiO2或SiN4中的一种或两种的混合物。
在一种优选的实施方式中,步骤一中的有机树脂为有机硅树脂或有机氟树脂中的一种或两种的混合物。
在一种优选的实施方式中,步骤一中的固化剂为二月桂酸二丁基锡。
在一种优选的实施方式中,步骤二中的研磨时间为20~30min,抛光过程为40~60min。
在一种优选的实施方式中,步骤三中的烘烤温度为50~70℃。
在一种优选的实施方式中,当基材为石英纤维增强聚酰亚胺时,无需执行步骤一。
在一种优选的实施方式中,高折射率层膜料纯度为4N;低折射率层膜料纯度为4N。
本发明一种高温红外隐身透波一体化超材料涂层,自基材表面向外由高折射率层和低折射率层交替组成;高折射率层为Ge或Si;低折射率层为ZnS、SiO2或YbF3中的一种或多种。本发明采用了一维光子晶体作为天线罩基材的红外隐身涂层,一维光子晶体作为一种新型人工微结构,可以通过结构设计选择性抑制或增强物体特定波段的红外辐射,同时大部分用于制备光子晶体的材料自身具备透雷达波的属性,能够实现红外隐身和雷达透波兼容的需求。
在一种优选的实施方式中,涂层基材为石英纤维增强二氧化硅或石英纤维增强聚酰亚胺。
实施例1
按照质量比为1.0:1,称取SiO2粉和有机硅树脂通过三辊研磨法研磨3遍,将上述物质与二月桂酸二丁基锡按照质量比为100:1的比例搅拌均匀,用细刮板按照面密度200g/m2在石英纤维增强二氧化硅基材和石英纤维增强聚酰亚胺基材表面刮平,并在80℃下固化4h。
对刮平后的石英纤维增强二氧化硅和石英纤维增强聚酰亚胺基材使用转速为40r/min的粗制玻璃研磨盘,磨粒为直径5~10μm的金刚石颗粒,在1MPa压力下粗研磨30min;然后对两种基材使用转速为60r/min的光滑玻璃抛光盘,磨粒为直径1μm的碳化硼颗粒,在2MPa压力下精抛光时间60min,得到表面较为平滑的基材。
将预处理过的基材放入工件盘内,将Ge和ZnS膜料放入坩埚内,启动镀膜机,密封腔门进行抽真空,利用抽真空系统将腔室气压降至4×10-4Pa或更低;开始蒸镀前,利用离子源对基材进行离子清洁,其中,调节离子束流至200mA,电子束流至350mA,屏极电压至300V,调节氩气流量至10sccm;开始蒸镀时为保证膜厚的均匀性和一致性,将工件盘以30r/min的速度进行公转并保持70℃的烘烤温度,使离子束流保持为200mA以辅助镀膜,打开电子枪轰击膜料进行蒸发镀膜;镀膜作业结束后,继续保持真空状态和烘烤温度20min,待成膜稳定后放气取出样件;所得涂层性能如表1所示。
表1高温红外隐身透波一体化超材料涂层性能
实施例2
按照质量比为1.5:1,称取SiN4粉和有机氟树脂通过三辊研磨法研磨3遍,将上述物质与二月桂酸二丁基锡按照质量比为100:1的比例搅拌均匀,用细刮板按照面密度350g/m2在石英纤维增强二氧化硅基材和石英纤维增强聚酰亚胺基材表面刮平,并在100℃下固化4h。
对刮平后的石英纤维增强二氧化硅和石英纤维增强聚酰亚胺基材使用转速为40r/min的粗制玻璃抛光盘,磨粒为直径5~10μm的金刚石颗粒,在1MPa压力下粗研磨20min;然后对两种基材使用转速为60r/min的光滑玻璃研磨盘,磨粒为直径1μm的碳化硼颗粒,在2MPa压力下精抛光时间40min,得到表面较为平滑的基材。
将预处理过的基材放入工件盘内,将Si、SiO2和YbF3膜料放入坩埚内,启动镀膜机,密封腔门进行抽真空,利用抽真空系统将腔室气压降至4×10-4Pa或更低;开始蒸镀前,利用离子源对基材进行离子清洁,其中,调节离子束流至200mA,电子束流至350mA,屏极电压至300V,调节氩气流量至10sccm;开始蒸镀时为保证膜厚的均匀性和一致性,将工件盘以30r/min的速度进行公转并保持50℃的烘烤温度,使离子束流保持为200mA以辅助镀膜,打开电子枪轰击膜料进行蒸发镀膜;镀膜作业结束后,继续保持真空状态和烘烤温度20min,待成膜稳定后放气取出样件;所得涂层性能如表2所示。
表2高温红外隐身透波一体化超材料涂层性能
实施例3
按照质量比为1.5:1,称取SiN4粉和有机氟树脂通过三辊研磨法研磨3遍,将上述物质与二月桂酸二丁基锡按照质量比为100:1的比例搅拌均匀,用细刮板按照面密度300g/m2在石英纤维增强二氧化硅基材和石英纤维增强聚酰亚胺基材表面刮平,并在100℃下固化4h。
对刮平后的石英纤维增强二氧化硅和石英纤维增强聚酰亚胺基材使用转速为40r/min的粗制玻璃抛光盘,磨粒为直径5~10μm的金刚石颗粒,在1MPa压力下粗研磨20min;然后对两种基材使用转速为60r/min的光滑玻璃研磨盘,磨粒为直径1μm的碳化硼颗粒,在2MPa压力下精抛光时间40min,得到表面较为平滑的基材。
将预处理过的基材放入工件盘内,将Ge和ZnS膜料放入坩埚内,启动镀膜机,密封腔门进行抽真空,利用抽真空系统将腔室气压降至4×10-4Pa或更低;开始蒸镀前,利用离子源对基材进行离子清洁,其中,调节离子束流至200mA,电子束流至350mA,屏极电压至300V,调节氩气流量至10sccm;开始蒸镀时为保证膜厚的均匀性和一致性,将工件盘以30r/min的速度进行公转并保持50℃的烘烤温度,使离子束流保持为200mA以辅助镀膜,打开电子枪轰击膜料进行蒸发镀膜;镀膜作业结束后,继续保持真空状态和烘烤温度20min,待成膜稳定后放气取出样件。所得涂层性能如表3所示。
表3高温红外隐身透波一体化超材料涂层性能
对比例1
将未经处理的基材,经过乙醇擦拭、晾干后放入工件盘内,将Ge和ZnS膜料放入坩埚内,启动镀膜机,密封腔门进行抽真空,利用抽真空系统将腔室气压降至4×10-4Pa或更低;开始蒸镀前,利用离子源对基材进行离子清洁,其中,调节离子束流至200mA,电子束流至350mA,屏极电压至300V,调节氩气流量至10sccm;开始蒸镀时为保证膜厚的均匀性和一致性,将工件盘以30r/min的速度进行公转并保持70℃的烘烤温度,使离子束流保持为200mA以辅助镀膜,打开电子枪轰击膜料进行蒸发镀膜;镀膜作业结束后,继续保持真空状态和烘烤温度20min,待成膜稳定后放气取出样件;所得涂层性能如表4所示。
表4对比例所得涂层性能
本对比例与实施例1的镀膜工艺一致,但未经刮平、抛光等预处理,所得涂层透波率基本不变,但在红外双波段的发射率明显升高,说明本发明的预处理过程有利于提高涂层的红外隐身性能,使红外隐身、雷达透波兼容,能够满足天线罩材料的红外隐身雷达透波一体化需求。
以上结合具体实施方式和范例性实例对本发明进行了详细说明,不过这些说明并不能理解为对本发明的限制。本领域技术人员理解,在不偏离本发明精神和范围的情况下,可以对本发明技术方案及其实施方式进行多种等价替换、修饰或改进,这些均落入本发明的范围内。本发明的保护范围以所附权利要求为准。本发明说明书中未作详细描述的内容属本领域技术人员的公知技术。

Claims (6)

1.一种红外隐身透波一体化超材料涂层的制备方法,其特征在于,包括以下步骤:
(1)将无机粉体和有机树脂混合后研磨,得到刮平料;
(2)将刮平料与固化剂混合并搅拌均匀,得到混合料,利用混合料按照面密度200~350g/m2对基材进行刮平处理;
(3)将刮平处理后的基材依次进行研磨和抛光处理;
(4)利用高折射层膜料和低折射率层膜料在抛光处理后的基材表面进行交替镀膜,得到一种红外隐身透波一体化超材料涂层;所述用高折射层膜料为Ge或Si,所述低折射率层膜料为ZnS,SiO2或YbF3的一种或一种以上;
所述基材为石英纤维增强二氧化硅或石英纤维增强聚酰亚胺;
所述步骤(1)中,无机粉体为SiO2或SiN4中的一种或两种的混合物;有机树脂为有机硅树脂或有机氟树脂中的一种或两种的混合物;
所述步骤(1)中,将无机粉体和有机树脂混合后研磨的具体方法为,采用三辊研磨法研磨≥3遍;
所述步骤(1)中,所得刮平料的细度≤80μm;
所述步骤(3)中,研磨处理的具体方法为,将刮平处理后的基材置于转速为30~50r/min的研磨盘上,使用直径为5~10μm的金刚石颗粒,在0.8~1.2MPa压力下对刮平处理后的基材研磨20~30min;
所述步骤(3)中,抛光处理的具体方法为,将研磨处理后的基材置于转速为40~80r/min的抛光盘上,使用直径0.8~1.2μm的BN颗粒,在1.5~2.5MPa压力下对研磨处理后的基材抛光40~60min,得到表面粗糙度≤5000A的基材。
2.根据权利要求1所述的一种红外隐身透波一体化超材料涂层的制备方法,其特征在于,所述步骤(1)中,无机粉体和有机树脂的质量比为1.0~1.5:1。
3.根据权利要求1所述的一种红外隐身透波一体化超材料涂层的制备方法,其特征在于,所述步骤(2)中,固化剂为二月桂酸二丁基锡,将刮平料与固化剂按照质量比为100:1~3混合并搅拌,得到混合料;
所述步骤(2)中,利用混合料按照面密度200~350g/m2对基材进行刮平处理的具体方法为,利用细刮板将混合料按照面密度200~350g/m2在基材表面刮平,并在80~100℃下固化4h。
4.根据权利要求1所述的一种红外隐身透波一体化超材料涂层的制备方法,其特征在于,所述步骤(4)中,利用高折射层膜料和低折射率层膜料在抛光处理后的基材表面进行交替镀膜的方法为:
(41)将抛光处理后的基材置于镀膜机的工件盘内,将镀膜机腔室真空度降至≤4×10- 4Pa;
(42)利用离子源对抛光处理后的基材进行离子清洁,具体条件为,离子束流为180~220mA,电子束流为330~370mA,屏极电压为380~320V,氩气流量为8~12sccm;
(43)使工件盘以20~40r/min的速度进行公转并保持烘烤温度为50~70℃,使离子束流保持为180~220mA,利用电子枪轰击高折射层膜料或低折射率层膜料进行交替蒸发镀膜;
(44)蒸发镀膜完成后,继续保持镀膜机腔室真空度和烘烤温度≥20min,得到一种红外隐身透波一体化超材料涂层。
5.根据权利要求1所述的一种红外隐身透波一体化超材料涂层的制备方法,其特征在于,所述步骤(4)中,高折射层膜料和低折射率层膜料的纯度均为4N;
所述步骤(4)所得一种红外隐身透波一体化超材料涂层包括交替的高折射率层和低折射率层,所述高折射率层和低折射率层共17层,记远离基材的一层为第1层,第1层为高折射率层;各层的厚度如下:
第1层:195~215nm,第2层:415~420nm,第3层:195~215nm,第4层:415~420nm,第5层:195~215nm,第6层:415~420nm,第7层:195~215nm,第8层:415~420nm,第9层:400~405nm,第10层:960~970nm,第11层:490~500nm,第12层:1140~1145nm,第13层:585~560nm,第14层:1320~1330nm,第15层:670~675nm,第16层:1505~1515nm,第17层:765~775nm。
6.一种红外隐身透波一体化超材料涂层,其特征在于,采用权利要求1-5任一项所述的一种高温红外隐身透波一体化超材料涂层的制备方法得到,所述涂层的基材为石英纤维增强二氧化硅或石英纤维增强聚酰亚胺材质的天线罩。
CN202111271865.8A 2021-10-29 2021-10-29 一种红外隐身透波一体化超材料涂层及其制备方法 Active CN114153019B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111271865.8A CN114153019B (zh) 2021-10-29 2021-10-29 一种红外隐身透波一体化超材料涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111271865.8A CN114153019B (zh) 2021-10-29 2021-10-29 一种红外隐身透波一体化超材料涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN114153019A CN114153019A (zh) 2022-03-08
CN114153019B true CN114153019B (zh) 2024-04-09

Family

ID=80459108

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111271865.8A Active CN114153019B (zh) 2021-10-29 2021-10-29 一种红外隐身透波一体化超材料涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN114153019B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114806254B (zh) * 2022-03-21 2023-04-07 航天科工武汉磁电有限责任公司 具有波段选择低发性耐温环保型红外隐身材料及制备方法
CN115077302B (zh) * 2022-08-18 2022-11-04 合肥中隐新材料有限公司 一种基于超材料的雷达隐身套件
CN116107002A (zh) * 2022-12-09 2023-05-12 中国科学院西安光学精密机械研究所 兼具热控管理的波长选择发射器、红外选择发射器及用途
CN117567782A (zh) * 2024-01-16 2024-02-20 合肥中隐新材料有限公司 一种红外隐身透波一体化超材料涂层及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106007799A (zh) * 2016-05-18 2016-10-12 中国人民解放军国防科学技术大学 基于双层频率选择表面的雷达与红外兼容隐身材料及其制备方法
CN106427115A (zh) * 2016-09-21 2017-02-22 中国人民解放军国防科学技术大学 一种基于双层超材料的耐高温雷达红外兼容隐身材料及其制备方法
CN112346160A (zh) * 2020-10-20 2021-02-09 中国人民解放军国防科技大学 非金属可见光激光红外多波段兼容隐身薄膜及其制备方法
WO2021203693A1 (zh) * 2020-04-07 2021-10-14 苏州苏大维格科技集团股份有限公司 超薄光学隐身材料

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11230086B2 (en) * 2017-01-11 2022-01-25 Industry-Academic Cooperation Foundation Yonsei University Infrared stealth element using dual band perfect absorption metamaterial

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106007799A (zh) * 2016-05-18 2016-10-12 中国人民解放军国防科学技术大学 基于双层频率选择表面的雷达与红外兼容隐身材料及其制备方法
CN106427115A (zh) * 2016-09-21 2017-02-22 中国人民解放军国防科学技术大学 一种基于双层超材料的耐高温雷达红外兼容隐身材料及其制备方法
WO2021203693A1 (zh) * 2020-04-07 2021-10-14 苏州苏大维格科技集团股份有限公司 超薄光学隐身材料
CN112346160A (zh) * 2020-10-20 2021-02-09 中国人民解放军国防科技大学 非金属可见光激光红外多波段兼容隐身薄膜及其制备方法

Also Published As

Publication number Publication date
CN114153019A (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
CN114153019B (zh) 一种红外隐身透波一体化超材料涂层及其制备方法
DE112016001908B4 (de) Gekrümmtes Substrat mit Film, Verfahren zu dessen Herstellung und Bildanzeigevorrichtung
CN110770185B (zh) 着色窗玻璃及其制备方法
CN111321380B (zh) 超疏水类金刚石复合层结构及其制备方法
CN101066844A (zh) 红外光学窗口用dlc/bp增透保护膜及其制备方法
CN114524664A (zh) 一种太阳能电池用陶瓷靶材及其制备方法
CN115745574A (zh) 高致密无开裂细晶铟锡氧化物管状靶材的制备方法
CN111304588A (zh) 一种红外碳化锗膜、具有碳化锗膜的红外材料及其制备方法和应用
CN113735590B (zh) 一种耐高温电磁吸波陶瓷基复合材料的制备方法及产品
CN108914064B (zh) 一种rpd用多元导电氧化物材料及其制备方法
CN110467462A (zh) 一种高致密低电阻氧化铌旋转靶材及其制备方法
CN110863188A (zh) 类石墨含氢碳膜、制备方法及光学薄膜
CN111856628A (zh) 一种用于蓝宝石基底的增透薄膜及其制备方法
US8512867B2 (en) Coated glass article and method for manufacturing same
CN114107917B (zh) 一种铜掺氧化锌透明导电薄膜及其制备方法
CN107400868A (zh) 改善大口径碳化硅反射镜硅改性层表面微观缺陷的方法
CN115572167A (zh) 一种iwzo靶材及其制备方法与应用
CN108914065B (zh) 一种rpd用多元导电氧化物材料及其制备方法
CN110106470B (zh) 一种低应力类金刚石薄膜的制备方法
CN109207934B (zh) 一种采用石英环光学镀膜材料改善高反膜微缺陷的方法
CN111040473B (zh) 亚氧化钛黑色颜料及其制备方法
CN118164750B (zh) 一种太阳能电池用低电阻无铟靶材的制备工艺
Peifang et al. Control of growth and structure of Ag films by the driving frequency of magnetron sputtering
CN111088484A (zh) 金属氧化物薄膜的制备方法
CN111856626B (zh) 硅掺杂碳化锗膜、光学薄膜及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant