CN114100624A - 高岭土改性耐硫变换催化剂及其制备方法 - Google Patents

高岭土改性耐硫变换催化剂及其制备方法 Download PDF

Info

Publication number
CN114100624A
CN114100624A CN202010897998.5A CN202010897998A CN114100624A CN 114100624 A CN114100624 A CN 114100624A CN 202010897998 A CN202010897998 A CN 202010897998A CN 114100624 A CN114100624 A CN 114100624A
Authority
CN
China
Prior art keywords
kaolin
catalyst
modified sulfur
tolerant shift
shift catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010897998.5A
Other languages
English (en)
Other versions
CN114100624B (zh
Inventor
白志敏
王昊
李文柱
余汉涛
赵庆鲁
薛红霞
姜建波
王民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Qilu Petrochemical Co of Sinopec
Original Assignee
China Petroleum and Chemical Corp
Qilu Petrochemical Co of Sinopec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Qilu Petrochemical Co of Sinopec filed Critical China Petroleum and Chemical Corp
Priority to CN202010897998.5A priority Critical patent/CN114100624B/zh
Publication of CN114100624A publication Critical patent/CN114100624A/zh
Application granted granted Critical
Publication of CN114100624B publication Critical patent/CN114100624B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8871Rare earth metals or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8872Alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种高岭土改性耐硫变换催化剂及其制备方法,属于耐硫变换催化剂技术领域。本发明所述的高岭土改性耐硫变换催化剂,包括载体和活性组分,载体包括以下质量百分含量的组分:高岭土20~45wt.%,氧化铝25~50wt.%;氧化钙10~20wt.%;氧化钛1~5wt.%,以催化剂的总质量为100%计量。本发明所述的高岭土改性耐硫变换催化剂,具有较高的比表面,结构更稳定,具有更高的耐热和耐水合性能,尤其是具有抑制甲烷化副反应的性能;本发明同时提供了简单易行的制备方法。

Description

高岭土改性耐硫变换催化剂及其制备方法
技术领域
本发明涉及一种高岭土改性耐硫变换催化剂及其制备方法,属于耐硫变换催化剂技术领域。
背景技术
CO变换技术及变换催化剂的应用已有近百年的历史,主要用于制氢、合成氨、合成甲醇、合成汽油以及城市煤气等生产中。随着渣油、煤造气工艺的日臻完善,特别是新型加压气化技术的大规模工业应用,工艺气中有效气组成CO含量也越来越高。在高CO含量,低水气比工艺条件下,当催化剂床层温度高于350℃时,会出现甲烷化副反应,且随床层温度增加,甲烷化副反应逐步加剧,带来产氢量降低以及超温的危险。目前,耐硫变换工艺主要依靠调整工艺参数来抑制甲烷化副反应发生,如采用高水气比变换工艺、配水降温同时提高水气比等,但收效甚微。
高岭土是一种用途十分广泛的非金属矿物,也是一种具有层状结构的硅铝酸盐,结构单元是S-O四面体和Al-(OOH)八面体构成,Si:Al为1:1。它具有多种工艺性能,主要包括:可塑性、粘结性、分散性、吸附性、化学稳定性等等。高岭土资源丰富,应用十分广泛,但在日常的利用中大多作为较廉价的原材料使用,大大降低了高岭土的自身价值。
发明内容
本发明要解决的技术问题是,克服现有技术中的不足,提供一种高岭土改性耐硫变换催化剂,其具有较高的比表面,结构更稳定,具有更高的耐热和耐水合性能,尤其是具有抑制甲烷化副反应的性能;本发明同时提供了简单易行的制备方法。
本发明所述的高岭土改性耐硫变换催化剂,包括载体和活性组分,载体包括以下质量百分含量的组分:
高岭土20~45wt.%,氧化铝25~50wt.%;氧化钙10~20wt.%;氧化钛1~5wt.%,以催化剂的总质量为100%计量。
优选的,活性组分包括以下质量百分含量的组分:
氧化钼5~12wt.%,氧化钴1.0~5.0wt.%,氧化铈0.5-1.5wt.%,以催化剂的总质量为100%计量。
所述的高岭土改性耐硫变换催化剂的制备方法,包括以下步骤:
(1)将高岭土在一定温度条件下焙烧后粉碎至一定粒度,加入一定量的氧化钙研磨一定时间;
(2)加入含铝化合物干粉、含钛化合物干粉、粘结剂和助挤剂,混捏均匀,挤条成型、干燥、焙烧,得到催化剂载体;
(3)用活性组分金属盐复合碱性溶液浸渍一段时间,将活性组份均匀负载在催化剂孔道内部,使其分散更均匀,经过干燥、焙烧,得到催化剂。
步骤(1)中,高岭土在500-800℃下焙烧,优选为650℃;焙烧时间1-10h,优选为3-5h,粉碎至180-300目,优选为200-250目。
优选的,粘结剂为柠檬酸、草酸或硝酸中的一种或多种。进一步优选为柠檬酸。加入量为1~6%(m/m),进一步优选为2~4%(m/m)。加入量以催化剂质量为基准。
优选的,助挤剂为田箐粉或淀粉,进一步优选为田菁粉。用量为1~4%(m/m),优选为2~3%(m/m)。用量以催化剂质量为基准。
步骤(2)中,焙烧温度为500~700℃,优选为600℃。
步骤(3)中,焙烧温度为400~600℃,优选为500℃。
步骤(3)中,活性组份金属盐复合碱性溶液的配制过程如下:
称取含钴金属元素化合物和含钼金属元素化合物,加入适量的氨水及乙醇胺混合水溶液,加热至70℃使其溶解,测得pH值大于11,加入含铈化合物加热溶解得到活性组份金属盐复合碱性溶液。
得到的活性组份金属盐复合碱性溶液的温度为60-90℃,优选为70~80℃;测得pH值为11-13。优选为11.5-12。
制备得到的催化剂的比表面积为180m2/g~240m2/g,孔容不低于0.40mL/g,催化剂外观可为条形、三叶草、四叶草型和球形等。
本发明以高岭土为载体原料,采用氧化钙对其改性,提高其结构稳定性;同时在改性过程中,使其脱去结构水,形成非晶态偏高岭土,逐步转化为类分子筛结构,通过类分子筛结构提高催化剂比表面,不但易于活性组分的负载,同时还在催化剂内孔形成较高密度阳离子活性位点,内孔阳离子活性位点能提高催化剂载体对羟基的吸附能力,进而提高催化剂内孔对工艺气中的水汽的吸附作用,在水煤气变换反应过程中可局部提高催化剂内孔含水量和水气比,进而抑制内孔活性位上的甲烷化副反应;同时游离的氧化钙可与氧化铝形成铝酸钙,提高催化剂强度,进一步改善载体结构水热稳定性能,使其内孔在较高水气比条件下保持孔道结构的稳定性能。
本发明采用改性高岭土制备催化剂不但提高了高岭土价值,还提供了一条合理的、高质量利用高岭土资源出路。
与现有技术相比,本发明具有以下有益效果:
(1)本发明制备的催化剂具有较高的比表面,结构更稳定,具有更高的耐热和耐水合性能;
(2)在工业变换装置中,本发明制备的催化剂可用于高CO含量和较低水气比工艺条件下,甲烷化副反应少,可进一步稳定床层温度,减少甲烷化副反应消耗氢气,提高装置产氢率,具有良好的经济效益和环保效益;
(3)采用改性高岭土制备催化剂不但提高了高岭土价值,还提供了一条合理的、高质量利用高岭土资源出路。
附图说明
图1是加压评价装置流程示意图;
图中:1、原料气净化器;2、减压器;3、混合器;4、压力表;5、停工阀;6、加热炉;7、反应管;8、管内热偶管;9、冷凝器;10、分离器;11、排液器;12、湿式流量计;13、汽化器;14、水槽;15、水计量泵。
具体实施方式
下面结合实施例对本发明作进一步的说明,但其并不限制本发明的实施。
实施例1
将40g高岭土在650℃温度条件下焙烧8h,粉碎至240目,加入15g氧化钙研磨2h,加入44.3g拟薄水铝石、4.3g偏钛酸、4g田菁粉、1g淀粉混合均匀,4g柠檬酸溶于40mL去离子水中,加入1mL稀盐酸(1:5稀释),混捏均匀,挤条成型、自然干燥、500℃下焙烧3h,得到催化剂载体。
称取7.8g硝酸钴、9.8g七钼酸铵,加入35mL浓氨水及1mL乙醇胺混合溶液,加热至75℃,测得pH值12,加入2.5g硝酸铈加热溶解得到溶液A。将所述催化剂载体在此溶液中浸渍2h,浸渍期间温度保持75℃。催化剂烘干并于450℃下焙烧2h得到催化剂C-1。
实施例2
将20g高岭土在550℃温度条件下焙烧10h,粉碎至300目,加入20g氧化钙研磨3h,加入83g一水铝石、7.1g偏钛酸、2g田菁粉、3g淀粉混合均匀,5g柠檬酸溶于40mL去离子水中,混捏均匀,挤制成三叶草型、自然干燥、600℃焙烧3h,得到催化剂载体。
称取19.4g硝酸钴、8.5g七钼酸铵,加入30mL浓氨水及3mL乙醇胺混合溶液,加热至80℃,测得pH值13,加入1.3g硝酸铈加热溶解得到溶液A。将所述催化剂载体在此溶液中浸渍3h,浸渍期间温度保持80℃。催化剂烘干并于500℃下焙烧3h得到催化剂C-2。
实施例3
将45g高岭土在800℃温度条件下焙烧2h,粉碎至260目,加入10g氧化钙研磨3h,加入35.7g拟薄水铝石、4.3g偏钛酸、4g田菁粉混合均匀,6g柠檬酸溶于40mL去离子水中,加入2mL稀盐酸(1:5稀释),混捏均匀,挤条成型、自然干燥、550℃下焙烧4h,得到催化剂载体。
称取13.6g硝酸钴、14.7g七钼酸铵,加入45mL浓氨水及1mL乙醇胺混合溶液,加热至90℃,测得pH值11.5,加入3.7g硝酸铈加热溶解得到溶液A。将所述催化剂载体在此溶液中浸渍1h,浸渍期间温度保持90℃。催化剂烘干并于550℃下焙烧1.5h得到催化剂C-3。
实施例4
将28g高岭土在550℃温度条件下焙烧6h,粉碎至200目,加入20g氧化钙研磨4h,加入44.0g氧化铝干粉、1.4g偏钛酸、1g田菁粉、4g淀粉混合均匀,6g柠檬酸溶于35mL去离子水中,加入1mL稀盐酸(1:5稀释),混捏均匀,挤条成型、自然干燥、700℃下焙烧2h,得到催化剂载体。
称取7.7g硝酸钴、10.4g七钼酸铵,加入40mL浓氨水及1mL乙醇胺混合溶液,加热至80℃,测得pH值11,加入0.7g硝酸铈加热溶解得到溶液A。将所述催化剂载体在此溶液中浸渍3h,浸渍期间温度保持80℃。催化剂烘干并于500℃下焙烧2h得到催化剂C-4。
实施例5
将25g高岭土在800℃温度条件下焙烧1h,粉碎至180目,加入12g氧化钙研磨2h,加入71.4g拟薄水铝石、2.9g偏钛酸、2g田菁粉、2g淀粉混合均匀,1g柠檬酸溶于40mL去离子水中,加入3mL稀盐酸(1:5稀释),混捏均匀,挤条成型、自然干燥、600℃下焙烧4h,得到催化剂载体。
称取9.7g硝酸钴、9.8g七钼酸铵,加入45mL浓氨水及3mL乙醇胺混合溶液,加热至65℃,测得pH值13,加入0.7g硝酸铈加热溶解得到溶液A。将所述催化剂载体在此溶液中浸渍3h,浸渍期间温度保持65℃。催化剂烘干并于550℃下焙烧2h得到催化剂C-5。
实施例6
将35g高岭土在600℃温度条件下焙烧8h,粉碎至250目,加入16g氧化钙研磨2h,加入38.0g氧化铝、1.4g偏钛酸、3g田菁粉、3g淀粉混合均匀,6g柠檬酸溶于40mL去离子水中,加入1mL稀盐酸(1:5稀释),混捏均匀,挤条成型、自然干燥、500℃下焙烧3h,得到催化剂载体。
称取15.5g硝酸钴、6.2g七钼酸铵,加入30mL浓氨水及1mL乙醇胺混合溶液,加热至70℃,测得pH值11,加入2.5g硝酸铈加热溶解得到溶液A。将所述催化剂载体在此溶液中浸渍2h,浸渍期间温度保持70℃。催化剂烘干并于500℃下焙烧4h得到催化剂C-6。
对比例1
将65g高岭土在650℃温度条件下焙烧8h,粉碎至240目,加入44.3g拟薄水铝石、4.3g偏钛酸、4g田菁粉、1g淀粉混合均匀,4g柠檬酸溶于40mL去离子水中,加入1mL稀盐酸(1:5稀释),混捏均匀,挤条成型、自然干燥、500℃下焙烧3h,得到催化剂载体。
称取7.8g硝酸钴、9.8g七钼酸铵,加入35mL浓氨水及1mL乙醇胺混合溶液,加热至75℃,测得pH值12,加入2.5g硝酸铈加热溶解得到溶液A。将所述催化剂载体在此溶液中浸渍2h,浸渍期间温度保持75℃。催化剂烘干并于450℃下焙烧2h得到催化剂D-1。
对比例2
将40g高岭土在400℃温度条件下焙烧8h,粉碎至150目,加入15g氧化钙研磨2h,加入44.3g拟薄水铝石、4.3g偏钛酸、4g田菁粉、1g淀粉混合均匀,4g柠檬酸溶于40mL去离子水中,加入1mL稀盐酸(1:5稀释),混捏均匀,挤条成型、自然干燥、500℃下焙烧3h,得到催化剂载体。
称取7.8g硝酸钴、9.8g七钼酸铵,加入35mL浓氨水及1mL乙醇胺混合溶液,加热至75℃,测得pH值12,加入2.5g硝酸铈加热溶解得到溶液A。将所述催化剂载体在此溶液中浸渍2h,浸渍期间温度保持75℃。催化剂烘干并于450℃下焙烧2h得到催化剂D-2。
对比例3
将40g高岭土在1000℃温度条件下焙烧8h,粉碎至240目,加入15g氧化钙研磨2h,加入44.3g拟薄水铝石、4.3g偏钛酸、4g田菁粉、1g淀粉混合均匀,4g柠檬酸溶于40mL去离子水中,加入1mL稀盐酸(1:5稀释),混捏均匀,挤条成型、自然干燥、500℃下焙烧3h,得到催化剂载体。
称取7.8g硝酸钴、9.8g七钼酸铵,加入35mL浓氨水及1mL乙醇胺混合溶液,加热至75℃,测得pH值12,加入2.5g硝酸铈加热溶解得到溶液A。将所述催化剂载体在此溶液中浸渍2h,浸渍期间温度保持75℃。催化剂烘干并于450℃下焙烧2h得到催化剂D-3。
对比例4
将122.8g拟薄水铝石、4.3g偏钛酸、4g田菁粉、1g淀粉混合均匀,4g柠檬酸溶于40mL去离子水中,加入1mL稀盐酸(1:5稀释),混捏均匀,挤条成型、自然干燥、500℃下焙烧3h,得到催化剂载体。
称取7.8g硝酸钴、9.8g七钼酸铵,加入35mL浓氨水及1mL乙醇胺混合溶液,加热至75℃,测得pH值12,加入2.5g硝酸铈加热溶解得到溶液A。将所述催化剂载体在此溶液中浸渍2h,浸渍期间温度保持75℃。催化剂烘干并于450℃下焙烧2h得到催化剂D-4。
对比例5
将60g高岭土在650℃温度条件下焙烧8h,粉碎至240目,加入15g氧化钙研磨2h,加入15.7g拟薄水铝石、4.3g偏钛酸、4g田菁粉、1g淀粉混合均匀,4g柠檬酸溶于40mL去离子水中,加入1mL稀盐酸(1:5稀释),混捏均匀,挤条成型、自然干燥、500℃下焙烧3h,得到催化剂载体。
称取7.8g硝酸钴、9.8g七钼酸铵,加入35mL浓氨水及1mL乙醇胺混合溶液,加热至75℃,测得pH值12,加入2.5g硝酸铈加热溶解得到溶液A。将所述催化剂载体在此溶液中浸渍2h,浸渍期间温度保持75℃。催化剂烘干并于450℃下焙烧2h得到催化剂D-5。
如图1所示,该装置用于模拟工业条件,测定“原粒度”催化剂在不同条件下尾气一氧化碳浓度及其变化,比较催化剂的变换活性和稳定性等性能,综合评价催化剂的各项性能。反应管为不锈钢管,中央有热偶管。按照不同水气比的要求配入一定量的水,经高温气化后,与原料气一起进入反应管进行水煤气变换反应,反应后尾气用色谱分析。
采用加压评价装置测试本发明实施例及对比例中催化剂的物化性能及400℃时的CO变换率结果见表1。
其中原料气组成:
CO含量:50.0%;
CO2含量:3.0%;
H2S含量:>0.2%;
余量:H2
催化剂装填量:50mL;
硫化条件:
温度:300℃;压力:2.0MPa;干气空速:2000h-1
H2S含量:0.3%;时间:20h;
耐硫变换催化剂加压初评价条件:
入口温度:400℃;压力:4.0MPa;水/气:0.2;
干气空速:3000h-1;H2S含量:0.2%~0.4%;时间:40h。
表1催化剂强度及加压活性
Figure BDA0002659081150000061
Figure BDA0002659081150000071
从表1的评价结果可以看出,本申请催化剂的综合物化性能及400℃时CO变换率及出口甲烷含量等综合效果要明显优于对比例。

Claims (10)

1.一种高岭土改性耐硫变换催化剂,包括载体和活性组分,其特征在于:载体包括以下质量百分含量的组分:
高岭土20~45wt.%,氧化铝25~50wt.%;氧化钙10~20wt.%;氧化钛1~5wt.%,以催化剂的总质量为100%计量。
2.根据权利要求1所述的高岭土改性耐硫变换催化剂,其特征在于:活性组分包括以下质量百分含量的组分:
氧化钼5~12wt.%,氧化钴1.0~5.0wt.%,氧化铈0.5-1.5wt.%,以催化剂的总质量为100%计量。
3.一种权利要求1或2所述的高岭土改性耐硫变换催化剂的制备方法,其特征在于:包括以下步骤:
(1)将高岭土在一定温度条件下焙烧后粉碎至一定粒度,加入一定量的氧化钙研磨;
(2)加入含铝化合物干粉、含钛化合物干粉、粘结剂和助挤剂,混捏,挤条成型、干燥、焙烧,得到催化剂载体;
(3)用活性组分金属盐复合碱性溶液浸渍一段时间,然后经过干燥、焙烧,得到催化剂。
4.根据权利要求3所述的高岭土改性耐硫变换催化剂的制备方法,其特征在于:步骤(1)中,高岭土在500-800℃下焙烧,焙烧时间1-10h,粉碎至180-300目。
5.根据权利要求3所述的高岭土改性耐硫变换催化剂的制备方法,其特征在于:步骤(1)中,高岭土在650℃下焙烧,焙烧时间3-5h,粉碎至200-250目。
6.根据权利要求3所述的高岭土改性耐硫变换催化剂的制备方法,其特征在于:粘结剂为柠檬酸、草酸或硝酸中的一种或多种。
7.根据权利要求3所述的高岭土改性耐硫变换催化剂的制备方法,其特征在于:助挤剂为田箐粉或淀粉。
8.根据权利要求3所述的高岭土改性耐硫变换催化剂的制备方法,其特征在于:步骤(2)中,焙烧温度为500~700℃;步骤(3)中,焙烧温度为400~600℃。
9.根据权利要求3所述的高岭土改性耐硫变换催化剂的制备方法,其特征在于:步骤(3)中,活性组份金属盐复合碱性溶液的配制过程如下:
称取含钴金属元素化合物和含钼金属元素化合物,加入氨水及乙醇胺混合水溶液,加热至70℃使其溶解,测得pH值大于11,加入含铈化合物加热溶解得到活性组份金属盐复合碱性溶液。
10.根据权利要求9所述的高岭土改性耐硫变换催化剂的制备方法,其特征在于:得到的活性组份金属盐复合碱性溶液的温度为60-90℃,测得pH值为11-13。
CN202010897998.5A 2020-08-31 2020-08-31 高岭土改性耐硫变换催化剂及其制备方法 Active CN114100624B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010897998.5A CN114100624B (zh) 2020-08-31 2020-08-31 高岭土改性耐硫变换催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010897998.5A CN114100624B (zh) 2020-08-31 2020-08-31 高岭土改性耐硫变换催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN114100624A true CN114100624A (zh) 2022-03-01
CN114100624B CN114100624B (zh) 2023-08-11

Family

ID=80360119

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010897998.5A Active CN114100624B (zh) 2020-08-31 2020-08-31 高岭土改性耐硫变换催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN114100624B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB949889A (en) * 1961-03-02 1964-02-19 Kali Chemie Ag A method of producing carriers for catalytic contacts
US20040180000A1 (en) * 2002-12-20 2004-09-16 Alfred Hagemeyer Platinum-ruthenium containing catalyst formulations for hydrogen generation
CN101491764A (zh) * 2008-01-23 2009-07-29 中国石油化工股份有限公司 一种渣油加氢催化剂及其制备方法和应用
WO2013047978A1 (ko) * 2011-09-30 2013-04-04 한국전력공사 유동층 수성가스전환 촉매
CN103127959A (zh) * 2011-11-24 2013-06-05 福州大学 一氧化碳变换催化剂载体及制备方法和基于载体的催化剂
CN103769130A (zh) * 2012-10-20 2014-05-07 中国石油化工股份有限公司 低温耐硫变换催化剂及制备方法
CN103769116A (zh) * 2012-10-20 2014-05-07 中国石油化工股份有限公司 耐硫变换催化剂及制备方法
US20140158942A1 (en) * 2011-06-06 2014-06-12 Johnson Matthey Public Limited Company Water-gas shift catalyst

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB949889A (en) * 1961-03-02 1964-02-19 Kali Chemie Ag A method of producing carriers for catalytic contacts
US20040180000A1 (en) * 2002-12-20 2004-09-16 Alfred Hagemeyer Platinum-ruthenium containing catalyst formulations for hydrogen generation
CN101491764A (zh) * 2008-01-23 2009-07-29 中国石油化工股份有限公司 一种渣油加氢催化剂及其制备方法和应用
US20140158942A1 (en) * 2011-06-06 2014-06-12 Johnson Matthey Public Limited Company Water-gas shift catalyst
WO2013047978A1 (ko) * 2011-09-30 2013-04-04 한국전력공사 유동층 수성가스전환 촉매
CN103127959A (zh) * 2011-11-24 2013-06-05 福州大学 一氧化碳变换催化剂载体及制备方法和基于载体的催化剂
CN103769130A (zh) * 2012-10-20 2014-05-07 中国石油化工股份有限公司 低温耐硫变换催化剂及制备方法
CN103769116A (zh) * 2012-10-20 2014-05-07 中国石油化工股份有限公司 耐硫变换催化剂及制备方法

Also Published As

Publication number Publication date
CN114100624B (zh) 2023-08-11

Similar Documents

Publication Publication Date Title
CN101522303B (zh) 一氧化碳变换用催化剂以及使用它的一氧化碳改质方法
CN103480375A (zh) 一种一氧化碳甲烷化催化剂及其制备方法
CN103769116B (zh) 耐硫变换催化剂及制备方法
CN103071507B (zh) 一种完全甲烷化催化剂及其制备方法和应用
CN102125849B (zh) 一种合成甲烷催化剂的制备方法和催化剂前驱体
CN100569365C (zh) 气态烃低温绝热转化催化剂及其反应工艺
CN109675543B (zh) 一种海泡石-氧化铝复合载体及使用其的抗高温烧结型甲烷化催化剂
CN109912372A (zh) 合成气甲烷化催化剂及其制法
CN102527395B (zh) 一种甲烷化催化剂的制备方法
CN102836721B (zh) 烃类转化制氢催化剂的制备方法
CN104475115A (zh) 一种气态烃预转化催化剂及其制备方法
CN101703934A (zh) 煤制天然气催化剂及其制造方法
CN104549326A (zh) 高活性高稳定性耐硫变换催化剂及其制备方法
CN114100624B (zh) 高岭土改性耐硫变换催化剂及其制备方法
CN105268441B (zh) 烃类蒸汽预转化催化剂及其制备方法
WO2023072134A1 (zh) 催化剂及应用与脱除天然气中羰基硫的方法
CN107043089B (zh) 一种等压氨合成并联产含碳化学品的工艺
CN103223341B (zh) 一种加氢脱硫催化剂的制备方法
CN113842918B (zh) 一种高活性、抗烧结甲烷水蒸气重整催化剂及其制备方法与应用
CN102049262B (zh) 一种清洁型co耐硫变换催化剂的制备方法
CN105582969B (zh) 耐硫甲烷化催化剂及制备方法
CN114100695A (zh) 耐硫变换催化剂保护剂及其制备方法
CN102294245B (zh) 扩孔氧化镍-氧化钙/氧化铝复合催化剂及其制备和应用
CN104248956B (zh) 气态烃类蒸汽预转化催化剂及其制备方法和应用
CN114100670B (zh) 耐硫变换催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant