CN114107789A - 一种780MPa级高表面高性能稳定性超高扩孔钢及其制造方法 - Google Patents

一种780MPa级高表面高性能稳定性超高扩孔钢及其制造方法 Download PDF

Info

Publication number
CN114107789A
CN114107789A CN202010896424.6A CN202010896424A CN114107789A CN 114107789 A CN114107789 A CN 114107789A CN 202010896424 A CN202010896424 A CN 202010896424A CN 114107789 A CN114107789 A CN 114107789A
Authority
CN
China
Prior art keywords
steel
equal
percent
less
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010896424.6A
Other languages
English (en)
Other versions
CN114107789B (zh
Inventor
王焕荣
杨峰
张晨
杨阿娜
柏明卓
倪亚平
王明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoshan Iron and Steel Co Ltd
Original Assignee
Baoshan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baoshan Iron and Steel Co Ltd filed Critical Baoshan Iron and Steel Co Ltd
Priority to CN202010896424.6A priority Critical patent/CN114107789B/zh
Priority to PCT/CN2021/115415 priority patent/WO2022042727A1/zh
Priority to EP21860559.0A priority patent/EP4206348A4/en
Priority to JP2023513825A priority patent/JP2023539312A/ja
Priority to KR1020237009769A priority patent/KR20230059808A/ko
Priority to US18/043,036 priority patent/US20230323500A1/en
Publication of CN114107789A publication Critical patent/CN114107789A/zh
Application granted granted Critical
Publication of CN114107789B publication Critical patent/CN114107789B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/56Elongation control
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/663Bell-type furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G3/00Apparatus for cleaning or pickling metallic material
    • C23G3/02Apparatus for cleaning or pickling metallic material for cleaning wires, strips, filaments continuously
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种780MPa级高表面高性能稳定性超高扩孔钢及其制造方法,其成分重量百分比为:C 0.03~0.08%,Si≤0.2%,Mn 0.5~2.0%,P≤0.02%,S≤0.003%,Al 0.01~0.08%,N≤0.004%,Ti 0.05~0.20%,Mo 0.1~0.5%,Mg≤0.005%,O≤0.0030%,其余为Fe及其它不可避免的杂质。本发明所述的超高扩孔钢具有良好的组织均匀性、性能均匀性和优异的强度、塑性、超高扩孔率的匹配,其屈服强度≥750MPa,抗拉强度≥780MPa,延伸率A50≥15%,扩孔率≥70%;且可以避免钢板表面出现红铁皮,提高了酸洗高强钢的表面质量;能够很好地满足用户需求,可应用在乘用车底盘零件如控制臂以及副车架等需要高强减薄的部位。

Description

一种780MPa级高表面高性能稳定性超高扩孔钢及其制造方法
技术领域
本发明属于高强钢领域,特别涉及一种780MPa级高表面高性能稳定性超高扩孔钢及其制造方法。
背景技术
汽车在国民经济发展中占据非常重要的地位。乘用车中许多零部件尤其是底盘和车身的部分零件经常需要用到热轧酸洗产品。乘用车的轻量化不仅是汽车行业的发展趋势,而且还是法律法规的要求。法律法规中规定了油耗,实际上是变相地要求降低车身重量,反映到材料上的要求是高强减薄轻量化。高强减重是后续新车型的必然要求,这势必造成用钢级别更高,底盘结构上也必然带来变化:如零件更复杂,造成在材料性能、表面等要求上以及成型技术上进步,如液压成形、热冲压、激光焊接等,进而转化材料的高强、冲压、翻边、回弹以及疲劳等性能上。
国内高强度高扩孔钢的开发与国外相比不仅强度级别相对较低,而且性能稳定性也不好。如国内汽车零部件企业使用的高扩孔钢基本是抗拉强度600MPa以下的高强钢,440MPa以下级别的高扩孔钢竞争白热化。抗拉强度780MPa级别的高扩孔钢目前国内正在逐渐开始批量使用,但是对延伸率和扩孔率两个成形过程中的重要指标也提出了较高要求。
随着国内乘用车销量的逐渐下滑,汽车行业已经出现拐点,竞争愈加激烈。乘用车企业为了进一步降低工序成本,对材料的性能要求进一步提高。如在生产汽车底盘控制臂这一结构件,为了减少冲压工序,要求在高强度高塑性的同时,扩孔率指标进一步提高。780MPa级高扩孔钢的扩孔率要求在目前≥50%的基础上进一步提高至≥70%以上。而采用目前现有的780MPa级高扩孔钢的设计思路,不仅生产过程性能保证能力不足,而且扩孔率基本在50-65%之间,不能满足用户提出的更高扩孔率的性能要求。需要指出的是,扩孔率是一个测量分散性较大的参数,不仅材料的组织均匀性和内质有关,而且与测量过程,包括冲孔质量和扩孔开裂判断等有很大关系。
现有涉及780MPa级酸洗高扩孔钢的专利较多,如下:
中国专利CN103602895A涉及了一种低碳Nb-Ti微合金化高扩孔钢,其成分设计特点为低碳高硅Nb-Ti微合金化,扩孔率保证值≥50%,高硅成分设计通常带来钢板表面红铁皮,再加上形成贝氏体所需要的卷取温度区间在500℃左右,钢卷全长温度控制难度大,易造成全长性能波动大。
中国专利CN105821301A涉及了一种800MPa级热轧高强度高扩孔钢,其成分设计特点也是低碳高硅Nb-Ti微合金化,其Ti含量达到很高的程度,为0.15~0.18%,在实际生产过程中,此种成分设计思路不仅带钢表面有红铁皮等缺陷,而且超高Ti含量容易形成粗大的TiN,对扩孔率的稳定性非常不利。
中国专利CN108570604A涉及了一种780MPa级热轧酸洗高扩孔钢,其成分设计特点为低碳高铝高铬,在工艺设计上采用了三段式冷却工艺。尽管其带钢表面无红铁皮,但高铝的设计容易在实际生产过程中造成浇铸水口堵塞,且工艺过程复杂,三段式冷却工艺控制难度大,扩孔率不高。
上述专利均存在红铁皮、炼钢困难以及带钢全长温度均匀性控制难度大等问题。
为了满足用户对更高表面质量、更好的性能稳定性、更优的强度、塑性和扩孔性匹配等需求,需要对现有的780MPa级高扩孔钢作出颠覆性的改变。
众所周知,在通常情况下,材料的延伸率与扩孔率呈反比关系,即延伸率越高,扩孔率越低;反之,延伸率越低,扩孔率越高。那么要获得高延伸高扩孔,同时又具有高强度的高扩孔钢就显得非常困难。
此外,在相同或相似的强化机制下,材料的强度越高,扩孔率越低。为了获得具有良好的塑性和扩孔翻边性能的钢材,需要更好的平衡两者之间的关系。另一方面,为获得强度、塑性和扩孔性的良好匹配,较多硅元素的加入似乎是高强高塑高扩孔钢不可或缺的,但是高硅的成分设计带来较差的钢板表面,即在热轧环节形成的红铁皮缺陷在后面的酸洗工序很难清除彻底,使得酸洗高强钢的表面出现条纹状红铁皮,严重影响表面质量。
发明内容
本发明的目的在于一种780MPa级高表面高性能稳定性超高扩孔钢及其制造方法,获得的超高扩孔钢具有良好的组织均匀性、性能均匀性和优异的强度、塑性、超高扩孔率的匹配,其屈服强度≥750MPa,抗拉强度≥780MPa,延伸率A50≥15%,扩孔率≥70%;且可以避免钢板表面出现红铁皮,提高了酸洗高强钢的表面质量;能够很好地满足用户需求,可应用在乘用车底盘零件如控制臂以及副车架等需要高强减薄的部位。
为达到上述目的,本发明的技术方案是:
一种780MPa级高表面高性能稳定性超高扩孔钢,其成分重量百分比为:
C 0.03%~0.08%,
Si≤0.2%,
Mn 0.5%~2.0%,
P≤0.02%,
S≤0.003%,
Al 0.01~0.08%,
N≤0.004%,
Ti 0.05%~0.20%,
Mo 0.1%~0.5%,
Mg≤0.005%,
O≤0.0030%,
其余为Fe以及其它不可避免的杂质。
进一步,还包含Nb≤0.06%,V≤0.05%,Cu≤0.5%,Ni≤0.5%,Cr≤0.5%,B≤0.001%,Ca≤0.005%中的一种或一种以上,其中,所述Cu、Ni、Cr含量分别优选为≤0.3%;所述Nb、V含量分别优选为≤0.03%;所述B含量优选为≤0.0005%;所述Ca含量优选为≤0.002%。
本发明所述超高扩孔钢的屈服强度≥750MPa,抗拉强度≥780MPa,延伸率A50≥15%,扩孔率≥70%。
本发明所述超高扩孔钢的显微组织为贝氏体+纳米级碳化物,该纳米级碳化物在贝氏体铁素体中析出。
在本发明所述超高扩孔钢成分设计中:
碳,是钢中的基本元素,同时也是本发明中的重要元素之一。碳扩大奥氏体相区,稳定奥氏体。碳作为钢中的间隙原子,对提高钢的强度起着非常重要的作用,对钢的屈服强度和抗拉强度影响最大。在本发明中,由于在热轧阶段所要获得的组织为低碳贝氏体,为获得最终抗拉强度达780MPa级的高强钢,必须保证碳含量在0.03%以上。碳含量在0.03%以下,低温卷取时形成的贝氏体抗拉强度偏低,罩退之后强度难以达到780MPa以上;但是碳含量也不能高于0.08%。碳含量太高,低温卷取时易形成低碳马氏体。因此,碳含量应控制在0.03-0.08%之间,优选范围在0.04-0.07%之间;
硅,是钢中的基本元素。前已述及,为了满足用户提出的高强、高塑和高扩孔率的要求,通常在成分设计时添加较多的硅,但是高硅的成分设计带来的是钢板表面质量降低,有较多的红铁皮缺陷。在本发明中,为了保证获得良好的表面质量,在成分设计时应严格控制硅的含量。换言之,硅在本发明中属于杂质元素,考虑到实际炼钢时需要用到硅锰进行脱氧,完全避免硅的添加似乎是比较困难的。根据实际生产的大量统计数据显示,硅含量在0.2%以下时,热轧时可避免出现表面红铁皮缺陷,通常在0.15%以下可保证不出现红铁皮;此外,当硅含量在0.2%以上时,在线冷却低温卷取时容易形成马氏体组织,从而难以得到贝氏体组织。因此,钢中硅的含量应控制在0.2%以内,优选范围在0.15%以内;
锰,是钢中最基本的元素,同时也是本发明中最重要的元素之一。众所周知,Mn是扩大奥氏体相区的重要元素,可以降低钢的临界淬火速度,稳定奥氏体,细化晶粒,推迟奥氏体向珠光体的转变。在本发明中,为保证钢板的强度和晶粒细化效果,Mn含量通常控制在0.5%以上;同时,Mn的含量一般也不宜超过2.0%,否则炼钢时容易发生Mn偏析,同时板坯连铸时也容易发生热裂。因此,钢中Mn含量一般控制在0.5-2.0%,优选范围在1.0-1.6%;
磷,是钢中的杂质元素。P极易偏聚到晶界上,钢中P的含量较高(≥0.1%)时,形成Fe2P在晶粒周围析出,降低钢的塑性和韧性,故其含量越低越好,一般控制在0.02%以内较好且不提高炼钢成本;
硫,是钢中的杂质元素。钢中的S通常与Mn结合形成MnS夹杂,尤其是当S和Mn的含量均较高时,钢中将形成较多的MnS,而MnS本身具有一定的塑性,在后续轧制过程中MnS沿轧向发生变形,不仅降低了钢的横向塑性,而且增加了组织的各项异性,对扩孔性能不利。故钢中S含量越低越好,为了减少MnS的含量,需对S含量严格控制,要求S含量控制在0.003%以内,优选范围在0.0015%以下;
铝,在钢中的作用主要是脱氧和固氮。在有强碳化物形成元素如Ti等存在的前提下,Al的主要作用是脱氧和细化晶粒。在本发明中,Al作为常见的脱氧元素和细化晶粒的元素,其含量通常控制在0.01-0.08%即可;Al含量低于0.01%,起不到细化晶粒的作用;同样,Al含量高于0.08%时,其细化晶粒效果达到饱和。因此,钢中Al的含量控制在0.01-0.08%之间即可,优选范围在0.02-0.05%之间;
氮,在本发明中属于杂质元素,其含量越低越好。但是氮在炼钢过程中是不可避免的元素。虽然其含量较少,但是与强碳化物形成元素如Ti等结合,形成的TiN颗粒对钢的性能带来非常不利的影响,尤其对扩孔性能非常不利。由于TiN呈方形,其尖角与基体之间存在很大的应力集中,在扩孔变形的过程中,TiN与基体之间的应力集中容易形成裂纹,从而大大降低材料的扩孔性能。由于本发明在成分体系上采用了高钛设计,为了尽量减少TiN带来的对扩孔不利影响。因此,氮的含量应控制在0.004%以下,优选范围在0.003%以下;
钛,是本发明中的重要元素之一。Ti在本发明中主要起两个作用:一是与钢中的杂质元素N结合形成TiN,起到一部分“固氮”的作用;二是在后续的高温罩退过程中从贝氏体铁素体中形成弥散均匀细小的纳米碳化物,提高强度、塑性和扩孔性。钛的含量低于0.05%时,起不到明显的析出强化效果;当钛的含量高于0.20%时,粗大的TiN容易导致钢板的冲击韧性很差。因此,钢中钛的含量应控制在0.05-0.20%之间,优选范围在0.07~0.10%;
钼,是本发明中的重要元素之一。钼加入钢中可以大大推迟铁素体和珠光体相变,有利于获得贝氏体组织。另外,钼具有很强的抗焊接软化特性。由于本发明的主要目的是获得低碳贝氏体组织,而低碳贝氏体在焊接之后易发生软化现象,加入一定量的钼可以有效减小焊接软化程度。因此,钼的含量应控制在0.1-0.5%之间,优选范围在0.20-0.40%;
镁,是本发明中的重要元素之一。镁加入钢中可在炼钢阶段优先形成弥散细小的MgO,这些细小的MgO可作为TiN的形核质点,在后续连铸过程中,可有效增加TiN的形核点并减小TiN的尺寸。由于TiN对最终钢板的扩孔率有较大影响,易造成扩孔率不稳定。因此,钢中Mg含量控制在0.005%以内即可;
氧,是炼钢过程中不可避免的元素,对本发明而言,钢中氧的含量通过脱氧之后一般都可以达到30ppm以下,对钢板的性能不会造成明显不利影响。因此,将钢中的O含量控制在30ppm以内即可;
铜,是本发明中的可添加元素。铜加入钢中可提高钢的耐蚀性,当其与P元素共同加入时,耐蚀效果更佳;当Cu加入量超过1%时,在一定条件下,可形成ε-Cu析出相,起到较强的析出强化效果。但Cu的加入容易在轧制过程中形成“Cu脆”现象,为了在某些应用场合下充分利用Cu的改善耐蚀性效果,同时又不至于引起显著的“Cu脆”现象,通常将Cu元素的含量控制在0.5%以内,优选范围在0.3%以内;
镍,是本发明中的可添加元素。镍加入钢中具有一定的耐蚀性,但耐蚀效果较铜弱,镍加入钢中对钢的拉伸性能影响不大,但可以细化钢的组织和析出相,大大提高钢的低温韧性;同时在添加铜元素的钢中,添加少量的镍可以抑制“Cu脆”的发生。添加较高的镍对钢本身的性能无明显不利影响。若铜和镍同时添加,不仅可以提高耐蚀性,而且对钢的组织和析出相进行细化,大大提高低温韧性。但由于铜和镍均属于比较贵重的合金元素。因此,为了尽量降低合金设计的成本,镍的添加量通常≤0.5%,优选范围≤0.3%;
铬,是本发明中的可添加元素。铬加入钢中主要通过固溶强化或细化组织等方式提高钢的强度。由于本发明中的组织为细小贝氏体铁素体加纳米析出碳化物,再加上通过高温罩退工艺后,组织中的可动位错减少,使得钢的屈服强度和抗拉强度之比即屈强比较高,通常达到0.90以上。加入少量的铬元素,可适当降低钢的屈服强度,从而降低屈强比。此外,少量铬的加入还可以起到提高耐蚀性的作用,通常铬的加入量≤0.5%,优选范围≤0.3%;
铌,是本发明的可添加元素。铌与钛相似,是钢中的强碳化物元素,铌加入钢中可以大大提高钢的未再结晶温度,在精轧阶段可获得位错密度更高的形变奥氏体,在后续转变过程中可细化最终的相变组织。但铌的加入量不可太多,一方面铌的加入量超过0.06%,易在组织中形成比较粗大的铌的碳氮化物,消耗了部分碳原子,降低了碳化物的析出强化效果。同时,铌的含量较多,还容易造成热轧态奥氏体组织的各向异性,在后续的冷却相变过程中遗传给最终的组织,对扩孔性能不利。因此,钢中铌含量通常控制在≤0.06%,优选范围在≤0.03%;
钒,是本发明中的可添加元素。钒与钛、铌类似,也是一种强碳化物形成元素。但钒的碳化物固溶或析出温度低,在精轧阶段通常全部固溶在奥氏体中。只有当温度降低开始相变时,钒才开始在铁素体中形成。由于钒的碳化物在铁素体中的固溶度大于铌和钛的固溶度,故钒的碳化物在铁素体中形成的尺寸较大,不利于析出强化,对钢的强度贡献远小于碳化钛,但由于钒的碳化物形成也消耗了一定的碳原子,对钢的强度提高不利。因此,钢中钒的添加量通常≤0.05%,优选范围≤0.03%;
硼,是本发明中的可添加元素。硼能够大大提高钢的淬透性,有利于获得马氏体组织。考虑到本发明在热轧阶段期望获得的组织为贝氏体而非马氏体,因此,钢中需要严格控制硼元素的含量,防止由于硼元素的过量添加导致形成马氏体。此外,硼元素加入钢中可形成不规则的铁素体组织甚至马奥组元,对钢的低温冲击韧性不利。故钢中硼的添加量通常控制在≤0.001%,优选范围在≤0.0005%;
钙,是本发明中的可添加元素。钙能够改善硫化物如MnS形态,使长条形的MnS等硫化物变为球形CaS,有利于改善夹杂物形态,进而减小长条形硫化物对扩孔性能的不利影响,但过多钙的加入会增加氧化钙的数量,对扩孔性能不利。因此,钢种钙的添加量通常≤0.005%,优选范围在≤0.002%。
本发明所述超高扩孔钢采用不含硅的成分设计思路,且贝氏体铁素体中析出均匀弥散分布的纳米级碳化物。均匀细小的贝氏体和贝氏体铁素体内形成的均匀分布的纳米级碳化物则赋予钢板良好的组织均匀性、性能均匀性和优异的强度、塑性、超高扩孔率的匹配。
本发明所述的780MPa级高表面高性能稳定性超高扩孔钢的制造方法,其包括如下步骤:
1)冶炼、浇铸
按上述成分采用转炉或电炉冶炼、真空炉二次精炼后浇铸成铸坯或铸锭;
2)铸坯或铸锭再加热,加热速度≥20℃/h,加热温度≥1230℃,保温时间1~2小时;
3)热轧
开轧温度1050~1150℃,在1050℃以上3-5道次大压下且累计变形量≥50%,随后中间坯待温至950-1000℃,然后进行最后3-7个道次轧制且累计变形量≥70%;终轧温度850-950℃;将钢板冷却至300℃以下卷取;
4)退火
采用罩式退火,加热速度≥20℃/h,罩退温度500-650℃,罩退时间12-48h;以≤50℃/h的冷速将钢板冷却至300℃以下出炉、卷取;
5)酸洗
酸洗带钢运行速度在30~140m/min的区间内调整,酸洗温度控制在75~85℃之间,拉矫率控制在≤3%,然后漂洗、带钢表面烘干,涂油。
优选的,酸洗后在35-50℃温度区间进行漂洗,以保证带钢表面质量,并在120-140℃之间进行带钢表面烘干,涂油。
在本发明所述制造方法中:
铸坯(锭)加热温度≥1230℃,保温时间:1~2小时,开轧温度:1050~1150℃,在1050℃以上3-5道次大压下且累计变形量≥50%,主要目的是细化奥氏体晶粒,同时保留更多的固溶钛;随后中间坯待温至950-1000℃,然后进行最后3-7个道次轧制且累计变形量≥70%;在850-950℃之间终轧结束后,以≤50℃/s的冷速将钢板水冷至300℃以下,卷取后冷却至室温。
在粗轧和精轧阶段,轧制节奏应尽量快速完成,保证更多的固溶钛在奥氏体中。高温终轧结束后,带钢以10-100℃/s的冷却速度在线冷却至300℃以下以获得低碳贝氏体组织。
通过热轧工艺获得的钢卷在500-650℃进行高温长时退火,促进贝氏体铁素体中纳米级碳化物的析出,同时使得组织和析出更均匀。在热轧阶段,低温卷取形成组织均匀细小的低碳贝氏体。
在罩退阶段,贝氏体铁素体中析出弥散细小的纳米级碳化物,提高强度、塑性和扩孔率。罩退温度和时间呈反比关系,即罩退温度越低,罩退时间越长;反之,罩退温度越高,罩退时间越短。若罩退温度低于500℃,则不足以让碳化物析出;若罩退温度高于650℃,则碳化物容易粗化,强度降低。因此罩退温度选在在500-650℃之间。
在炼钢工艺上,采用Mg脱氧的方式,在钢水中优先形成弥散细小的MgO,为后续连铸过程中TiN的形成创造更多的形核质点,可有效地细化TiN颗粒,提高扩孔率稳定性。
添加相对较多的Ti和少量的Mo,可以在长时间罩退工艺条件下,从贝氏体中进一步析出纳米级碳化物即(Ti,Mo)C,从而使抗拉强度达到780MPa以上,Mo元素的添加可以确保在更高罩退温度下,析出的纳米级碳化物不致发生明显粗化,不会影响最终带钢的强度。
经过上述低温卷取和高温罩退工艺之后的带钢,表现出优异的强度、塑性和扩孔性,特别是具有非常优异的性能稳定性。
在罩退工艺上,热轧阶段低温卷取获得的组织均匀细小的低碳贝氏体,通过高温罩退工艺促进纳米级碳化物在贝氏体铁素体中的析出,同时可进一步改善组织均匀性。
经过酸洗工艺后,同时具有优异的表面质量。上述成分、工艺、组织和性能不仅具有与现有780MPa高扩孔钢完全不同的设计思路,而且性能稳定,工艺过程简单,适合大批量生产。
本发明的有益效果:
1.本发明所述超高扩孔钢在成分设计上采用不含硅的设计思路,硅在本发明中属于杂质元素,无硅设计可确保板坯在加热过程中表面不会形成熔融铁橄榄石(Fe2SiO4)。无硅设计的优点有以下几方面:一是有利于获得优异的带钢表面质量;二是有利于热轧过程中各关键工艺参数的准确控制,从而获得全长性能稳定的热轧带钢;三是有利于在后续低温卷取过程中获得均匀的贝氏体组织。
2.在工艺设计上,采用低温卷取+罩式炉退火工艺,这与传统高温卷取高扩孔钢有显著区别。结合无硅成分设计和低温卷取工艺可获得全长性能均匀稳定的热轧带钢,且组织为全贝氏体。由于低温卷取时的纳米析出相来不及充分析出,此时的贝氏体组织强度通常低于780MPa,再经过后续的罩退工艺,使贝氏体铁素体中进一步形成细小均匀的纳米碳化物,从而进一步提高强度,达到780MPa以上。罩退工艺条件下的钢卷温度较为均匀,贝氏体铁素体中的纳米析出较直接高温卷取相变过程中的纳米析出也更为均匀,从而确保了带钢全长性能均匀稳定。均匀细小的贝氏体和贝氏体铁素体内形成的均匀分布的纳米级碳化物则赋予钢板良好的组织均匀性、性能均匀性和优异的强度、塑性、超高扩孔率的匹配。
3.本发明所述高表面高性能稳定性超高扩孔钢的钢卷或钢板的屈服强度≥750MPa,抗拉强度≥800MPa,且厚度在2-6mm,同时且具有良好的延伸率(横向A50≥15%)、冷弯性能(d≤2.5a,180°)以及扩孔性能(扩孔率≥70%),表现出优异的强度、塑性、韧性、冷弯与扩孔性能匹配,可应用于汽车底盘、副车架等需要高强减薄和扩孔翻边的复杂零部件制造,具有非常广阔的应用前景。
附图说明
图1为本发明所述780MPa级高表面高性能稳定性超高扩孔钢制造方法的工艺流程图;
图2为本发明所述780MPa级高表面高性能稳定性超高扩孔钢制造方法中轧制和冷却工艺示意图;
图3为本发明所述780MPa级高表面高性能稳定性超高扩孔钢制造方法中罩退工艺示意图;
图4为本发明所述超高扩孔钢实施例1的典型金相照片;
图5为本发明所述超高扩孔钢实施例3的典型金相照片;
图6为本发明所述超高扩孔钢实施例7的典型金相照片。
具体实施方式
下面结合实施例和附图对本发明做进一步说明。
参见图1~图3,本发明所述780MPa级高表面高性能稳定性超高扩孔钢的制造方法,其包括如下步骤:
1)冶炼、浇铸
按上述成分采用转炉或电炉冶炼、真空炉二次精炼后浇铸成铸坯或铸锭;
2)铸坯或铸锭再加热,加热速度≥20℃/h,加热温度≥1230℃,保温时间1~2小时,如图2所示;
3)热轧
开轧温度1050~1150℃,在1050℃以上3-5道次大压下且累计变形量≥50%,随后中间坯待温至950-1000℃,然后进行最后3-7个道次轧制且累计变形量≥70%;终轧温度850-950℃,如图3所示;
4)退火
采用罩式退火,加热速度≥20℃/h,罩退温度500-650℃,罩退时间12-48h;以≤50℃/h的冷速将钢板冷却至300℃以下出炉、卷取,如图4所示;
5)酸洗
带钢酸洗运行速度在30~140m/min的区间内调整,酸洗温度控制在75~85℃之间,拉矫率控制在≤3%,在35-50℃温度区间进行漂洗,并在120-140℃之间进行带钢表面烘干,涂油。
本发明所述超高扩孔钢实施例的成分参见表1,表2、表3为本发明钢实施例的生产工艺参数,其中,轧制工艺中钢坯厚度120mm;表4为本发明实施例钢板的力学性能。
从表4可以看出,钢卷的屈服强度≥750MPa,而抗拉强度≥800MPa,延伸率A50通常在16-18%之间,扩孔率满足≥70%。从上述实施例可以看出,本发明所涉及的780MPa高强钢具有良好的强度、塑性、韧性以及扩孔性能匹配,特别适合汽车底盘结构等需要高强减薄和扩孔翻边成形的零件如控制臂等,也可用于车轮等需要翻孔的复杂零部件,具有广阔的应用前景。
图4、图5、图6分别给出了本发明实施例1、3、7在线直接冷却至低温卷取时的典型金相照片,从图中可以看出,采用本发明所设计的成分体系在低温卷取时得到的组织为均匀细小的低碳贝氏体。在后续的罩退过程中,贝氏体铁素体板条中析出弥散细小均匀的纳米碳化物,从而提高强度和塑性,改善组织均匀性,提高扩孔性能。
Figure BDA0002658549120000131
Figure BDA0002658549120000141
Figure BDA0002658549120000151
Figure BDA0002658549120000161

Claims (14)

1.一种780MPa级高表面高性能稳定性超高扩孔钢,其成分重量百分比为:
C 0.03~0.08%,
Si≤0.2%,
Mn 0.5~2.0%,
P≤0.02%,
S≤0.003%,
Al 0.01~0.08%,
N≤0.004%,
Ti 0.05~0.20%,
Mo 0.1~0.5%,
Mg≤0.005%,
O≤0.0030%,
其余为Fe以及其它不可避免的杂质。
2.如权利要求1所述的780MPa级高表面高性能稳定性超高扩孔钢,其特征在于,还包含Nb≤0.06%,V≤0.05%,Cu≤0.5%,Ni≤0.5%,Cr≤0.5%,B≤0.001%,Ca≤0.005%中的一种或一种以上,其中,所述Cu、Ni、Cr的含量分别优选为≤0.3%;所述Nb、V的含量分别优选为≤0.03%;所述B的含量优选为≤0.0005%;所述Ca的含量优选为≤0.002%。
3.如权利要求1所述的780MPa级高表面高性能稳定性超高扩孔钢,其特征在于,所述C含量在0.04-0.07%。
4.如权利要求1所述的780MPa级高表面高性能稳定性超高扩孔钢,其特征在于,所述Si含量≤0.15%。
5.如权利要求1所述的780MPa级高表面高性能稳定性超高扩孔钢,其特征在于,所述Mn含量在1.0-1.6%。
6.如权利要求1所述的780MPa级高表面高性能稳定性超高扩孔钢,其特征在于,所述S含量在0.0015%以下。
7.如权利要求1所述的780MPa级高表面高性能稳定性超高扩孔钢,其特征在于,所述Al含量控制在0.02-0.05%。
8.如权利要求1所述的780MPa级高表面高性能稳定性超高扩孔钢,其特征在于,所述N含量在0.003%以下。
9.如权利要求1所述的780MPa级高表面高性能稳定性超高扩孔钢,其特征在于,所述Ti含量在0.07~0.10%。
10.如权利要求1所述的780MPa级高表面高性能稳定性超高扩孔钢,其特征在于,所述Mo含量在0.20-0.40%。
11.如权利要求1所述的780MPa级高表面高性能稳定性超高扩孔钢,其特征在于,所述超高扩孔钢的显微组织为贝氏体+纳米级碳化物,该纳米级碳化物在贝氏体铁素体中析出。
12.如权利要求1或11所述的780MPa级高表面高性能稳定性超高扩孔钢,其特征在于,所述超高扩孔钢的屈服强度≥750MPa,抗拉强度≥780MPa,延伸率A50≥15%,扩孔率≥70%。
13.如权利要求1所述的780MPa级高表面高性能稳定性超高扩孔钢的制造方法,其特征是,包括如下步骤:
1)冶炼、浇铸
按权利要求1~10所述成分采用转炉或电炉冶炼、真空炉二次精炼后浇铸成铸坯或铸锭;
2)铸坯或铸锭再加热,加热速度≥20℃/h,加热温度≥1230℃,保温时间1~2小时;
3)热轧
开轧温度1050~1150℃,在1050℃以上3-5道次大压下且累计变形量≥50%,随后中间坯待温至950-1000℃,然后进行最后3-7个道次轧制且累计变形量≥70%;终轧温度850-950℃;将钢板冷却至300℃以下卷取;
4)退火
采用罩式退火,加热速度≥20℃/h,罩退温度500-650℃,罩退时间12-48h;以≤50℃/h的冷速将钢板冷却至300℃以下出炉、卷取;
5)酸洗
带钢酸洗运行速度在30~140m/min的区间内调整,酸洗温度控制在75~85℃之间,拉矫率控制在≤3%,然后漂洗、带钢表面烘干,涂油。
14.如权利要求13所述的780MPa级高表面高性能稳定性超高扩孔钢的制造方法,其特征是,步骤5)酸洗后,在35-50℃温度区间进行漂洗,并在120-140℃之间进行带钢表面烘干,涂油。
CN202010896424.6A 2020-08-31 2020-08-31 一种780MPa级高表面高性能稳定性超高扩孔钢及其制造方法 Active CN114107789B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202010896424.6A CN114107789B (zh) 2020-08-31 2020-08-31 一种780MPa级高表面高性能稳定性超高扩孔钢及其制造方法
PCT/CN2021/115415 WO2022042727A1 (zh) 2020-08-31 2021-08-30 一种780MPa级高表面高性能稳定性超高扩孔钢及其制造方法
EP21860559.0A EP4206348A4 (en) 2020-08-31 2021-08-30 780 ULTRA-HIGH-FRIBS MPA QUALITY STEEL WITH HIGH SURFACE QUALITY AND HIGH PERFORMANCE STABILITY AND MANUFACTURING PROCESSES THEREOF
JP2023513825A JP2023539312A (ja) 2020-08-31 2021-08-30 780MPa級の高表面高性能安定性超高穴広げ鋼及びその製造方法
KR1020237009769A KR20230059808A (ko) 2020-08-31 2021-08-30 고표면 품질, 고성능 안전성을 갖는 780 MPa급 구멍 확장성이 매우 높은 철강 및 이의 제조 방법
US18/043,036 US20230323500A1 (en) 2020-08-31 2021-08-30 780 mpa-grade ultra-high reaming steel having high surface quality and high performance stability, and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010896424.6A CN114107789B (zh) 2020-08-31 2020-08-31 一种780MPa级高表面高性能稳定性超高扩孔钢及其制造方法

Publications (2)

Publication Number Publication Date
CN114107789A true CN114107789A (zh) 2022-03-01
CN114107789B CN114107789B (zh) 2023-05-09

Family

ID=80354677

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010896424.6A Active CN114107789B (zh) 2020-08-31 2020-08-31 一种780MPa级高表面高性能稳定性超高扩孔钢及其制造方法

Country Status (6)

Country Link
US (1) US20230323500A1 (zh)
EP (1) EP4206348A4 (zh)
JP (1) JP2023539312A (zh)
KR (1) KR20230059808A (zh)
CN (1) CN114107789B (zh)
WO (1) WO2022042727A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023246904A1 (zh) * 2022-06-22 2023-12-28 宝山钢铁股份有限公司 一种超高扩孔钢及其制造方法
CN117655209A (zh) * 2024-01-31 2024-03-08 成都工业职业技术学院 一种金属板材切割装置及其切割预警方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117265376A (zh) * 2022-06-14 2023-12-22 宝山钢铁股份有限公司 一种1000MPa级高扩孔热轧复相钢钢板及其制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05171344A (ja) * 1991-12-21 1993-07-09 Sumitomo Metal Ind Ltd 延性,耐食性の優れた高張力薄鋼板と製造法
JP2005298964A (ja) * 2004-03-19 2005-10-27 Nippon Steel Corp 穴拡げ性に優れた高強度高延性薄鋼板およびその製造方法
WO2015185956A1 (en) * 2014-06-06 2015-12-10 ArcelorMittal Investigación y Desarrollo, S.L. High strength multiphase galvanized steel sheet, production method and use
CN105154769A (zh) * 2015-09-18 2015-12-16 宝山钢铁股份有限公司 一种780MPa级热轧高强度高扩孔钢及其制造方法
CN105925892A (zh) * 2016-06-21 2016-09-07 宝山钢铁股份有限公司 一种780MPa级热轧高扩孔双相钢及其制造方法
CN107119228A (zh) * 2017-06-19 2017-09-01 武汉钢铁有限公司 一种抗拉强度700~800MPa级热轧高强轻质双相钢及其制造方法
CN109957716A (zh) * 2017-12-22 2019-07-02 鞍钢股份有限公司 一种高强度高扩孔性单一铁素体析出钢板及其制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118738A (ja) * 1993-10-25 1995-05-09 Nisshin Steel Co Ltd 耐食性及び穴拡げ性に優れた高強度熱延鋼板の製造方法
JP4273457B2 (ja) * 2004-03-25 2009-06-03 Jfeスチール株式会社 穴拡げ加工性に優れた構造用ステンレス鋼板
JP5047649B2 (ja) * 2006-04-11 2012-10-10 新日本製鐵株式会社 伸びフランジ成形性に優れた高強度熱延鋼板及び亜鉛めっき鋼板並びにそれらの製造方法
JP5200984B2 (ja) * 2008-04-21 2013-06-05 Jfeスチール株式会社 780MPa以上の引張強度を有する高強度熱延鋼板の製造方法
CN103602895B (zh) 2013-11-29 2016-08-24 宝山钢铁股份有限公司 一种抗拉强度780MPa级高扩孔钢板及其制造方法
WO2016005780A1 (fr) * 2014-07-11 2016-01-14 Arcelormittal Investigación Y Desarrollo Sl Tôle d'acier laminée à chaud et procédé de fabrication associé
CN104513930A (zh) * 2014-12-19 2015-04-15 宝山钢铁股份有限公司 弯曲和扩孔性能良好的超高强热轧复相钢板和钢带及其制造方法
CN105821301A (zh) 2016-04-21 2016-08-03 河北钢铁股份有限公司邯郸分公司 一种800MPa级热轧高强度扩孔钢及其生产方法
CN106119699A (zh) * 2016-06-21 2016-11-16 宝山钢铁股份有限公司 一种590MPa级热轧高强度高扩孔钢及其制造方法
KR101899674B1 (ko) * 2016-12-19 2018-09-17 주식회사 포스코 저온역 버링성이 우수한 고강도 강판 및 이의 제조방법
CN108570604A (zh) 2018-04-28 2018-09-25 唐山钢铁集团有限责任公司 一种780MPa级热轧酸洗高扩孔钢带及其生产方法
CN109112422A (zh) * 2018-08-30 2019-01-01 宝山钢铁股份有限公司 一种780MPa级高疲劳高强钢及其制造方法
CN110343961A (zh) * 2019-07-26 2019-10-18 马鞍山钢铁股份有限公司 一种抗拉强度800MPa级热轧复相钢及其生产方法
CN111519107B (zh) * 2020-06-03 2021-11-19 首钢集团有限公司 一种增强扩孔性能的热轧酸洗低合金高强钢及其生产方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05171344A (ja) * 1991-12-21 1993-07-09 Sumitomo Metal Ind Ltd 延性,耐食性の優れた高張力薄鋼板と製造法
JP2005298964A (ja) * 2004-03-19 2005-10-27 Nippon Steel Corp 穴拡げ性に優れた高強度高延性薄鋼板およびその製造方法
WO2015185956A1 (en) * 2014-06-06 2015-12-10 ArcelorMittal Investigación y Desarrollo, S.L. High strength multiphase galvanized steel sheet, production method and use
CN105154769A (zh) * 2015-09-18 2015-12-16 宝山钢铁股份有限公司 一种780MPa级热轧高强度高扩孔钢及其制造方法
CN105925892A (zh) * 2016-06-21 2016-09-07 宝山钢铁股份有限公司 一种780MPa级热轧高扩孔双相钢及其制造方法
CN107119228A (zh) * 2017-06-19 2017-09-01 武汉钢铁有限公司 一种抗拉强度700~800MPa级热轧高强轻质双相钢及其制造方法
CN109957716A (zh) * 2017-12-22 2019-07-02 鞍钢股份有限公司 一种高强度高扩孔性单一铁素体析出钢板及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
轧制技术及连轧自动化国家重点实验室(东北大学): "《大线能量焊接用钢氧化物冶金工艺技术》", 31 March 2020, 冶金工业出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023246904A1 (zh) * 2022-06-22 2023-12-28 宝山钢铁股份有限公司 一种超高扩孔钢及其制造方法
CN117655209A (zh) * 2024-01-31 2024-03-08 成都工业职业技术学院 一种金属板材切割装置及其切割预警方法
CN117655209B (zh) * 2024-01-31 2024-04-16 成都工业职业技术学院 一种金属板材切割装置及其切割预警方法

Also Published As

Publication number Publication date
JP2023539312A (ja) 2023-09-13
EP4206348A4 (en) 2024-03-20
WO2022042727A1 (zh) 2022-03-03
CN114107789B (zh) 2023-05-09
KR20230059808A (ko) 2023-05-03
EP4206348A1 (en) 2023-07-05
US20230323500A1 (en) 2023-10-12

Similar Documents

Publication Publication Date Title
CN108823507B (zh) 一种抗拉强度800MPa级热镀锌高强钢及其减量化生产方法
CN114107792B (zh) 一种780MPa级高表面超高扩孔钢及其制造方法
CN114107789B (zh) 一种780MPa级高表面高性能稳定性超高扩孔钢及其制造方法
CN114107791B (zh) 一种980MPa级全贝氏体型超高扩孔钢及其制造方法
CN114107798A (zh) 一种980MPa级贝氏体高扩孔钢及其制造方法
CN109023055B (zh) 一种高强度高成形性汽车钢板及其生产工艺
CN114107797A (zh) 一种980MPa级贝氏体析出强化型高扩孔钢及其制造方法
CN109097681B (zh) 一种高强度低夹杂汽车钢板及其连铸过程电磁搅拌工艺
CN114540707A (zh) 一种590MPa级冷轧高强钢及其生产方法
CN114107795B (zh) 一种1180MPa级低温回火马氏体高扩孔钢及其制造方法
CN117305692A (zh) 一种高扩孔钢及其制造方法
CN114107788B (zh) 一种980MPa级回火马氏体型高扩孔钢及其制造方法
CN114107794B (zh) 一种980MPa级超低碳马氏体加残奥型超高扩孔钢及其制造方法
CN111500938B (zh) 一种屈服强度420MPa级桥梁用槽钢及生产方法
KR20230061413A (ko) 고강도 저탄소의 구멍 확장성이 높은 마르텐사이트강 및 이의 제조 방법
CN114107793B (zh) 一种1180MPa级低碳马氏体高扩孔钢及其制造方法
WO2023246899A1 (zh) 高扩孔钢及其制造方法
CN114774788B (zh) 一种900MPa级高表面质量的酸洗汽车用钢及其制造方法和应用
WO2023246898A1 (zh) 一种高塑性钢及其制造方法
CN114107790B (zh) 一种980MPa级超低碳马氏体高扩孔钢及其制造方法
WO2023246904A1 (zh) 一种超高扩孔钢及其制造方法
WO2023246905A1 (zh) 一种高扩孔超高塑性钢及其制造方法
CN117305731A (zh) 一种高强度高扩孔钢及其制造方法
CN117305730A (zh) 一种高表面高扩孔钢及其制造方法
CN117305691A (zh) 一种析出强化型回火贝氏体高扩孔钢及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant