CN114054082A - 一种纳米多级孔sapo-11分子筛及其制备方法和应用 - Google Patents

一种纳米多级孔sapo-11分子筛及其制备方法和应用 Download PDF

Info

Publication number
CN114054082A
CN114054082A CN202111329641.8A CN202111329641A CN114054082A CN 114054082 A CN114054082 A CN 114054082A CN 202111329641 A CN202111329641 A CN 202111329641A CN 114054082 A CN114054082 A CN 114054082A
Authority
CN
China
Prior art keywords
molecular sieve
hierarchical pore
sapo
pore sapo
nano hierarchical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111329641.8A
Other languages
English (en)
Other versions
CN114054082B (zh
Inventor
冯刚
文志辉
江乐杰
叶闰平
张荣斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN202111329641.8A priority Critical patent/CN114054082B/zh
Publication of CN114054082A publication Critical patent/CN114054082A/zh
Application granted granted Critical
Publication of CN114054082B publication Critical patent/CN114054082B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/618Surface area more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/06Aluminophosphates containing other elements, e.g. metals, boron
    • C01B37/08Silicoaluminophosphates [SAPO compounds], e.g. CoSAPO
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/54Phosphates, e.g. APO or SAPO compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • C07C2/862Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms
    • C07C2/864Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon the non-hydrocarbon contains only oxygen as hetero-atoms the non-hydrocarbon is an alcohol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C6/00Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions
    • C07C6/08Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond
    • C07C6/12Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond of exclusively hydrocarbons containing a six-membered aromatic ring
    • C07C6/126Preparation of hydrocarbons from hydrocarbons containing a different number of carbon atoms by redistribution reactions by conversion at a saturated carbon-to-carbon bond of exclusively hydrocarbons containing a six-membered aromatic ring of more than one hydrocarbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种纳米多级孔SAPO‑11分子筛及其制备方法和应用,所述的纳米多级孔SAPO‑11分子筛的粒径为50~1000nm;介孔体积/微孔体积比为1~5∶1;介孔孔径为50~70nm。本发明合成的纳米多级孔SAPO‑11分子筛具有较小的粒径,同时具有微孔和介孔结构,有利于反应物和产物的扩散、减少积碳生成。本发明通过在制备分子筛的前驱体凝胶时加入表面活性剂,在分段晶化时再加入氟源合成了纳米多级孔SAPO‑11分子筛。本发明制备的纳米多级孔SAPO‑11分子筛可运用于芳烃的烷基化反应和烷基转移反应,与传统的SAPO‑11分子筛相比该催化剂的催化活性更好,目标产物选择性更高,使用寿命更长。

Description

一种纳米多级孔SAPO-11分子筛及其制备方法和应用
技术领域
本发明属于分子筛技术领域,具体涉及一种纳米多级孔SAPO-11分子筛及其制备方法和应用。
背景技术
SAPO-n系列分子筛具有丰富的结构多样性,已经成为一类重要的分子筛材料。SAPO-11分子筛作为SAPO-n家族中的重要一员,具有类似于AlPO-11的AEL结构,其结构由非相交的椭圆形10元环孔道组成,孔径为0.40×0.65nm,其孔道为一维直孔道。SAPO-11分子筛具有优异的热稳定性、独特的孔道结构和可调变的酸性。因此,SAPO-11分子筛在异构化、催化裂化、加氢裂化和芳烃烷基化等反应中表现出了良好的催化反应性能。
虽然SAPO-11分子筛在上述反应中表现出良好的催化反应性能,但是由于SAPO-11分子筛本身粒径较大(~10μm)和微孔结构限制了传质效率,使得催化剂的活性位点利用率低。为了解决粒径大导致的传质效率低的问题,有研究者尝试制备纳米级的分子筛来缩短反应物和产物的扩散路径,减小传质阻力,增强反应过程中分子的扩散性能。文献(QiyingLiu,Hualiang Zuo,Tiejun Wang,et al.One-step hydrodeoxygenationof palm oil toisomerized hydrocarbon fuels over Ni supported on nano-sized SAPO-11catalysts[J].Applied Catalysis A General,2013,468:68-74.)报道了以二正丙胺为结构导向剂,在十四烷胺-正丙醇-水混合介质中成功合成了粒径为20~50nm的SAPO-11分子筛,在棕榈油加氢脱氧反应中表现出优异的催化性能。
为了增强分子筛的热稳定性,有研究者使用氟离子改性来增强原子间的键强。文献(Liu,Y.X.;Zheng,D.J.;Zhao,L.M.;Peng,P.;Wang,X.S.;Li,L.;Yu,S.T.;Liu,S.W.;Liu,X.M.;Yan,Z.F.,Effect of fluoride ions on the stability of SAPO-11molecular sieves.Micropor Mesopor Mat2020,306.)报道了以研磨法合成了具有氟离子的SAPO-11分子筛,合成的产物具有良好的热稳定性。
为了解决传统SAPO-11分子筛所具有的微孔结构不利于分子的扩散,限制其催化性能的问题。有研究者试图在分子筛中引入介孔,CN106809862A公开了一种制备多级孔SAPO-11分子筛的方法及其分子筛,它采用水蒸气辅助或气相转移法,以介孔磷酸硅铝凝胶为前驱体合成多级孔SAPO-11分子筛。
如果创制纳米多级孔SAPO-11分子筛有望更进一步提高SAPO-11分子筛的传质效率和活性位点利用率。但目前尚没有制备纳米多级孔SAPO-11分子筛的方法公开。
本发明提供一种纳米多级孔SAPO-11分子筛及其制备方法。通过在制备分子筛的前驱体凝胶时加入表面活性剂,在预晶化结束后加入氟源然后再次晶化合成了纳米多级孔SAPO-11分子筛。本说明书中的制备方法操作简单、原料价格低、分子筛收率高,合成的分子筛具有大比表面积、粒径小、同时具有微孔和介孔,且克服了现有技术无法提供和制备纳米多级孔SAPO-11分子筛的技术问题。
本发明提供一种纳米多级孔SAPO-11分子筛及其制备方法,该分子筛可用于催化萘系物烷基化制备2,6-DMN、生产均三甲苯、C7~C9芳烃制二甲苯等反应中。
发明内容
针对现有技术中的不足与难题,本发明旨在提供一种纳米多级孔SAPO-11分子筛及其制备方法和应用。
本发明通过以下技术方案予以实现:
本发明第一方面提供了一种纳米多级孔SAPO-11分子筛,解决了传统SAPO-11分子筛粒径较大和孔道结构单一而限制传质效率的技术问题,其具体方案为:
一种纳米多级孔SAPO-11分子筛,纳米多级孔SAPO-11分子筛的粒径为50~1000nm,优选100~800nm;纳米多级孔SAPO-11分子筛比表面积为1340~1500m2/g,优选1340~1450m2/g,总孔体积为1.525~1.764cm3/g,优选1.56~1.725cm3/g,纳米多级孔SAPO-11分子筛催化剂介孔孔径为55~70nm,优选60~70nm,纳米多级孔SAPO-11分子筛含有微孔和介孔结构,且介孔体积/微孔体积比为1~5∶1,优选1.33~4.45;纳米多级孔SAPO-11分子筛的Al/P比为0.03~30。
本发明第二方面提供了上述纳米多级孔SAPO-11分子筛的制备方法,该方法解决了现有技术无法生产纳米多级孔SAPO-11分子筛的技术问题,其具体方案为:
一种纳米多级孔SAPO-11分子筛的制备方法,分子筛采用水热法合成,其制备过程包括将水、磷源、铝源、模板剂、表面活性剂、硅源按比例混合均匀,经陈化、晶化、加氟再晶化、洗涤、分离、干燥、煅烧,最终得到纳米多级孔SAPO-11分子筛。
所述磷源至少含有磷酸、磷酸钠、磷酸氢钠、磷酸钾、磷酸氢钾、磷酸铵和磷酸氢铵中的至少一种;优选的,所述磷源为磷酸;
所述铝源至少含有拟薄水铝石、异丙醇铝、偏铝酸钠、氢氧化铝、三氯化铝、氧化铝、硫酸铝和硝酸铝中的一种;优选的,所述铝源为拟薄水铝石;
所述模板剂至少含有二正丙胺、二异丙胺和乙二胺中的一种;优选的,所述模板剂为二正丙胺;
所述表面活性剂至少含有异丙醇、乙二醇、聚乙烯醇和甘油中的一种;优选的,所述表面活性剂为异丙醇;
所述硅源至少含有硅溶胶、正硅酸甲酯、正硅酸丙酯、正硅酸四乙酯、白炭黑、高岭土、蒙脱土、硅酸钠、粉煤灰和水玻璃中的一种;优选的,所述硅源为硅溶胶;
所述氟源至少含有氢氟酸,氟化钠,氟化钾,氟化铝,氟化钙,氟化钡,氟化铯中的一种;优选地,所述氟源为氢氟酸;
优选地,合成分子筛所使用的水、磷源、铝源、模板剂、表面活性剂和硅源的原料比按水∶磷源∶铝源∶模板剂∶表面活性剂∶硅源=(25~500)∶(0.1~3.0)∶(0.1~3.0)∶(0.1~5.0)∶(0.01~3)∶(0.1~3.5)的摩尔比进行配制。
所述陈化温度为10~40℃,陈化时间为0.1~24h。
所述分子筛采用分段晶化合成,在165~200℃预晶化1~120h,晶化结束后取出并加入氟源搅拌均匀,然后再在50~120℃下晶化1~120h;所述分子筛在加氟源后的原料摩尔比为水∶磷源∶铝源∶模板剂∶表面活性剂∶硅源∶氟源=(25~500)∶(0.1~3.0)∶(0.1~3.0)∶(0.1~5.0)∶(0.01~3)∶(0.1~3.5)∶(0.05~3)。
所述分子筛的干燥温度为20~300℃,干燥时间为0.1~48h。
所述分子筛焙烧的温度为:350~700℃,时间为1~20h。
本发明第三方面提供上述纳米多级孔SAPO-11分子筛的应用,纳米多级孔SAPO-11分子筛在催化剂中的应用,其用于2,6-二甲基萘(2,6-DMN)、均三甲苯、对二甲苯的制备,解决传统分子筛催化芳烃烷基转移及烷基化反应转化率低、选择性低和稳定性差等问题。
其中,2,6-二甲基萘(2,6-DMN)的制备方法具体为:采用上述纳米多级孔SAPO-11分子筛为催化剂,以含有萘系物的物质为主要原料,以甲醇或C7~C10的芳烃为甲基化试剂,在反应温度为200~600℃,反应压力为0.1~4.5MPa,空速为0.05~10.0h-1的条件下,使反应物等与催化剂床层接触,反应生成包含2,6-DMN的产物。
其中,均三甲苯的制备方法具体为:采用上述纳米多级孔SAPO-11分子筛为催化剂,至少含有甲苯、乙苯、二甲苯、C9重芳烃、C10重芳烃中的一种为原料,在反应温度为150~600℃,反应压力为0.1~4.5MPa,空速为0.1~10h-1的条件下,使反应物等与催化剂床层接触,反应生成含有均三甲苯的产物。
其中,对二甲苯的制备方法具体为:采用上述纳米多级孔SAPO-11分子筛为催化剂,以至少含有C7~C9芳烃中的一种为原料,在反应温度为300~600℃,反应压力为0.1~4.5MPa,空速为0.2~20h-1的条件下,使反应物等与催化剂床层接触,反应生成含有对二甲苯的产物。
与现有技术相比,本发明有益效果包括:
(1)本发明所述纳米多级孔SAPO-11分子筛的粒径为50~1000nm;所述纳米多级孔SAPO-11分子筛的比表面积为1340~1500m2/g,总孔体积为1.525~1.764cm3/g,介孔孔径为55~70nm,介孔体积/微孔体积为1~5∶1;本发明合成的纳米多级孔SAPO-11分子筛具有较小的粒径,同时具有微孔和介孔结构,有利于反应物和产物的扩散,有利于减少积碳生成。
(2)本发明采用分段晶化合成了纳米多级孔SAPO-11分子筛。
(3)本发明制备的纳米多级孔SAPO-11分子筛运用于催化芳烃的烷基化反应和烷基转移反应中表现出优异的性能。
附图说明
图1是实施例1中制备的纳米多级孔SAPO-11分子筛的XRD图;
图2是实施例1中制备的纳米多级孔SAPO-11分子筛的SEM图。
具体实施方式
下面结合附图,对本发明作进一步地说明。
【实施例1】
本实施方式中水热法合成是纳米多级孔SAPO-11分子筛的具体方法是按以下步骤进行的;
将14.9g拟薄水铝石加入到用103.5g水稀释的28.7g磷酸溶液中,搅拌混合30min后加入3.0g异丙醇,再用分液漏斗缓慢滴加7.5g硅溶胶,滴加速度约为1滴/s,最后加入12.7g结构导向剂二正丙胺,将凝胶在室温下搅拌陈化2h,所得凝胶的摩尔组成为1.1DPA∶1.1Al2O3∶0.5SiO2∶1.0P2O5∶0.4IPA∶50H2O。将凝胶装入带有聚四氟乙烯内衬的反应釜中,在165℃预晶化5h,晶化结束后取出加入4.3g氢氟酸搅拌均匀,然后在120℃下晶化24h,此时的摩尔组成为1.1DPA∶1.1Al2O3∶0.5SiO2∶1.0P2O5∶0.4IPA∶0.3HF∶50H2O。经多次抽滤洗涤,洗涤至滤液为中性,在120℃干燥12h,最后在马弗炉中600℃煅烧4h得到纳米多级孔SAPO-11分子筛。
本实施例制得的纳米多级孔SAPO-11分子筛的粒径为50~1000nm,比表面积为1340~1500m2/g,总孔体积为1.525~1.764cm3/g,介孔孔径为55~70nm,介孔体积/微孔体积为1~5∶1;;本实施例制得的纳米多级孔SAPO-11分子筛的XRD图和SEM图,如图1和图2所示。
【实施例2-32】
将水、P源、Al源、F源、模板剂、表面活性剂和Si源等原料,按照表1的制备条件,根据实施例1中相同的步骤进行操作,即可得到纳米多级孔SAPO-11分子筛。
对实施例1~32所得的样品进行N2吸附-脱附测试,SEM测试,得到的结果见表1。
表1实施例2-32的制备条件及制得的分子筛性能
Figure BDA0003346646030000051
Figure BDA0003346646030000061
Figure BDA0003346646030000071
Figure BDA0003346646030000081
Figure BDA0003346646030000091
Figure BDA0003346646030000101
【实施例33-64】
将纳米多级孔SAPO-11分子筛用于芳烃烷基化制备2,6-DMN。
以含有萘系物的物质为主要原料,以甲醇或C7~C10的芳烃为甲基化试剂。采用实施例1-32得到的纳米多孔级SAPO-11分子筛,按照下表的反应条件进行催化剂性能评价,可得到富含2,6-二甲基萘的产物。
表2实施例33-64制备2,6-DMN的反应汇总
Figure BDA0003346646030000102
Figure BDA0003346646030000111
Figure BDA0003346646030000121
【实施例65-96】
将纳米多级孔SAPO-11分子筛用于制备均三甲苯。
以至少含有甲苯、乙苯、二甲苯、C9重芳烃、C10重芳烃中的一种物质为原料,采用实施例1-32得到的纳米多级孔SAPO-11分子筛,按照下表的反应条件进行催化剂性能评价,可得到富含均三甲苯的产物。
表3实施例65-96制备均三甲苯的反应汇总
Figure BDA0003346646030000122
Figure BDA0003346646030000131
Figure BDA0003346646030000141
【实施例97-128】
将纳米多级孔SAPO-11分子筛用于制备对二甲苯。
以至少含有C7~C9芳烃中的一种为原料,采用实施例1~32得到的纳米多级孔SAPO-11分子筛,按照下表的反应条件进行催化剂性能评价,可得到富含对二甲苯的产物。
表4实施例97-128制备对二甲苯的反应条件
Figure BDA0003346646030000142
Figure BDA0003346646030000151
Figure BDA0003346646030000161
以上所述仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形、改进及替代,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种纳米多级孔SAPO-11分子筛,其特征在于:
(1)所述纳米多级孔SAPO-11分子筛的粒径为50~1000nm;
(2)所述纳米多级孔SAPO-11分子筛含有微孔和介孔结构,比表面积为1340~1500m2/g,总孔体积为1.525~1.764cm3/g,介孔孔径为55~70nm,且介孔体积/微孔体积比为1~5∶1;
(3)所述纳米多级孔SAPO-11分子筛的A1/P比为0.03~30。
2.根据权利要求1所述的一种纳米多级孔SAPO-11分子筛,其特征在于:所述纳米多级孔SAPO-11分子筛的粒径为100~800nm;所述纳米多级孔SAPO-11分子筛比表面积为1340~1450m2/g,所述纳米多级孔SAPO-11分子筛总孔体积为1.56~1.725cm3/g,介孔孔径为60~70nm,介孔体积/微孔体积比为1.33~4.45。
3.根据权利要求1所述的纳米多级孔SAPO-11分子筛的制备方法,其特征在于:所述分子筛采用水热法合成,其制备过程包括将水、磷源、铝源、模板剂、表面活性剂、硅源作为原料按比例混合均匀,经陈化、晶化、加氟再晶化、洗涤、分离、干燥、煅烧,最终得到纳米多级孔SAPO-11分子筛。
4.根据权利要求3所述的纳米多级孔SAPO-11分子筛的制备方法,所述磷源至少含有磷酸、磷酸钠、磷酸氢钠、磷酸钾、磷酸氢钾、磷酸铵和磷酸氢铵中的至少一种;所述铝源至少含有拟薄水铝石、异丙醇铝、偏铝酸钠、氢氧化铝、三氯化铝、氧化铝、硫酸铝和硝酸铝中的一种;所述模板剂至少含有二正丙胺、二异丙胺、乙二胺中的一种;所述表面活性剂至少含有异丙醇、乙二醇、聚乙烯醇和甘油中的一种;所述硅源至少含有硅溶胶、正硅酸甲酯、正硅酸丙酯、正硅酸四乙酯、白炭黑、高岭土、蒙脱土、硅酸钠、粉煤灰和水玻璃中的一种;所述氟源至少含有氢氟酸,氟化钠,氟化钾,氟化铝,氟化钙,氟化钡,氟化铯中的一种。
5.根据权利要求3所述的纳米多级孔SAPO-11分子筛的制备方法,其特征在于:按水∶磷源∶铝源∶氟源∶表面活性剂∶硅源∶模板剂=(25~500)∶(0.1~3.0)∶(0.1~3.0)∶(0.05~3)∶(0.01~3)∶(0.1~3.5)∶(0.1~5.0)的摩尔比进行配制。
6.根据权利要求3所述的纳米多级孔SAPO-11分子筛的制备方法,其特征在于:所述晶化过程采用分段晶化;按顺序依次加入:水、磷源、铝源、表面活性剂、硅源、模板剂,在温度为10~40℃下陈化0.1~24h;在165~185℃预晶化1~120h,晶化结束后取出并加入氟源搅拌均匀,再在50~120℃下晶化1~120h;所述干燥的温度为20~300℃、时间为0.1~48h;所述煅烧的温度为350~700℃、时间为1~20h。
7.如权利要求1或2所述的纳米多级孔SAPO-11分子筛的应用,其特征在于:所述纳米多级孔SAPO-11分子筛在催化剂中的应用,其用于2,6-二甲基萘、均三甲苯和对二甲苯。的制备。
8.根据权利要求7所述的纳米多级孔SAPO-11分子筛的应用,其特征在于,所述2,6-二甲基萘的制备方法具体为:以所述纳米多级孔SAPO-11分子筛为催化剂,以含有萘系物的物质为主要原料,以甲醇或C7~C10的芳烃为甲基化试剂,在反应温度为200~600℃,反应压力为0.1~4.5MPa,空速为0.05~10.0h-1的条件下,使反应物等与催化剂床层接触,反应生成包含2,6-DMN的产物。
9.根据权利要求7所述的纳米多级孔SAPO-11分子筛的应用,其特征在于,所述均三甲苯的制备方法具体为:以所述纳米多级孔SAPO-11分子筛为催化剂,以至少含有甲苯、乙苯、二甲苯、C9重芳烃、C10重芳烃中的一种为原料,在反应温度为150℃~600℃,反应压力为0.1~4.5MPa,空速为0.1~10h-1的条件下,使反应物等与催化剂床层接触,反应生成含有均三甲苯的产物。
10.根据权利要求7所述的纳米多级孔SAPO-11分子筛的应用,其特征在于,所述对二甲苯的制备方法具体为:以所述纳米多级孔SAPO-11分子筛为催化剂,以至少含有C7~C9芳烃中的一种为原料,在反应温度为300~600℃,反应压力为0.1~4.5MPa,空速为0.2~20h-1的条件下,使反应物等与催化剂床层接触,反应生成含有对二甲苯的产物。
CN202111329641.8A 2021-11-10 2021-11-10 一种纳米多级孔sapo-11分子筛及其制备方法和应用 Active CN114054082B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111329641.8A CN114054082B (zh) 2021-11-10 2021-11-10 一种纳米多级孔sapo-11分子筛及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111329641.8A CN114054082B (zh) 2021-11-10 2021-11-10 一种纳米多级孔sapo-11分子筛及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114054082A true CN114054082A (zh) 2022-02-18
CN114054082B CN114054082B (zh) 2022-11-08

Family

ID=80274835

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111329641.8A Active CN114054082B (zh) 2021-11-10 2021-11-10 一种纳米多级孔sapo-11分子筛及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN114054082B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114805000A (zh) * 2022-05-23 2022-07-29 煤炭科学技术研究院有限公司 一种萘烷基化制备2-甲基萘的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1356264A (zh) * 2000-12-01 2002-07-03 中国石化集团齐鲁石油化工公司 一种小径粒、高结晶度sapo-11分子筛的制备方法
CN102746102A (zh) * 2012-07-26 2012-10-24 黑龙江大学 一种sapo-11分子筛制备2,6-二甲基萘的方法
US20130280161A1 (en) * 2010-12-29 2013-10-24 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Solvothermal synthesis process of sapo molecular sieves and catalysts prepared thereby
CN103553073A (zh) * 2013-10-22 2014-02-05 神华集团有限责任公司 一种具有多级孔径的富含Si(4Al)的SAPO-44分子筛和其分子筛催化剂以及它们的制备方法
CN105460945A (zh) * 2014-09-09 2016-04-06 中国石油化工股份有限公司 多级孔结构sapo分子筛材料及其制备方法
CN105566052A (zh) * 2015-12-24 2016-05-11 太原科技大学 一种利用CuSAPO-11分子筛催化制备2,6-二甲基萘的方法
CN110372005A (zh) * 2019-07-03 2019-10-25 常州大学 一种利用氟离子合成多级孔磷酸铝分子筛的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1356264A (zh) * 2000-12-01 2002-07-03 中国石化集团齐鲁石油化工公司 一种小径粒、高结晶度sapo-11分子筛的制备方法
US20130280161A1 (en) * 2010-12-29 2013-10-24 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Solvothermal synthesis process of sapo molecular sieves and catalysts prepared thereby
CN102746102A (zh) * 2012-07-26 2012-10-24 黑龙江大学 一种sapo-11分子筛制备2,6-二甲基萘的方法
CN103553073A (zh) * 2013-10-22 2014-02-05 神华集团有限责任公司 一种具有多级孔径的富含Si(4Al)的SAPO-44分子筛和其分子筛催化剂以及它们的制备方法
CN105460945A (zh) * 2014-09-09 2016-04-06 中国石油化工股份有限公司 多级孔结构sapo分子筛材料及其制备方法
CN105566052A (zh) * 2015-12-24 2016-05-11 太原科技大学 一种利用CuSAPO-11分子筛催化制备2,6-二甲基萘的方法
CN110372005A (zh) * 2019-07-03 2019-10-25 常州大学 一种利用氟离子合成多级孔磷酸铝分子筛的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
代校军等: ""小粒径SAPO-11 分子筛合成的研究进展"", 《化工进展》 *
张胜振等: ""含HF 体系中SAPO-11分子筛的合成与表征"", 《催化学报》 *
杨妮等: ""多级孔SAPO-11 的制备及其临氢异构性能"", 《石油化工》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114805000A (zh) * 2022-05-23 2022-07-29 煤炭科学技术研究院有限公司 一种萘烷基化制备2-甲基萘的方法
CN114805000B (zh) * 2022-05-23 2023-09-26 煤炭科学技术研究院有限公司 一种萘烷基化制备2-甲基萘的方法

Also Published As

Publication number Publication date
CN114054082B (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
US4325929A (en) Method of preparing crystalline silica polymorph
US4344927A (en) Method of preparing crystalline silica polymorph
CN110357121B (zh) 一种小晶粒纳米多级孔ssz-13分子筛的制备方法
WO2006128374A1 (fr) Zeolites bêta modifiees
WO2008022532A1 (fr) Procédé destiné à synthétiser rapidement un tamis moléculaire de silicoaluminophosphate sapo-34
CN110002461B (zh) 一种复蕊玫瑰花状sapo-5分子筛及其制备与应用
CN103553073B (zh) 一种具有多级孔径的富含Si(4Al)的SAPO-44分子筛和其分子筛催化剂以及它们的制备方法
CN1037334C (zh) 一种以三乙胺为模板剂的合成硅磷铝分子筛及其制备
CN101885493A (zh) ZSM-5/β核壳型分子筛的合成方法
CN109174174B (zh) 一种hzsm-5/sapo-5核壳分子筛及其制备方法和应用
CN111068760B (zh) Ssz-13沸石的快速可控制备方法及h-ssz-13沸石和甲醇制烯烃催化剂
CN105417552A (zh) 多级孔道sapo-18分子筛、其制备方法及其应用
CN112794338B (zh) Zsm-5分子筛及其制备方法和应用
CN102372290A (zh) Sapo-5和sapo-34共生分子筛的合成方法
CN1596222A (zh) 分子筛的生产方法
CN114054082B (zh) 一种纳米多级孔sapo-11分子筛及其制备方法和应用
CN1182034C (zh) 硅磷铝分子筛的制备方法
CN103043681B (zh) 一种纳米层状zsm-5沸石分子筛的制备方法
CN111115655B (zh) 共晶纳米分子筛、制备方法及其应用
CN107952477B (zh) 多级孔sapo分子筛在甲醇制烯烃反应中的应用
KR100891001B1 (ko) 함산소화합물로 부터 경질 올레핀 제조용 복합촉매의제조방법 및 상기 복합촉매를 이용한 경질 올레핀의제조방법
CN113880110B (zh) 一种纳米多级孔mor/mtw共晶分子筛及其制备方法和应用
CN115385357B (zh) 一种hzsm-5分子筛、其制备方法及在轻烃催化裂解中的应用
CN1769249A (zh) 芳香族化合物的催化异构化方法
CN1299775A (zh) 一种制备sapo-17和sapo-44分子筛的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant