CN113952987A - 一种Co3V2O8双功能电催化材料及其制备方法与应用 - Google Patents
一种Co3V2O8双功能电催化材料及其制备方法与应用 Download PDFInfo
- Publication number
- CN113952987A CN113952987A CN202111214246.5A CN202111214246A CN113952987A CN 113952987 A CN113952987 A CN 113952987A CN 202111214246 A CN202111214246 A CN 202111214246A CN 113952987 A CN113952987 A CN 113952987A
- Authority
- CN
- China
- Prior art keywords
- electrocatalytic material
- precursor
- acid solution
- bifunctional
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 72
- 238000002360 preparation method Methods 0.000 title claims abstract description 21
- 230000001588 bifunctional effect Effects 0.000 claims abstract description 32
- 238000010041 electrostatic spinning Methods 0.000 claims abstract description 19
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000001301 oxygen Substances 0.000 claims abstract description 13
- 239000002121 nanofiber Substances 0.000 claims abstract description 12
- 238000003980 solgel method Methods 0.000 claims abstract description 5
- 239000002243 precursor Substances 0.000 claims description 80
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 36
- 239000000835 fiber Substances 0.000 claims description 33
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 28
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 28
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 28
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 28
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 24
- 238000010438 heat treatment Methods 0.000 claims description 18
- 238000003756 stirring Methods 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 238000001035 drying Methods 0.000 claims description 16
- 239000008367 deionised water Substances 0.000 claims description 14
- 229910021641 deionized water Inorganic materials 0.000 claims description 14
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 12
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical group [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 claims description 11
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 229910017052 cobalt Inorganic materials 0.000 claims description 10
- 239000010941 cobalt Substances 0.000 claims description 10
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 10
- QGUAJWGNOXCYJF-UHFFFAOYSA-N cobalt dinitrate hexahydrate Chemical compound O.O.O.O.O.O.[Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O QGUAJWGNOXCYJF-UHFFFAOYSA-N 0.000 claims description 10
- 238000001354 calcination Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- 229910052720 vanadium Inorganic materials 0.000 claims description 7
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 6
- 229910017604 nitric acid Inorganic materials 0.000 claims description 6
- 238000006722 reduction reaction Methods 0.000 claims description 6
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 6
- 239000002253 acid Substances 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 4
- 238000001523 electrospinning Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims 2
- 238000005516 engineering process Methods 0.000 abstract description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 3
- 239000001257 hydrogen Substances 0.000 abstract description 3
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 3
- 230000009467 reduction Effects 0.000 abstract description 3
- 230000000052 comparative effect Effects 0.000 description 23
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 13
- 238000002441 X-ray diffraction Methods 0.000 description 12
- 238000009987 spinning Methods 0.000 description 9
- 229920006395 saturated elastomer Polymers 0.000 description 8
- 238000005303 weighing Methods 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 7
- 238000011161 development Methods 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 229910000510 noble metal Inorganic materials 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 235000019441 ethanol Nutrition 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 2
- 229910021607 Silver chloride Inorganic materials 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000003034 coal gas Substances 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000006353 environmental stress Effects 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/58—Fabrics or filaments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/847—Vanadium, niobium or tantalum or polonium
- B01J23/8472—Vanadium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/33—Electric or magnetic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/075—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8878—Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9016—Oxides, hydroxides or oxygenated metallic salts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- Metallurgy (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Catalysts (AREA)
Abstract
本发明涉及一种Co3V2O8双功能电催化材料及其制备方法与应用,属于电催化材料技术领域。本发明利用溶胶‑凝胶法结合静电纺丝技术制备了Co3V2O8双功能电催化材料;所述电催化材料的微观形貌为纳米纤维,纳米纤维的直径为100‑200nm。本发明的Co3V2O8电催化材料不仅具有优良的氧还原(ORR)性能,同时析氢(OER)性能优异,且制备方法简单,有良好的应用前景。
Description
技术领域
本发明涉及一种Co3V2O8双功能电催化材料及其制备方法与应用,属于电催化材料技术领域。
背景技术
随着人口增多,经济快速发展以及工业化进程加快,煤石油天然气等化石能源面临供不应求的问题。与此同时,环境污染也成为越来越严重的全球危机。因此,开发可再生的清洁能源来替代化石燃料可有效缓解环境压力。氧还原反应(ORR)和析氧反应(OER)是电化学经典催化反应。氧还原反应(ORR)是金属-空气电池的重要反应,同时作为燃料电池的阴极反应直接影响燃料电池的转化效率。析氧反应(OER)是全解水的重要反应,是四电子转移过程,反应动力学缓慢,过电位高,这是限制电解水效率的关键因素。高效OER催化材料的设计和合成是提高电解水效率的关键。
目前贵金属催化材料,例如铂、钌、铱等,仍然是ORR和OER反应最有效的催化剂,但贵金属地球储量有限且价格昂贵,限制了它们的应用与发展。因此,开发低成本且高性能的ORR和OER反应材料是当下十分迫切的问题。
Co、V均是过渡金属元素,产量丰富,价格低廉,而且具有优异的电化学性能,是电化学领域的研究热点。中国专利文献CN106145200B公开了一种通过控制水热时间制备不同形貌Co3V2O8的方法,包括以下步骤:1)在70-80℃的去离子水中加入偏钒酸铵;2)向溶液中加入NaOH或LiOH或KOH;3)向溶液中加入CoCl2·6H2O或Co(NO3)2·6H2O或Co(Ac)2·4H2O或CoSO4·7H2O;4)在160-220℃的温度下进行水热反应,时间范围为5min-16h;5)用去离子水和无水乙醇洗涤,再经过干燥,煅烧,最后得到不同形貌的Co3V2O8。但该专利是通过水热方法制备的Co3V2O8,虽然得到了不同的形貌如实心球、正六边形片和铅笔头,但是没有一维形貌。
发明内容
针对现有技术的不足,本发明提供了一种Co3V2O8双功能电催化材料及其制备方法与应用。本发明利用溶胶-凝胶法结合静电纺丝技术制备了Co3V2O8双功能电催化材料;所述电催化材料的微观形貌为纳米纤维,纳米纤维的直径为100-200nm。本发明的Co3V2O8电催化材料不仅具有优良的氧还原(ORR)性能,同时析氢(OER)性能优异,且制备方法简单,有良好的应用前景。
术语说明:
纺丝接收距离:静电纺丝针头到接收装置的距离。
室温:具有本领域技术人员公知的含义,指25±5℃。
上述Co3V2O8双功能电催化材料的制备方法,包括步骤如下:
(1)将钴源,钒源和柠檬酸溶于去离子水中,之后滴加酸溶液得到前驱体溶液;
(2)将聚乙烯吡咯烷酮(PVP)溶于乙醇中,再将步骤(1)制得的前驱体溶液加入其中,得到前驱体溶胶;之后在室温下进行静电纺丝,得到前驱体纤维;将所得前驱体纤维干燥、煅烧后,得到Co3V2O8双功能电催化材料。
根据本发明优选的,步骤(1)中所述钴源为六水合硝酸钴,所述钒源为偏钒酸铵;所述钴源与钒源的摩尔比为3:2;所述钴源与柠檬酸的质量比为:(0.4-0.5):(0.8-1.3);所述钴源和去离子水的摩尔体积比为:(1-1.5)mmol:(10-15)mL。
根据本发明优选的,步骤(1)中所述酸溶液为盐酸溶液、硝酸溶液或乙酸溶液,所述盐酸溶液的质量浓度为37wt%,硝酸溶液的质量浓度为66wt%,乙酸溶液的质量浓度为99wt%。
根据本发明优选的,步骤(1)中所述搅拌时间为100-150min。
根据本发明优选的,步骤(2)中所述聚乙烯吡咯烷酮(PVP)的重均分子量为100-150万;进一步优选的,所述聚乙烯吡咯烷酮的重均分子量为130万。
根据本发明优选的,步骤(2)中所述聚乙烯吡咯烷酮(PVP)与乙醇的质量体积比为(0.6-1.6)g:(10-15)mL,进一步优选为(0.8-1.2)g:(10-15)mL;所述前驱体溶液与乙醇的体积比为(1.5-3):(10-15),进一步优选为(2-3):(10-15)。
根据本发明优选的,步骤(2)中所述静电纺丝的电压为12-28kV,相对湿度为10-35%,接收距离为10-30cm,推进速度为0.8-1.2mL/h;进一步静电纺丝电压优选为15-25kV。
根据本发明优选的,步骤(2)中所述干燥温度为40-60℃,干燥时间为12-18h;煅烧温度为400-600℃,升温速率为1-3℃/min;所述煅烧时间为120-180min。
本发明采用溶胶-凝胶法和静电纺丝技术相结合制备得到Co3V2O8纤维膜,将纤维膜干燥后再煅烧得到直径为100-200nm的Co3V2O8纳米纤维。
根据本发明,上述Co3V2O8双功能电催化材料的应用,应用于氧还原反应(ORR)和析氧反应(OER)。
本发明使用的所有化学药品均为分析级,未经进一步处理。
本发明与现有技术相比具有以下优点:
1、本发明利用溶胶-凝胶法结合静电纺丝技术制备得到Co3V2O8纳米纤维,通过煅烧时的不同温度可控制Co3V2O8的不同形貌。本发明制备出的Co3V2O8纳米纤维氧还原(ORR)性能以及析氢(OER)性能优异,一维形貌有最佳的电催化性能,最大的极限电流密度。
2、本发明的制备方法操作简便,原料成本低,工艺设备简单,制备过程无废水废气排放,对环境友好具有规模化生产的潜力,得到的Co3V2O8纳米纤维表面光滑且连续性好。
3、本发明制备的Co3V2O8双功能电催化材料绿色无污染,应用过程中不会对环境产生二次污染。
附图说明
图1为实施例1制备的Co3V2O8双功能电催化材料的X射线衍射谱图。
图2为实施例1制备的Co3V2O8双功能电催化材料的扫描电镜照片;
其中,a是低倍扫描电镜(SEM)照片;b是高倍扫描电镜(SEM)照片。
图3为对比例1,2,3和4制备的Co3V2O8电催化材料的X射线衍射谱图。
图4为对比例1制备的Co3V2O8电催化材料的扫描电镜照片;
其中,a是低倍扫描电镜(SEM)照片;b是高倍扫描电镜(SEM)照片。
图5为对比例2制备的Co3V2O8电催化材料的扫描电镜照片;
其中,a是低倍扫描电镜(SEM)照片;b是高倍扫描电镜(SEM)照片。
图6为对比例3制备的Co3V2O8电催化材料的扫描电镜照片;
其中,a是低倍扫描电镜(SEM)照片;b是高倍扫描电镜(SEM)照片。
图7为对比例4制备的Co3V2O8电催化材料的扫描电镜照片;
其中,a是低倍扫描电镜(SEM)照片;b是高倍扫描电镜(SEM)照片。
图8为实施例1制备的Co3V2O8电催化材料在O2饱和0.1M KOH溶液中,扫描速率为10mV/s的ORR的LSV曲线图。
图9为对比例1,2,3和4制备的Co3V2O8电催化材料在O2饱和0.1M KOH溶液中,扫描速率为10mV/s的ORR的LSV曲线图。
图10为实施例1制备的Co3V2O8电催化材料在O2饱和0.1M KOH溶液中,扫描速率为10mV/s的OER的LSV曲线图。
图11为对比例1,2,3和4制备的Co3V2O8电催化材料在O2饱和0.1M KOH溶液中,扫描速率为10mV/s的OER的LSV曲线图。
具体实施方式
下面结合具体实施例来进一步描述本发明,本发明的优点和特点将会随着描述而更为清楚。但实施例仅是范例性的,并不对本发明的范围构成任何限制。本领域技术人员应该理解的是,在不偏离本发明的精神和范围下可以对本发明技术方案的细节和形式进行修改或替换,但这些修改和替换均落入本发明的保护范围内。
实施例中所用原料均为常规原料,所用设备均为常规设备,均可从市售购买获得。
静电纺丝装置采用市场上常见静电纺丝机;推进器为常规塑料注射器。
实施例1
一种Co3V2O8双功能电催化材料的制备方法,包括步骤如下:
(1)将0.44g六水合硝酸钴,0.12g偏钒酸铵和1g柠檬酸溶于14mL去离子水中,然后再滴加1.5mL质量浓度为37wt%的盐酸,搅拌120min,得到前驱体溶液。
(2)称取0.8g聚乙烯吡咯烷酮(PVP)溶于10mL无水乙醇,搅拌均匀;再将2mL步骤(1)制得的前驱体溶液加入其中,得到前驱体溶胶;将所得前驱体溶胶在压力为20kV,相对湿度为30%,室温条件下进行静电纺丝,纺丝接收距离为20cm,推进速度为1mL/h,得到前驱体纤维。
(3)将步骤(2)制得的前驱体纤维在40℃下干燥12h,之后置于管式炉中,以1℃/min的升温速率升温至400℃,在400℃下保温120min,得到Co3V2O8双功能电催化材料。
本实施例制得的Co3V2O8双功能电催化材料的X射线衍射谱图(XRD)如图1所示。通过图1可知,所得产物的衍射峰对应于Co3V2O8的标准谱图(JCPDS No.16-0832),并且出现了微弱的碳峰。
本实施例制得的Co3V2O8双功能电催化材料的扫描电镜(SEM)如图2所示。从图2可以看出,制备的样品为直径约100nm的纳米纤维,具有较大的长径比,形貌均匀连续。
实施例2
一种Co3V2O8双功能电催化材料的制备方法,包括步骤如下:
(1)将0.44g六水合硝酸钴,0.12g偏钒酸铵和1g柠檬酸溶于14mL去离子水中,然后再滴加1.5mL质量浓度为66wt%的硝酸,搅拌120min,得到前驱体溶液;
(2)称取1.2g聚乙烯吡咯烷酮(PVP)溶于15mL无水乙醇,搅拌均匀;再将3mL步骤(1)制得的前驱体溶液加入其中,得到前驱体溶胶;将所得前驱体溶胶在压力为25kV,相对湿度为30%,室温条件下进行静电纺丝,纺丝接收距离为15cm,推进速度为1.2mL/h,得到前驱体纤维。
(3)将步骤(2)制得的前驱体纤维在50℃下干燥16h,之后置于管式炉中,以2℃/min的升温速率升温至400℃,在400℃下保温140min,得到Co3V2O8双功能电催化材料。
实施例3
一种Co3V2O8双功能电催化材料的制备方法,包括步骤如下:
(1)将0.5g六水合硝酸钴,0.134g偏钒酸铵和1.145g柠檬酸溶于16mL去离子水中,然后再滴加2mL质量浓度为99wt%的乙酸,搅拌150min,得到前驱体溶液;
(2)称取0.9g聚乙烯吡咯烷酮(PVP)溶于12mL无水乙醇,搅拌均匀;再将2mL步骤(1)制得的前驱体溶液加入其中,得到前驱体溶胶;将所得前驱体溶胶在压力为20kV,相对湿度为30%,室温条件下进行静电纺丝,纺丝接收距离为15cm,推进速度为1mL/h,得到前驱体纤维。
(3)将步骤(2)制得的前驱体纤维在60℃下干燥12h,之后置于管式炉中,以3℃/min的升温速率升温至400℃,在400℃下保温160min,得到Co3V2O8双功能电催化材料。
实施例4
一种Co3V2O8双功能电催化材料的制备方法,包括步骤如下:
(1)将0.4g六水合硝酸钴,0.11g偏钒酸铵和0.9g柠檬酸溶于13mL去离子水中,然后再滴加1.8mL质量浓度为99wt%的乙酸,搅拌150min,得到前驱体溶液;
(2)称取0.7g聚乙烯吡咯烷酮(PVP)溶于9mL无水乙醇,搅拌均匀;再将3mL步骤(1)制得的前驱体溶液加入其中,得到前驱体溶胶;将所得前驱体溶胶在压力为20kV,相对湿度为30%,室温条件下进行静电纺丝,纺丝接收距离为15cm,推进速度为0.8mL/h,得到前驱体纤维。
(3)将步骤(2)制得的前驱体纤维在40℃下干燥15h,之后置于管式炉中,以2℃/min的升温速率升温至400℃,在400℃下保温180min,得到Co3V2O8双功能电催化材料。
对比例1
一种Co3V2O8双功能电催化材料的制备方法,包括步骤如下:
(1)将0.44g六水合硝酸钴,0.12g偏钒酸铵和1g柠檬酸溶于14mL去离子水中,然后再滴加1.5mL质量浓度为37wt%的盐酸,搅拌120min,得到前驱体溶液;
(2)称取0.8g聚乙烯吡咯烷酮(PVP)溶于10mL无水乙醇,搅拌均匀;再将2mL步骤(1)制得的前驱体溶液加入其中,得到前驱体溶胶;将所得前驱体溶胶在压力为20kV,相对湿度为30%,室温条件下进行静电纺丝,纺丝接收距离为20cm,推进速度为1mL/h,得到前驱体纤维。
(3)将步骤(2)制得的前驱体纤维在40℃下干燥12h,之后置于管式炉中,以1℃/min的升温速率升温至450℃,在450℃下保温120min,得到Co3V2O8双功能电催化材料。
本对比例制得的Co3V2O8电催化材料的X射线衍射谱图(XRD)如图3所示。通过图3可知,所得产物的衍射峰对应于Co3V2O8的标准谱图(JCPDS No.16-0832)。
本对比例制得的Co3V2O8电催化材料的扫描电镜(SEM)如图4所示。从图4可以看出,Co3V2O8是由颗粒组成的直径为100-200nm的纳米纤维。
对比例2
一种Co3V2O8双功能电催化材料的制备方法,包括步骤如下:
(1)将0.44g六水合硝酸钴,0.12g偏钒酸铵和1g柠檬酸溶于14mL去离子水中,然后再滴加1.5mL质量浓度为66wt%的硝酸,搅拌120min,得到前驱体溶液;
(2)称取1.2g聚乙烯吡咯烷酮(PVP)溶于15mL无水乙醇,搅拌均匀;再将3mL步骤(1)制得的前驱体溶液加入其中,得到前驱体溶胶;将所得前驱体溶胶在压力为25kV,相对湿度为30%,室温条件下进行静电纺丝,纺丝接收距离为15cm,推进速度为1.2mL/h,得到前驱体纤维。
(3)将步骤(2)制得的前驱体纤维在40℃下干燥16h,之后置于管式炉中,以1℃/min的升温速率升温至500℃,在500℃下保温120min,得到Co3V2O8双功能电催化材料。
本对比例制得的Co3V2O8电催化材料的X射线衍射谱图(XRD)如图3所示。通过图3可知,所得产物的衍射峰对应于Co3V2O8的标准谱图(JCPDS No.16-0832)。
本对比例制得的Co3V2O8电催化材料的扫描电镜(SEM)如图5所示。从图5可以看出,Co3V2O8是不规则的小颗粒。
对比例3
一种Co3V2O8双功能电催化材料的制备方法,包括步骤如下:
(1)将0.5g六水合硝酸钴,0.134g偏钒酸铵和1.145g柠檬酸溶于16mL去离子水中,然后再滴加2mL质量浓度为99wt%的乙酸,搅拌150min,得到前驱体溶液;
(2)称取0.9g聚乙烯吡咯烷酮(PVP)溶于12mL无水乙醇,搅拌均匀;再将2mL步骤(1)制得的前驱体溶液加入其中,得到前驱体溶胶;将所得前驱体溶胶在压力为20kV,相对湿度为30%,室温条件下进行静电纺丝,纺丝接收距离为15cm,推进速度为1mL/h,得到前驱体纤维。
(3)将步骤(2)制得的前驱体纤维在60℃下干燥12h,之后置于管式炉中,以1℃/min的升温速率升温至550℃,在550℃下保温120min,得到Co3V2O8双功能电催化材料。
本对比例制得的Co3V2O8电催化材料的X射线衍射谱图(XRD)如图3所示。通过图3可知,所得产物的衍射峰对应于Co3V2O8的标准谱图(JCPDS No.16-0832)。
本对比例制得的Co3V2O8电催化材料的扫描电镜(SEM)如图6所示。从图6可以看出,Co3V2O8由不规则颗粒和小片组成。
对比例4
一种Co3V2O8双功能电催化材料的制备方法,包括步骤如下:
(1)将0.4g六水合硝酸钴,0.11g偏钒酸铵和0.9g柠檬酸溶于13mL去离子水中,然后再滴加1.8mL质量浓度为99wt%的乙酸,搅拌150min,得到前驱体溶液;
(2)称取0.7g聚乙烯吡咯烷酮(PVP)溶于9mL无水乙醇,搅拌均匀;再将3mL步骤(1)制得的前驱体溶液加入其中,得到前驱体溶胶;将所得前驱体溶胶在压力为20kV,相对湿度为30%,室温条件下进行静电纺丝,纺丝接收距离为15cm,推进速度为0.8mL/h,得到前驱体纤维。
(3)将步骤(2)制得的前驱体纤维在40℃下干燥15h,之后置于管式炉中,以1℃/min的升温速率升温至600℃,在600℃下保温120min,得到Co3V2O8双功能电催化材料。
本对比例制得的Co3V2O8电催化材料的X射线衍射谱图(XRD)如图3所示。通过图3可知,所得产物的衍射峰对应于Co3V2O8的标准谱图(JCPDS No.16-0832)。
本对比例制得的Co3V2O8电催化材料的扫描电镜(SEM)如图7所示。从图7可以看出,Co3V2O8的形貌为不规则的片状。
应用例1
ORR的性能LSV测试方法为:采用三电极体系,以Co3V2O8为旋转圆盘电极的工作电极、以铂丝为对电极、以Ag/AgCl电极为参比电极,所用电解液为:0.1M KOH溶液。测试前通入氧气,使电解液中氧气达到饱和。扫描速度为10mV/s。
图8为实施例1制备的Co3V2O8电催化材料在O2饱和0.1M KOH溶液中,扫描速率为10mV/s的ORR的LSV曲线图。图9为对比例1,2,3和4制备的Co3V2O8电催化材料在O2饱和0.1MKOH溶液中,扫描速率为10mV/s的ORR的LSV曲线图。
由图8和图9可知,实施例1制备的Co3V2O8电催化材料比对比例1,2,3和4制备的Co3V2O8电催化材料有更大的ORR极限电流密度,可达到6.5mA cm-2。
应用例2
OER的性能LSV测试方法为:采用三电极体系,以Co3V2O8为旋转圆盘电极的工作电极、以铂丝为对电极、以Ag/AgCl电极为参比电极,所用电解液为:0.1M KOH溶液。测试前通入氧气,使电解液中氧气达到饱和。扫描速度为10mV/s。
图10为实施例1制备的Co3V2O8电催化材料在O2饱和0.1M KOH溶液中,扫描速率为10mV/s的OER的LSV曲线图。图11为对比例1,2,3和4制备的Co3V2O8电催化材料在O2饱和0.1MKOH溶液中,扫描速率为10mV/s的OER的LSV曲线图。
由图10和图11可知,实施例1制备的Co3V2O8电催化材料比对比例1,2,3和4制备的Co3V2O8电催化材料有更大的OER极限电流密度,可达到32mA cm-2。
Claims (10)
1.一种Co3V2O8双功能电催化材料,其特征在于,所述电催化材料通过溶胶-凝胶法结合静电纺制备获得。
2.根据权利要求1所述的Co3V2O8双功能电催化材料,其特征在于,所述电催化材料的微观形貌为纳米纤维,纳米纤维的直径为100-200nm。
3.如权利要求1或2所述电催化材料的制备方法,其特征在于,所述制备方法包括步骤如下:
(1)将钴源,钒源和柠檬酸溶于去离子水中,之后滴加酸溶液得到前驱体溶液;
(2)将聚乙烯吡咯烷酮(PVP)溶于乙醇中,再将步骤(1)制得的前驱体溶液加入其中,得到前驱体溶胶;之后在室温下进行静电纺丝,得到前驱体纤维;将所得前驱体纤维干燥、煅烧后,得到Co3V2O8双功能电催化材料。
4.根据权利要求3所述制备方法,其特征在于,步骤(1)中所述钴源为六水合硝酸钴,所述钒源为偏钒酸铵;所述钴源与钒源的摩尔比为3:2;所述钴源与柠檬酸的质量比为:(0.4-0.5):(0.8-1.3);所述钴源和去离子水的摩尔体积比为:(1-1.5)mmol:(10-15)mL。
5.根据权利要求3所述制备方法,其特征在于,步骤(1)中所述酸溶液为盐酸溶液、硝酸溶液或乙酸溶液,所述盐酸溶液的质量浓度为37wt%,硝酸溶液的质量浓度为66wt%,乙酸溶液的质量浓度为99wt%。
6.根据权利要求3所述制备方法,其特征在于,步骤(1)中所述搅拌时间为100-150min。
7.根据权利要求3所述制备方法,其特征在于,步骤(2)中所述聚乙烯吡咯烷酮(PVP)与乙醇的质量体积比为(0.6-1.6)g:(10-15)mL;所述前驱体溶液与乙醇的体积比为(1.5-3):(10-15)。
8.根据权利要求7所述制备方法,其特征在于,步骤(2)中所述聚乙烯吡咯烷酮(PVP)与乙醇的质量体积比为(0.8-1.2)g:(10-15)mL;所述前驱体溶液与乙醇的体积比为(2-3):(10-15)。
9.根据权利要求3所述制备方法,其特征在于,步骤(2)中所述静电纺丝的电压为12-28kV,相对湿度为10-35%,接收距离为10-30cm,推进速度为0.8-1.2mL/h;进一步静电纺丝电压优选为15-25kV;所述干燥温度为40-60℃,干燥时间为12-18h;煅烧温度为400-600℃,升温速率为1-3℃/min;所述煅烧时间为120-180min。
10.如权利要求3-9所述制备方法获得的Co3V2O8双功能电催化材料在氧还原反应(ORR)和析氧反应(OER)中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111214246.5A CN113952987A (zh) | 2021-10-19 | 2021-10-19 | 一种Co3V2O8双功能电催化材料及其制备方法与应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111214246.5A CN113952987A (zh) | 2021-10-19 | 2021-10-19 | 一种Co3V2O8双功能电催化材料及其制备方法与应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113952987A true CN113952987A (zh) | 2022-01-21 |
Family
ID=79465095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111214246.5A Pending CN113952987A (zh) | 2021-10-19 | 2021-10-19 | 一种Co3V2O8双功能电催化材料及其制备方法与应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113952987A (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104597095A (zh) * | 2015-01-14 | 2015-05-06 | 吉林大学 | 基于Co3V2O8敏感电极和三维三相界面的YSZ基混成电位型NO2传感器及制备方法 |
CN105742075A (zh) * | 2016-04-07 | 2016-07-06 | 武汉理工大学 | 一种超级电容器用钒酸钴纳米材料及其制备方法和应用 |
CN110257957A (zh) * | 2019-06-28 | 2019-09-20 | 陕西科技大学 | 一种钼酸钒钠纳米纤维及其制备方法 |
KR20200019540A (ko) * | 2018-08-14 | 2020-02-24 | 명지대학교 산학협력단 | 공융용매를 이용한 금속 복합 산화물의 제조방법 |
CN111575833A (zh) * | 2020-05-18 | 2020-08-25 | 湖北工程学院 | 一种含有温敏材料的二氧化钛纳米纤维的制备方法 |
CN111945249A (zh) * | 2020-08-28 | 2020-11-17 | 齐鲁工业大学 | 一种串珠状钼酸铁纳米纤维光催化剂及其制备方法与应用 |
-
2021
- 2021-10-19 CN CN202111214246.5A patent/CN113952987A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104597095A (zh) * | 2015-01-14 | 2015-05-06 | 吉林大学 | 基于Co3V2O8敏感电极和三维三相界面的YSZ基混成电位型NO2传感器及制备方法 |
CN105742075A (zh) * | 2016-04-07 | 2016-07-06 | 武汉理工大学 | 一种超级电容器用钒酸钴纳米材料及其制备方法和应用 |
KR20200019540A (ko) * | 2018-08-14 | 2020-02-24 | 명지대학교 산학협력단 | 공융용매를 이용한 금속 복합 산화물의 제조방법 |
CN110257957A (zh) * | 2019-06-28 | 2019-09-20 | 陕西科技大学 | 一种钼酸钒钠纳米纤维及其制备方法 |
CN111575833A (zh) * | 2020-05-18 | 2020-08-25 | 湖北工程学院 | 一种含有温敏材料的二氧化钛纳米纤维的制备方法 |
CN111945249A (zh) * | 2020-08-28 | 2020-11-17 | 齐鲁工业大学 | 一种串珠状钼酸铁纳米纤维光催化剂及其制备方法与应用 |
Non-Patent Citations (4)
Title |
---|
CHUAN MU ET AL.: "Rational Design of Spinel Cobalt Vanadate Oxide Co2VO4 for Superior Electrocatalysis" * |
KALAPU CHAKRAPANI ET AL.: "The Role of Composition of Uniform and Highly Dispersed Cobalt Vanadium Iron Spinel Nanocrystals for Oxygen Electrocatalysis" * |
SUYEON HYUN ET AL.: "The influence of Co3V2O8 morphology on the oxygen evolution reaction activity and stability" * |
ZHONGZHENG QIN ET AL.: "Design and fabrication of Co3V2O8 nanotubes by electrospinning as a high-performance anode for lithium-ion batteries" * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111185188B (zh) | 一种铁钴镍铜基高熵合金电解水催化材料及其制备方法 | |
CN108736031A (zh) | 一种自支撑PtCo合金纳米颗粒催化剂及其制备方法与应用 | |
CN113235104B (zh) | 一种基于zif-67的镧掺杂氧化钴催化剂及其制备方法与应用 | |
CN109989070B (zh) | 三维分级FeP纳米片析氢电催化材料及其制备方法和应用 | |
CN110127655B (zh) | 一步煅烧法制备生物质碳负载的磷化钴电极材料的方法 | |
CN105977501B (zh) | 一种高性能氧还原MnO2-Mn3O4/碳纳米管复合催化剂及其制备方法和应用 | |
CN110124713A (zh) | 一种氮掺杂碳纳米纤维负载空心结构Co3O4/CeO2纳米粒子材料的制备方法和应用 | |
CN113437314B (zh) | 氮掺杂碳负载低含量钌和Co2P纳米粒子的三功能电催化剂及其制备方法和应用 | |
CN109621969B (zh) | 一种自支撑双金属镍钨碳化物全解水材料及其制备方法 | |
CN112886029B (zh) | 以中空碳纳米管为载体的双功能氧电催化剂的制备及应用 | |
CN110970628A (zh) | 一种纳米碳纤维和金属复合电极及其应用 | |
CN112522726A (zh) | 一种由天然琼脂衍生的氮掺杂多孔碳/二硫化钼复合材料的制备方法及其应用 | |
CN111659439A (zh) | 一种负载NiS/NiO异质结的氮掺杂碳纳米复合材料及其制备方法和用途 | |
CN109046423A (zh) | 一种三维分级复合材料及其制备方法和应用 | |
CN113668008A (zh) | 一种二硫化钼/钴碳纳米管电催化剂及其制备方法和应用 | |
CN113083272A (zh) | 一种FeNx纳米颗粒掺杂竹节状碳纳米管的制备方法 | |
CN111330583A (zh) | 一种用于电化学分解水反应的催化剂及其制备方法 | |
CN110354870B (zh) | 一种高性能的银掺杂的硫化钴析氧催化剂的制备方法及其应用 | |
CN111013619A (zh) | 一种催化剂用碳化钼纳米棒及其制备方法与应用 | |
CN113174612B (zh) | 一种负载Ni纳米粒子的碳管复合材料及其制备方法与应用 | |
CN113952987A (zh) | 一种Co3V2O8双功能电催化材料及其制备方法与应用 | |
CN114725403A (zh) | 一种微生物燃料电池阳极材料及其制备方法与应用 | |
CN113136590A (zh) | 一种用于电催化析氢反应的双钙钛矿催化剂及其制备方法 | |
CN113774428A (zh) | 一种高效钴铑氢氧化物纳米颗粒/碳布电极的制备方法及其产品和应用 | |
CN112626553B (zh) | 一种空心碳管复合材料及其制备方法与应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220121 |