CN113881624A - 一种细胞诱导的方法 - Google Patents

一种细胞诱导的方法 Download PDF

Info

Publication number
CN113881624A
CN113881624A CN202111052331.6A CN202111052331A CN113881624A CN 113881624 A CN113881624 A CN 113881624A CN 202111052331 A CN202111052331 A CN 202111052331A CN 113881624 A CN113881624 A CN 113881624A
Authority
CN
China
Prior art keywords
cells
medium
blebbistatin
culture
inducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111052331.6A
Other languages
English (en)
Inventor
周琪
李伟
何正泉
王柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Zoology of CAS
Original Assignee
Institute of Zoology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810083591.1A external-priority patent/CN110093310B/zh
Priority claimed from CN201810083174.7A external-priority patent/CN110093309B/zh
Priority claimed from CN201810083568.2A external-priority patent/CN110093305B/zh
Application filed by Institute of Zoology of CAS filed Critical Institute of Zoology of CAS
Publication of CN113881624A publication Critical patent/CN113881624A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0653Adipocytes; Adipose tissue
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0656Adult fibroblasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0018Culture media for cell or tissue culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/067Hepatocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • C12N2506/1307Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from adult fibroblasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • C12N2510/04Immortalised cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Rheumatology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

一种细胞诱导的方法,具体来说涉及:诱导成纤维细胞转分化为脂肪细胞的方法,包括以下步骤:将成纤维细胞培养在培养基中,在培养基中加入Myosin抑制剂和BMP4,继续培养,直至得到脂肪细胞。还涉及一种诱导成纤维细胞转化为永生化细胞的方法及其应用。所述方法包括以下步骤:将成纤维细胞培养在培养基中,在培养基中加入Myosin抑制剂,继续培养,直至得到永生化细胞。还涉及一种诱导肝细胞体外扩增的方法。还涉及Myosin抑制剂尤其是(‑)‑Blebbistatin或(S)‑(‑)‑Blebbistatin O‑Benzoate和通过所述方法获得的肝细胞在诱导肝细胞体外扩增、构建生物人工肝和构建肝脏疾病模型中的应用。

Description

一种细胞诱导的方法
本案是申请日为2019年1月29日、申请号为201980005643.6、发明 名称为“一种细胞诱导的方法”的发明专利申请的分案申请。
技术领域
本发明涉及生物技术领域,具体涉及细胞诱导技术领域,更具体涉及 一种诱导成纤维细胞转分化为脂肪细胞的方法及其应用、一种将成纤维细 胞转化为永生化细胞的方法及其应用、以及一种诱导肝细胞体外扩增的方 法。
背景技术
转分化(transdifferentiation,也称为分化转移)是指一种类型的分化细胞 转变成另一种类型的分化细胞的现象。目前已经可以实现多种类型的细胞 的转分化,例如:将胚胎成纤维细胞、成软骨细胞和视网膜上皮细胞转分 化为肌细胞,将B淋巴细胞转分化为巨噬细胞,将小鼠成纤维细胞转分化 为功能性的神经细胞等等。
脂肪细胞(adipocyte)在成人体内大量存在,其组织又称脂肪组织,常呈 白色,在幼儿期大量增殖,到青春期数量达到巅峰,此后数量一般不再增 加。在正常动物和人类的体内,脂肪组织主要存在于腹腔内和腹部的皮下 内,但肥胖患者的机体各个部位均会出现脂肪组织,如肾脏、肠系膜、皮 下、腹腔等部位的周围,这表明可能分化为脂肪细胞的细胞不仅有脂肪前 体细胞,在一些特定条件下,一些非脂肪前体细胞也能够分化为脂肪细胞,这颠覆了脂肪细胞是由脂肪前体细胞分化而来的传统观念。通过将非脂肪 前体细胞转分化为脂肪细胞,也可以更清楚地了解脂肪细胞的转化机制, 进而指导抑制肥胖药物的开发。
成纤维细胞(fibroblast)是疏松结缔组织的主要细胞成分,由胚胎时期的 间充质细胞(mesenchymal cell)分化而来。将成纤维细胞转分化为脂肪细胞在 诸多领域具有重要的应用,例如,将疤痕伤口中发现的最常见类型的肌成 纤维细胞转分化为脂肪细胞可能在未来实现伤口不留疤痕,并且在皱纹皮 肤中再生脂肪细胞,有可能衍生出新型抗衰老治疗策略。由此可见,实现 非脂肪前体细胞尤其是成纤维细胞转分化为脂肪细胞具有重要的意义。
目前,现有技术已经公开了一些诱导成纤维细胞转分化为脂肪细胞的 方法。CN104342401B公开了利用确定的细胞因子组合促进成纤维细胞转分 化为脂肪细胞的方法,组合物的起效因子为表皮生长因子、肝细胞生长因 子、地塞米松、胰岛素和PPARγ激动剂。CN104372024A公开了一种诱导 牛成纤维细胞/成肌细胞转分化为脂肪细胞的方法,包括克隆牛转录因子 CCAAT增强子结合蛋白C/EBPβ基因,构建C/EBPβ基因过表达载体并包装获得重组腺病毒,腺病毒侵染牛成纤维细胞、成肌细胞实现上述细胞快 速转分化为脂肪细胞。上述方法采用大量大分子物质或重编程过程,效率 较低,安全性也存在一定的影响。
现已证实,小分子化合物也可以诱导成纤维细胞转分化为脂肪细胞, 这能够提高转分化的速度、存活率和能力。例如,CN105754935A公开了一 种诱导成纤维细胞转分化为脂肪细胞的诱导培养基,所述培养基包含基础 培养基和诱导小分子组合,所述诱导小分子组合为SG或6TF,其中S为 SB431542、G为GSK126、6为E61541、T为苯环丙胺、F为毛喉素。但仍然需要探索更多的小分子化合物来诱导成纤维细胞转分化为脂肪细胞以用 于疾病的研究、治疗和更广泛的应用。
正常组织来源的体细胞在通常的体外培养条件下可生长和分裂,但经 过有限次的细胞传代后,就会停止增殖,发生衰老和死亡,这就限制了细 胞培养技术的应用。细胞永生化(cell immortalization)是指细胞在体外培养过 程中,由于自身基因变化或者各种外界刺激因素,从增殖衰老的危机中逃 离,避免了正常细胞的衰老死亡过程,可以长期传代培养、无限分裂增殖。
对于细胞永生化的机制和方法已经进行了大量的研究,已经证实,放 射性因素、端粒酶激活、病毒基因转染、原癌基因与抑癌基因等均可以导 致细胞的无限增殖分裂。但经过多年的研究发现,虽然永生化的机制有相 似之处,但同样的永生化方法并非适用于所有细胞。例如,肝细胞永生化 的方法有抑癌基因敲除、质粒转导和病毒转染、可恢复性永生化等,上皮 细胞永生化的方法有DNA致瘤病毒转染等,心肌细胞永生化的方法有P16 慢病毒载体和可逆SV40病毒转导途径成功的案例。
目前,现有技术已经披露了一些诱导成纤维细胞转化为永生化细胞的 方法。王新文等(“皮肤成纤维细胞永生化的研究进展”,中国生物工程杂质, 第22卷第4期,2002年8月)披露了皮肤成纤维细胞永生化的方法,除了 以上常用的方法外,总的概括起来还有以下几种方法:HPV、四硝基喹啉 一氧化物、黄曲霉素等。
针对性发展对特定细胞的永生化技术可以实现具有传代次数少、增殖 分裂慢的正常体细胞的长期传代、无限分裂增殖,增加细胞周期寿命。这 不仅有助于了解细胞生长规律、探索细胞衰老原因,还对解决器官移植问 题有着重要的临床意义。
另外,资料显示,细胞永生化是转化为肿瘤细胞的前提,是由正常细 胞转化为肿瘤细胞所必经的阶段,研究细胞的永生化可以为治疗肿瘤、控 制肿瘤细胞的增殖奠定坚实的基础。
因此,针对成纤维细胞转化为永生化细胞的研究有着广阔的应用前景。
肝脏是人体内最大的内部器官,其是代谢的主要场所。肝细胞在肝脏 中占85%。肝细胞在体内具有强大的再生潜能,将正常的肝脏切除三分之 二后可以在仅一周内通过细胞增殖恢复到原来体积。然而,遗憾的是,尽 管人类肝脏在体内可以迅速再生,但原代肝细胞在体外培养条件下仅能短 暂增殖而不能长期增殖,到目前为止,努力在实验室扩展人类肝细胞会导 致代谢功能低的永生化癌细胞。人体肝细胞的稀缺和肝细胞扩展时功能丧失是科学、医学和药学发展的主要瓶颈,解决这一问题将有助于促进肝细 胞体外药物代谢、药物毒性、终末期肝病细胞治疗、构建出生物人工肝来 支持等待移植的患者、疾病模型构建等研究和应用。
目前,该领域内最常用的方法为转录因子重编程技术,但是此类技术 由于外源基因片段的插入使得进入临床应用的风险较大。前期有研究发现, 采用小分子重编程技术,中日两个研究团队分别成功地实现了原代肝细胞 在体外向肝前体细胞的转变和快速增殖,经定向诱导分化后,增殖的前体 样肝细胞可重新获得成熟肝细胞的功能,移植入小鼠体内可达70%以上的 整合。采用小分子化合物重编程技术,所得到的肝细胞未经过任何的基因 改造,因而更为接近体内细胞的初始状态,对于将来的临床应用更为安全 有效。该领域仍然存在使用小分子化合物来诱导肝细胞体外扩增的强烈需 求。
发明内容
本发明人经过不断的探索,意外地发现可以通过Myosin抑制剂 (-)-Blebbistatin或(S)-(-)-Blebbistatin O-Benzoate实现上述目的。
因此,本发明涉及Myosin抑制剂在诱导细胞转分化中的应用。
优选地,所述转分化为诱导成纤维细胞转分化。优选地,所述转分化 为诱导成纤维细胞转分化为脂肪细胞。
在一个实施方案中,所述Myosin抑制剂为(-)-Blebbistatin,缩写Ble或 Bleb或Blebb。
在一个实施方案中,所述Myosin抑制剂为(-)-Blebbistatin O-Benzoate, 缩写为S-Bleb-OB。
在本发明中使用的(-)-Blebbistatin(也表示为(S)-(-)-Blebbistatin或S-Bleb) 是一种细胞渗透性抑制剂,作用于非肌球蛋白IIATPase,其不抑制肌球蛋白 轻链激酶,抑制卵裂沟的缢缩,不干扰有丝分裂或收缩环的组装,其结构 式如式(I)所示,分子量为292.33。
在本发明中使用的(-)-Blebbistatin O-Benzoate(也表示为 (S)-(-)-Blebbistatin O-Benzoate或S-Bleb-OB)是(-)-Blebbistatin的衍生物,其 结构式如式(II)所示。
Figure BDA0003253211080000041
Figure BDA0003253211080000051
本发明还涉及一种诱导成纤维细胞转分化为脂肪细胞的方法,包括以 下步骤:将成纤维细胞培养在培养基中,在培养基中加入Myosin抑制剂和 BMP4,继续培养,直至得到脂肪细胞。
优选地,所述培养基包括基础培养液、胎牛血清和脂肪诱导培养液中 的任一种或几种。
优选地,所述基础培养液包括高糖DMEM、胎牛血清和双抗。
优选地,所述脂肪诱导培养液包括N2B27培养液(DMEM/F12、 Neurobasal的1:1混合物)、N2添加剂、B27添加剂、2%牛血清白蛋白、β- 巯基乙醇、GlutaMAX、胰岛素和双抗,以及血清替代物。
本发明还涉及通过所述的方法获得的脂肪细胞,或者包含所述脂肪细 胞的试剂或研究工具或诊断工具。
上述本发明的方法只需单个小分子或单因素处理,操作简单,重复性 好,并且在体内体外均可高效进行,不涉及转基因操作,获得的脂肪细胞 安全性好,适用于在组织再生、修复等领域和产业中应用。
本发明还涉及Myosin抑制剂在诱导细胞永生化中的应用。
优选地,所述永生化为诱导成纤维细胞转化为永生化细胞。
优选地,所述Myosin抑制剂为(-)-Blebbistatin或(S)-(-)-Blebbistatin O-Benzoate。
本发明还涉及一种诱导成纤维细胞转化为永生化细胞的方法,其特征 在于,包括以下步骤:将成纤维细胞培养在培养基中,在培养基中加入 Myosin抑制剂,继续培养,直至得到永生化细胞。
优选地,所述培养基包括基础培养液、胎牛血清和永生化诱导培养液 中的任一种或几种。
本发明还涉及一种诱导成纤维细胞转化为永生化细胞的培养基,其特 征在于,其包括Myosin抑制剂、基础培养液、胎牛血清和永生化诱导培养 液。
优选地,所述基础培养液包括高糖DMEM和双抗,和/或,所述永生化 诱导培养液包括N2B27培养液:(DMEM/F12、Neurobasal的1:1混合物)、 N2添加剂、B27添加剂、2%牛血清白蛋白、β-巯基乙醇、GlutaMAX、胰 岛素和双抗。
优选地,所述永生化诱导培养液进一步包括KOSR、CHIR99021和 A83-01中的一种或几种。
本发明还涉及通过所述的方法获得的永生化细胞,或者包含所述永生 化细胞的试剂或研究工具或诊断工具。
本发明还涉及基因在制备诱导增殖或衰老的制剂中的应用,其特征在 于,所述基因包括Sox2、Srrt、Yap、β-catenin、Mki67、Pcna、P19、P16ink4a、 P15ink4b、Morf4l1、Elf5中的一种或几种。
优选地,增殖相关基因包括Sox2、Srrt、Yap、β-catenin、Mki67、Pcna 中的一种或几种。优选地,衰老相关基因包括P19、P16ink4a、P15ink4b、 Morf4l1、Elf5中的一种或几种。
上述本发明的方法只需单个小分子或单因素处理,操作简单,重复性 好,并且在体内体外均可高效进行,不涉及转基因操作,获得的永生化细 胞安全性好,适用于了解细胞生长规律、探索细胞衰老原因、解决器官移 植问题,还能够为治疗肿瘤、控制肿瘤细胞的增殖奠定一定的基础,具有 重要的意义。本发明还发现了增殖相关基因和衰老相关基因,为诱导细胞 的增殖和衰老提供了一种全新的选择。
此外,本发明人经过不断的探索,意外地发现Myosin抑制剂能显著地 促进肝细胞长期扩增,进而实现上述目的。
因此,本发明总体上涉及Myosin抑制剂在诱导肝细胞体外扩增中的应 用。
本发明还涉及Myosin抑制剂在构建生物人工肝中的应用。
本发明还涉及Myosin抑制剂在构建肝脏疾病模型中的应用。
优选地,所述Myosin抑制剂为(-)-Blebbistatin或(S)-(-)-Blebbistatin O-Benzoate。
本发明还涉及一种诱导肝细胞体外扩增的方法,其特征在于,包括以 下步骤:将肝细胞培养在培养基中,在培养基中加入Myosin抑制剂,继续 培养,从而诱导肝细胞体外扩增。优选地,所述Myosin抑制剂为 (-)-Blebbistatin或(S)-(-)-Blebbistatin O-Benzoate。
本发明还涉及通过所述方法获得的肝细胞。
本发明还涉及包含所述肝细胞的试剂、生物人工肝、研究工具或诊断 工具。
本发明还涉及使用所述诱导肝细胞体外扩增的方法或通过所述方法获 得的肝细胞的肝脏疾病模型。
本发明还涉及通过所述方法获得的肝细胞在构建生物人工肝中的应 用。
本发明还涉及通过所述方法获得的肝细胞在构建肝脏疾病模型中的应 用。
上述应用可以是治疗性应用,也可以是非治疗性应用。
本发明的方法只需单个小分子或单因素处理,操作简单,重复性好, 并且在体外可高效进行,不涉及转录因子重编程技术和复杂的转基因操作, 能够长期扩增,并且小分子扩增的肝细胞也仍然具有功能。
附图说明
图1A为实施例一的实验流程。
图1B显示了由人包皮成纤维细胞诱导得到的脂肪细胞油红O染色。
图1C和图1D分别显示了由小鼠胚胎成纤维细胞得到的脂肪细胞形态 及油红O染色以及脂滴面积比例。
图1E和图1F分别显示了在原脂肪诱导培养液中添加不同物质后的油 红O染色和脂滴面积统计。
图2A和2B为小分子处理的体内实验结果,显示能显著提高腹侧脂肪 的含量。图中的Ble为(-)-Blebbistatin。
图3A为实施例二的实验流程。
图3B显示了荧光显微镜观察的结果。
图3C和图3D显示了绘制的细胞生长曲线和计算出的细胞周期。
图3E和图3F显示了细胞周期组成分析的结果。
图3G和图3H显示了增殖和衰老基因的检测结果。
图4A显示将细胞用小鼠肝细胞培养液(加入5微摩MyosinⅡ抑制剂 (-)-Blebbistatin)重悬,接种于铺有fibronectin的培养皿,一周后观察有Alb 表达的绿色肝细胞团。
图4B显示AlB-GFP阳性肝细胞长期扩增的结果。
图5A和图5B显示传代(共3代)培养12天后的扩增结果,标尺为100 微米。
图5C显示传代(共3代)培养12天后白蛋白和甲胎蛋白基因表达的结 果。
图6A显示继续培养两天后,小分子组细胞克隆进一步扩增,而对照组 无明显变化,标尺为100微米。
图6B显示培养6天后,小分子组和对照组的细胞数。
图6C为小分子组和对照组中的增殖细胞核抗原基因(PCNA)的表达结 果。
图6D为小分子扩增的成人肝细胞表达人肝细胞特异基因白蛋白 (ALBUMIN)、甲胎蛋白(AFP)、CYP1A2和CYP3A4的结果。
图6E为10μm小分子培养基和对照培养基使人肝细胞传代培养的结果, 标尺为100微米。
图6F为传代培养的成人肝细胞经奥美拉唑诱导后, CYP1A2基因的表达结果。
具体实施方式
下面将参照附图更详细地描述本发明的具体实施例。虽然附图中显示 了本发明的具体实施例,然而应当理解,可以以各种形式实现本发明而不 应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻 地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。
需要说明的是,在说明书及权利要求当中使用了某些词汇来指称特定 组件。本领域技术人员应可以理解,技术人员可能会用不同名词来称呼同 一个组件。本说明书及权利要求并不以名词的差异来作为区分组件的方式, 而是以组件在功能上的差异来作为区分的准则。如在通篇说明书及权利要 求当中所提及的“包含”或“包括”为一开放式用语,故应解释成“包含但不限 定于”。说明书后续描述为实施本发明的较佳实施方式,然所述描述乃以说 明书的一般原则为目的,并非用以限定本发明的范围。本发明的保护范围 当视所附权利要求所界定者为准。
如本文所用,就特定组分而言“基本上不含”在本文中用于表示特定组分 未被有目的地配制到组合物中和/或仅作为污染物或以痕量存在。因此,由 组合物的任何意外污染导致的特定组分的总量低于0.05%,优选低于 0.01%。最优选的是其中特定组分的量用标准分析方法检测不到的组合物。
如在本说明书中所使用的,“一”或“一个”可以表示一个或多个。如权利 要求中所使用的,当与单词“包含”一起使用时,单词“一”或“一个”可以表示 一个或多于一个。
在权利要求中使用术语“或”用于表示“和/或”,除非明确指出仅指代替 代方案或者替代方案是相互排斥的,尽管本公开内容支持仅指代替代方案 和“和/或”的定义。如本文所用,“另一个”可以表示至少第二个或更多个。
贯穿本申请,术语“约”用于指示值包括装置的误差的固有变化,该方法 用于测定该值或存在于研究对象之间的变化。
在本文中,“分化”是较不特化的细胞变成更特化的细胞类型的过程。“去 分化”是这样的细胞过程,其中部分或终末分化的细胞回复到更早期发育阶 段,如多能性或多潜能性。“转分化”是将一种分化细胞类型转化为另一种分 化细胞类型的过程。典型地,通过编程发生转分化而细胞不经过中间多能 性阶段-即,细胞直接从一种分化细胞类型编程为另一种分化细胞类型。
如本文所用,术语“受试者”或“有需要的受试者”是指任何年龄的雄性或 雌性的需要细胞或组织移植的哺乳动物,优选人。通常,受试者需要细胞 或组织移植(在本文中也称为受体),这是由于适合经由细胞或组织移植治疗 的病症或病理或不期望的状况、状态或综合征或身体、形态学或生理学异 常。
在本文中涉及的一些术语的定义如下:
BMP4:骨形态发生蛋白4(bone morphogenetic protein,bmp4)。
高糖DMEM:一种高糖型DMEM培养基(dulbecco's modified eagle medium,DMEM),即一种含各种葡萄糖和氨基酸的商品化的培养基,在MEM培养基的基础上研制的。
N2B27:一种以DMEM/F12基础培养基和neurobasal基础培养基以1:1 混合而成,包含N2添加剂和B27添加剂的成分明确的细胞培养液,报道有 利于小鼠胚胎干细胞向神经方向分化。
DMEM/F12:一种以DMEM培养基和F12培养基1:1混合而成的商品 化的基础培养液,适于克隆密度的培养。
Neurobasal:有利于神经细胞培养的商品化基础培养基。
GlutaMAX:一种细胞培养添加剂,可直接替代细胞培养基中的L-谷氨 酰胺。
双抗:青霉素和链霉素是细胞培养常用的两种抗生素,防止细胞培养 过程中的细菌污染。
N2添加剂:一种商品化无血清的细胞培养添加剂。
B27添加剂:一种商品化无血清的细胞培养添加剂。
KOSR:商品化血清替代物(Knockout serum replacement,KOSR)。
CHIR99021:一种GSK-3α/β抑制剂,常用作Wnt信号通路激活剂。
A83-01:一种具有选择性的TGF-β抑制剂,能够显著抑制ALK4,ALK5 和ALK7的活性。
实施例
以下通过具体实施例来详细阐述和说明本发明的实施方式,但以下内 容不应理解为对本发明作任何限制,实施例中采用的物质等如果没有特殊 说明均为市售产品。
实施例一由成纤维细胞向脂肪细胞的转化
以12孔板为例(corning,3335),每孔用20μg/ml基质胶溶液(BD, 354277)1×DMEM配制,包被12小时,去掉包被液用1×PBS冲液洗一遍。
将小鼠胚胎成纤维细胞(C57,E13.5制备)或成人包皮成纤维细胞 (HFF20y,北京干细胞库)均匀种于每一个孔,每孔1×104个细胞,用基础培 养液(高糖DMEM(Gibco,C12430500BT),双抗)加10%胎牛血清(Gibco, 16000-044)培养24小时。去除培养液,PBS洗一遍。
将经上述处理后的成纤维细胞加入脂肪诱导培养液:(N2B27培养液: DMEM/F12(Gibco,10565018)与Neurobasal(Gibco,21103-049)1比1混合, 加入N2添加剂(100×,Gibco,17502048),B27添加剂(50×,Gibco,17504044), 2%牛血清白蛋白(1000×,sigma,A8022),β-巯基乙醇(1000×,Gibco, 21985023),GlutaMAX(200×,Gibco,35050-061),1μg/ml胰岛素(Roche, 11376497001),双抗),10%血清替代物(Gibco,10828-028)加入Myosin 抑制剂(二甲基亚砜溶解(sigma,D2650)的100mM浓储,-20摄氏度避光保 存1月)以及10ng/mL BMP4(Peprotech,10828-028),培养21天后鉴定, 实验流程见图1A。
脂肪细胞的鉴定采用细胞油红染色,使用油红O染色液(细胞专用, Solarbio,G1262),具体如下:去掉培养液,加入ORO Fixative固定10-15min 后,去掉固定液,放在流动的空气中10-15分钟。此时按照ORO Stain A: ORO Stain B=3:2的比例配置ORO Stain,混合后静置10min后加入孔中, 浸染15min后去掉染色液,加入60%异丙醇漂洗20-30s,并蒸馏水清洗3 次后于光学显微镜下拍照,中性脂肪呈橙红色或橘红色,磷脂呈粉红色。 由人包皮成纤维细胞诱导得到的脂肪细胞油红O染色见图1B。
由小鼠胚胎成纤维细胞得到的脂肪细胞形态及油红O染色如图1C,可 见橙红色脂滴的形成,标志中性脂肪的出现。脂滴面积比例近13%,显著 高于对照组(P<0.01),统计结果见图1D。
在原脂肪诱导培养液中添加10μM A83-01(stemgent,04-0014)显著提高 了脂肪诱导效率,高达20%(P<0.001);或添加10μM SB431542(stemgent, 04-0010-10)也可显著提高脂肪诱导效率,达18%(P<0.001)。若添加BMP 的抑制剂,脂肪诱导效率恢复至对照水平。油红O染色见图1E,脂滴面积 统计见图1F。
体内实验:选取同批次6-8周ICR雌性小鼠,随机分成两组,每组5 只,一组小分子(-)-Blebbistatin或(S)-(-)-Blebbistatin O-Benzoate(0.5mg/kg, 溶于10%DMSO+2%Tween 80+生理盐水)注入小鼠腹侧,另一组注射与小 分子组处理相同计量的DMSO,注射形式同实验组。每天注射一次,注射 19天后,停药32天,颈椎脱臼处死小鼠观察腹侧脂肪含量。结果如图2所 示,小分子处理组能显著提高腹侧脂肪的含量,具体见图2A、2B。此外,(S)-(-)-Blebbistatin O-Benzoate替代(-)-Blebbistatin处理也能提高腹侧脂肪含 量,实验结果显示在未经优化的情况下,腹侧脂肪含量提高了约50%。
实施例二:由成纤维细胞向永生化细胞的转化
以12孔板为例(corning,3335)每孔用20μg/mL基质胶溶液(BD, 354277)1×DMEM配制,包被12小时,去掉包被液用1×PBS冲液洗一遍。
将小鼠胚胎成纤维细胞(C57,E13.5制备)或尾尖成纤维细胞(出生后一 周或成年小鼠制备)均匀种于每一个孔,每孔2×104个细胞,用基础培养液(高 糖DMEM(Gibco,C12430500BT),双抗)加10%胎牛血清(Gibco,16000-044) 培养24小时。去除培养液,PBS洗一遍。
将经上述处理后的成纤维细胞加入永生化诱导培养液:(N2B27培养液: DMEM/F12(gibco,10565018)与Neurobasal(Gibco,21103-049)1比1混合, 加入N2添加剂(100×,Gibco,17502048),B27添加剂(50×,Gibco,17504044), 2%牛血清白蛋白(1000×,sigma,A8022),β-巯基乙醇(1000×,Gibco, 21985023),GlutaMAX(100×,Gibco,35050-061),1μg/ml胰岛素(Roche, 11376497001),双抗)。加入10%KOSR(gibco,12618013)、3μM的CHIR99021(stemgent,04-0004-10)、10μM的A83-01(stemgent,04-0014)和 25μM的Myosin抑制剂(-)-Blebbistatin(MCE,HY-13441)或25μM的 (S)-(-)-Blebbistatin O-Benzoate(TRC,B208070)。培养21~28天后鉴定,实验 流程见图3A,利用包含(-)-Blebbistatin(MCE,HY-13441)或 (S)-(-)-Blebbistatin O-Benzoate(TRC,B208070)永生化诱导培养液得到的细胞 通过如下实验进行是否为永生化细胞SMPC的鉴定。
永生化细胞SMPC的鉴定主要包括以下几个方面:
干细胞标志物染色。实验方法如下:首先用PBS 1:40稀释Stem Cell CDy1 Dye,制成CDy1稀释缓冲液,然后用培养液1:100稀释CDy1稀释缓 冲液制成CDy1染色液。去掉培养液后加入CDy1染色液,在37℃CO2培 养箱中染色1小时,用PBS洗涤三次后,加入培养液在在37℃CO2培养箱 中褪色3小时。用荧光显微镜观察,结果见图3B,其中Merge表示重合图。 未处理的小鼠成纤维细胞不能被CDy1着色;经永生化诱导培养液处理的细 胞,我们称之为SMPC,能够被CDy1着色,标志其获得了“干性”。
细胞生长曲线绘制。实验方法如下:将永生化细胞SMPC(第二代和第 四代的小鼠胚胎成纤维细胞做对照)按照每孔2×104个细胞均匀接种于12孔 板中。每隔24小时用血球计数板计数,绘制细胞生长曲线,并计算出细胞 周期。结果见图3C和图3D。SMPC在起始细胞量相同的情况下,能够迅 速增殖,在24、48、72、96小时,细胞量显著高于对照(P<0.001)。经计 算得到的细胞周期可见,SMPC的细胞周期长度为16小时,较第二代和第 四代的小鼠胚胎成纤维细胞细胞周期长度:36小时和45小时显著缩短(P< 0.001)。
细胞周期组成分析。实验方法如下:将永生化细胞(小鼠胚胎成纤维细 胞和小鼠胚胎干细胞做对照)用0.25%胰酶消化后,用DMEM+10%FBS终止 后离心,弃上清,用培养液重悬后过400目细胞筛,经MoFlo XDP高速多 色流式细胞分选仪分析细胞周期。结果见图3E和图3F。永生化细胞SMPC 均一性增强,与小鼠胚胎干细胞相似。且永生化细胞SMPC较小鼠胚胎成 纤维细胞G0/G1期缩短,S期增长,与小鼠胚胎干细胞相似。
实施例三:增殖和衰老基因的检测
实验方法如下:收集永生化细胞SMPC(小鼠胚胎成纤维细胞作对照)。 (a)用试剂盒法提取RNA。向细胞沉淀中加入适量TRIzol裂解细胞,加入 1/5体积的三氯甲烷,涡旋混匀后冰上静置3分钟,10000g,4℃离心15分 钟。将上层水相转移到新的离心管中,加入等体积75%乙醇后一并转移到 吸附柱中,10000g离心15秒,弃收集管中液体,Wash Buffer I洗一次后, 在吸附膜上添加10μL DNase I+70μL Buffer RDD,室温孵育15分钟以消化 DNA,随后用350μL Wash Buffer I洗一次,500μL Wash Buffer II洗一次, 用RNase-FreeWater洗脱RNA。用紫外/可见光分光光度计测定浓度。(b)将 RNA反转录为cDNA。在2μg的RNA样品中加入随机引物、dNTP后于65℃ 加热5分钟以去除RNA高级结构,随后于冰上淬火3分钟使RNA模板和 随机引物结合。加入反转录酶、RNA酶抑制剂,于42℃反转录1小时得到cDNA。(c)进行实时荧光定量PCR检测增殖和衰老相关基因。
PCR反应体系如下:7.5μL SYBR Green Real Time PCR Master Mix,2μL Plussolution,0.5μL引物(上下游混合),0.5μL cDNA,4.5μL双蒸水。PCR 反应程序如下:扩增曲线:95℃,2min,95℃变性15秒,62℃退火15秒, 72℃延伸45秒,并在在延伸结束后检测荧光信号。熔解曲线:95℃变性1 分钟,57℃退火30秒,缓慢复性至95℃维持30秒。该实验在Agilent公司 MX3005P荧光实时定量PCR仪上完成,以Actb作为内参基因,结果用 △△Ct法处理。结果见图3G和图3H。永生化细胞SMPC增殖相关基因: Sox2,Srrt,Yap,β-catenin,Mki67,Pcna较小鼠胚胎成纤维细胞表达量升 高,而衰老相关基因:P19,P16ink4a,P15ink4b,Morf4l1,Elf5较小鼠胚 胎成纤维细胞表达量降低。
实施例四:小鼠成体原代肝细胞分离与体外扩增
Alb-Cre小鼠从邦耀生物引进,Cre重组酶只在表达白蛋白的成熟肝细 胞中表达;Rosa26/mTmG的小鼠从维通利华引进,是一种在Rosa26位点整 合一种红绿荧光报告系统的小鼠,正常情况下在细胞表达Tomato红色荧光 蛋白,在有cre重组的情况下,会变成表达绿色GFP荧光。Alb-Cre成年小 鼠与Rosa26/mTmG的小鼠杂交出生Alb-Cre×Rosa26/mTmG小鼠成熟的肝 细胞被标记成绿色,其它组织细胞表达红色。
Alb-Cre×Rosa26/mTmG成年小鼠颈椎脱臼处死,取出肝页,剪碎成小 块,用100倍体积的预冷PBS反复吹打洗涤,去除血细胞直至洗液无红色, 加入3-5倍体积的胶原酶IV(ThermoFisher,17104019,37摄氏度预热)在37℃ 培养箱消化30-40分钟,中间吹打2-3次,离心去除上清。加入3-5倍体积 的胰酶(Gibco,25300062)在37℃培养箱消化20分钟,加入2倍体积10% 血清终止,离心取上清,将细胞用小鼠肝细胞培养液(加入5微摩MyosinⅡ 抑制剂(-)-Blebbistatin)重悬,接种于铺有fibronectin的培养皿,一周后观察 有Alb表达的绿色肝细胞团,如图4A所示。小鼠肝细胞培养基包括: DMEM/F12(gibco,10565018),加入N2添加剂(100×,Gibco,17502048), B27添加剂(50×,Gibco,17504044),5%牛血清白蛋白(1000×,sigma,A8022), β-巯基乙醇(1000×,Gibco,21985023),GlutaMAX(200×,Gibco,35050-061), 非必须氨基酸(100×,Gibco,11140-050),1μg/mL胰岛素(Roche,11376497001),肝细胞生长因子(10ng/mL,R&D,294-HG-025),转化生长 因子beta抑制剂A83-01(5μM,stemgent,04-0014),糖原合成激酶3beta抑 制剂Chir99021(6μM,stemgent,04-0004-10),巨噬细胞刺激蛋白1和2抑 制剂XMU-MP-1(2-5μM,MCE,HY-100526)肝细胞生长因子4(10ng/mL, R&D,5846-f4-025)双抗)。
不加MyosinⅡ抑制剂(-)-Blebbistatin或(S)-(-)-Blebbistatin O-Benzoate,加入等体积DMSO做对照,分别培养传代传代3次(P3)、传代5次(P5)、传 代7次(P7),结果显示加入Myosin抑制剂(-)-Blebbistatin能显著促进 AlB-GFP阳性肝细胞长期扩增(体外传代至少20代),如图4B所示。此外, 结果还显示(-)-Blebbistatin衍生物(S)-(-)-Blebbistatin O-Benzoate对肝细胞 传代扩增也有类似的效果,处理之后肝细胞可以在体外传代20代以上。
实施例五:人胚胎肝细胞体外扩增
1、实验步骤
(1)包板鼠尾胶原(Thermo scientific,A1048301,3mg/mL)包被培养板 浓度为5μg/cm2,以24孔板为例,每孔的底面积为1.9cm2,则每孔需要 9.5μg(约3.2μl),取3.2μl鼠尾胶原溶于500μl 20mM冰醋酸,加入孔中,37 度细胞培养箱中孵育1小时,吸弃后,PBS洗3遍。
(2)人胚胎肝细胞复苏从液氮罐中取出人胚胎肝细胞(冻存日期为 2014年1月15日,冻存液为cell banker 2,冻存细胞数为2×107/管),迅速 放入37度水浴锅中,待溶化后立即吸入含有5mL肝细胞培养基(对照组)的 15mL离心管中,离心50g,4度,5分钟。弃上清,用500μl肝细胞培养基 重悬计数为1.16×106,则细胞复苏率为5.8%。
(3)人胚胎肝细胞接种接种密度为1×105/24孔板孔,分别加500μl肝 细胞培养基(对照组),肝细胞培养基包括:DMEM/F12(gibco,10565018), 加入N2添加剂(100×,Gibco,17502048),B27添加剂(50×,Gibco,17504044), 5%牛血清白蛋白(1000×,sigma,A8022),β-巯基乙醇(1000×,Gibco, 21985023),GlutaMAX(200×,Gibco,35050-061),非必须氨基酸(100×,Gibco, 11140-050),1μg/mL胰岛素(Roche,11376497001),肝细胞生长因子 (10ng/mL,R&D,294-HG-025),转化生长因子beta抑制剂A83-01(5μM, stemgent,04-0014),糖原合成激酶3beta抑制剂Chir99021(6μM,stemgent, 04-0004-10),巨噬细胞刺激蛋白1和2抑制剂XMU-MP-1(2-5μM,MCE,HY-100526),肝细胞生长因子4(10ng/mL,R&D,5846-f4-025)双抗)。含10μM 小分子(-)-Blebbistatin肝细胞培养基和含20μM小分子(-)-Blebbistatin肝细胞 培养基,接种24小时后每组分别取3孔消化下来细胞计数,计算得到贴壁 率。接种72小时后,每组分别消化3孔细胞并计数。72小时细胞数比24 小时细胞数,则可得到细胞数变化倍数。分别取每孔一部分细胞(细胞计数 的2/5)用于RNA提取检测人肝细胞相关基因表达。
(4)人胚胎肝细胞第一次传代细胞分别接种到鼠尾胶原包被的24孔 板中(如上所述),接种密度为原代培养72小时细胞数的3/5。每组3个复孔。 细胞培养72小时后,消化计数。该细胞数比接种时的细胞数,则可得到第 一次传代扩增的倍数。取每孔一部分细胞(细胞计数的2/5)用于RNA提取检 测人肝细胞相关基因表达。
(5)人胚胎肝细胞第二次传代细胞分别接种到鼠尾胶原包被的24孔 板中(如上所述),接种密度为第一次传代培养72小时细胞数的3/5。由于 control组第一次传代培养72小时后大部分细胞死亡,只剩一少部分细胞, 所以这些细胞全部接种。每2天换液,继续培养144小时(6天)后,细胞消 化计数,此时细胞数比接种时细胞数即为第二次传代扩增倍数。分别取每 孔细胞培养上清液用于检测人白蛋白浓度,一部分细胞(细胞计数的2/5)用于RNA提取检测人肝细胞相关基因表达。
2、结果
人胚胎肝细胞液氮冻存3年半后,复苏效率约为5.8%。如图5A和图 5B所示,经过小分子培养基传代(共3代)培养12天后,10μM小分子培养 基可使其扩增约22.1倍(SD=4.2),20μM小分子培养基可使其扩增约13.0 倍(SD=3.39)。此时,细胞形态仍然为典型的肝细胞形态,呈现出不规则的 多边形。然而,经对照组培养基传代培养后,由于在第一次传代培养后大 部分细胞死亡,剩下的小部分细胞经过培养后在12天时扩增倍数达58.3倍(SD=13.9),但此时细胞呈典型的肝细胞形态,细长扁平状。如图5C,实时 定量PCR检测人肝细胞特异的基因白蛋白(ALBUMIN)和甲胎蛋白(Alpha fetoprotein),结果显示,人肝细胞经10μM和20μM小分子培养基传代培养 12天后,仍然表达人肝细胞特异的基因,而control培养基传代12天后得 到的细胞检测到极低的白蛋白表达和检测不到甲胎蛋白基因表达,证明此 时的细胞已经不是肝细胞,和图5A和图5C的结果一致。
实施例六:成人肝细胞小分子扩增
1、实验步骤
(1)包板方法如上所述。
(2)成人肝细胞复苏及培养成人肝细胞(M00995-P Male human,BioreclamationIVT)从液氮罐中取出,迅速放入37度水浴锅中,待融化后加 入到37度预热的5mL肝细胞接种培养基(InVitroGRO CP Medium)中,计数 后,以9×104/孔接种于24孔板中,2-4小时肝细胞贴壁后,吸弃肝细胞接 种培养基,分别加入肝脏细胞培养对照培养基、10μm小分子培养基和20μm 小分子培养基。每2天换液。在第2天时通过照片估算细胞数。4天后20μm 小分子培养基组改成10μm小分子培养基培养。共培养6天时细胞计数。取 一部分细胞用于RNA提取检测人肝细胞特异基因的表达。
(3)成人肝细胞传代将上述对照组培养的肝细胞4.7×104和10μm小分 子培养基培养的肝细胞8×104分别重新接种到鼠尾胶原包被的24孔板中, 每两天换液,培养6天,拍照记录细胞生长状况。
(4)10μm小分子培养基扩增的成人肝细胞CYP1A2诱导3×105肝细胞接 种于鼠尾胶原包被的24孔板中,用10μm小分子培养基培养24小时后,换 成含有50μm奥美拉唑(Omeporazole)的10μm小分子培养基,对照组为含有 DMSO的10μm小分子培养基,48小时后,收集细胞检测CYP1A2基因的 表达。
2、结果
成人肝细胞接种后5小时贴壁效率类似,2天后,对照组、10μm小分 子组和20μm小分子组细胞均大量死亡。拍照并估算活细胞贴壁数 (2.53×104,SD=0.09)。而在4天时,小分子组细胞开始出现扩增克隆,而对 照组无明显扩增。此时,20μm培养基组换液用10μm小分子培养基(命名为 protocol#,即20μm培养4天,10μm培养两天)。继续培养两天后,小分子组细胞克隆进一步扩增,而对照组无明显变化(如图6A)。培养6天,细胞 数分别为对照组1.59×104(SD=0.28)、10μm组为6.47×104(SD=1.24),#组为 9.47×104(SD=0.98)(图6B)。用第6天细胞数比第2天细胞数即为细胞扩增倍 数,结果显示小分子对成人肝细胞具有明显的扩增作用(图6A和6B)。增殖 细胞核抗原基因(PCNA)的表达小分子组显著高于对照组,进一步证明小分 子对细胞增殖具有作用(图6C)。小分子扩增的成人肝细胞仍然表达人肝细 胞特异基因白蛋白(ALBUMIN)、甲胎蛋白(AFP)、CYP1A2、CYP3A4(图6D)。 10μm小分子培养基可以使人肝细胞传代培养,而对照培养基则不能使成人 肝细胞传代(图6E)。传代培养的成人肝细胞经奥美拉唑诱导后,可以提高 CYP1A2基因的表达,提示小分子扩增的肝细胞仍然具有功能(图6F)。
前面仅仅示出了本发明的原理,应理解,本发明的范围不预期限制在 本文所述的示例性方面,而应包括所有当前已知的和未来开发的等同物。 另外,应当指出,在不脱离本发明技术原理的前提下,还可以作出若干改 进和修改,这些改进和修改也应被视为本发明的范围。

Claims (10)

1.(-)-Blebbistatin或(-)-Blebbistatin O-Benzoate在构建生物人工肝中的应用。
2.(-)-Blebbistatin或(-)-Blebbistatin O-Benzoate在构建肝脏疾病模型中的应用。
3.一种诱导成纤维细胞转分化为脂肪细胞的培养基,其包括:
(-)-Blebbistatin或(-)-Blebbistatin O-Benzoate、BMP4、基础培养液、胎牛血清和脂肪诱导培养液。
4.如权利要求3所述的培养基,其中,所述基础培养液包括高糖DMEM、胎牛血清和双抗,和/或,所述脂肪诱导培养液包括N2B27培养液(DMEM/F12、Neurobasal的1:1混合物)、N2添加剂、B27添加剂、2%牛血清白蛋白、β-巯基乙醇、Glutamax、胰岛素和双抗,以及血清替代物。
5.如权利要求3或4任一项所述的培养基,其中,所述脂肪诱导培养液进一步包括A83-01和/或SB431542。
6.一种诱导成纤维细胞转化为永生化细胞的培养基,其包括:
(-)-Blebbistatin或(-)-Blebbistatin O-Benzoate、基础培养液、胎牛血清和永生化诱导培养液。
7.如权利要求6所述的培养基,其中,所述基础培养液包括高糖DMEM和双抗,和/或,所述永生化诱导培养液包括N2B27培养液(DMEM/F12、Neurobasal的1:1混合物)、N2添加剂、B27添加剂、2%牛血清白蛋白、β-巯基乙醇、GlutaMAX、胰岛素和双抗。
8.如权利要求6或7任一项所述的培养基,其中,所述永生化诱导培养液进一步包括KOSR、CHIR99021和A83-01中的一种或几种。
9.基因在制备诱导增殖或衰老的制剂中的应用,其特征在于,所述基因包括Sox2、Srrt、Yap、β-catenin、Mki67、Pcna、P19、P16ink4a、P15ink4b、Morf4l1、Elf5中的一种或几种;优选地,增殖相关基因包括Sox2、Srrt、Yap、β-catenin、Mki67、Pcna中的一种或几种;优选地,衰老相关基因包括P19、P16ink4a、P15ink4b、Morf4l1、Elf5中的一种或几种。
10.一种诱导肝细胞体外扩增的方法,其包括以下步骤:将肝细胞培养在培养基中,在培养基中加入(-)-Blebbistatin或(-)-Blebbistatin O-Benzoate,继续培养,从而诱导肝细胞体外扩增。
CN202111052331.6A 2018-01-29 2019-01-29 一种细胞诱导的方法 Pending CN113881624A (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
CN2018100835911 2018-01-29
CN201810083591.1A CN110093310B (zh) 2018-01-29 2018-01-29 一种将成纤维细胞转化为永生化细胞的方法及其应用
CN2018100831747 2018-01-29
CN201810083174.7A CN110093309B (zh) 2018-01-29 2018-01-29 一种诱导成纤维细胞转分化为脂肪细胞的方法
CN2018100835682 2018-01-29
CN201810083568.2A CN110093305B (zh) 2018-01-29 2018-01-29 一种诱导肝细胞体外扩增的方法
CN201980005643.6A CN111344392B (zh) 2018-01-29 2019-01-29 一种细胞诱导的方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201980005643.6A Division CN111344392B (zh) 2018-01-29 2019-01-29 一种细胞诱导的方法

Publications (1)

Publication Number Publication Date
CN113881624A true CN113881624A (zh) 2022-01-04

Family

ID=67395040

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202111052331.6A Pending CN113881624A (zh) 2018-01-29 2019-01-29 一种细胞诱导的方法
CN201980005643.6A Active CN111344392B (zh) 2018-01-29 2019-01-29 一种细胞诱导的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201980005643.6A Active CN111344392B (zh) 2018-01-29 2019-01-29 一种细胞诱导的方法

Country Status (5)

Country Link
US (1) US20210230550A1 (zh)
EP (1) EP3747991A4 (zh)
JP (2) JP7473209B2 (zh)
CN (2) CN113881624A (zh)
WO (1) WO2019144968A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115698263A (zh) * 2020-04-09 2023-02-03 青岛百洋智心科技有限公司 用于心肌细胞冻存的组合物
CN115678849A (zh) * 2021-07-30 2023-02-03 合肥中科普瑞昇生物医药科技有限公司 一种用于口腔癌类器官培养的培养基、及其培养方法和应用
CN115873797A (zh) * 2021-09-29 2023-03-31 北京干细胞与再生医学研究院 一种视网膜色素上皮细胞的扩增培养基及培养方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5902092B2 (ja) * 2009-10-19 2016-04-13 セルラー ダイナミクス インターナショナル, インコーポレイテッド 心筋細胞の生成
KR101874463B1 (ko) * 2009-10-31 2018-08-02 뉴 월드 레보러토리즈 인코포레이티드. 세포의 재프로그램화 방법 및 이의 용도
CA2806858C (en) * 2010-08-04 2021-06-15 Cellular Dynamics International, Inc. Reprogramming immortalized b cells
WO2012065067A2 (en) * 2010-11-12 2012-05-18 Georgetown University Immortalization of epithelial cells and methods of use
US9487752B2 (en) * 2011-03-30 2016-11-08 Cellular Dynamics International, Inc. Priming of pluripotent stem cells for neural differentiation
JP2014520551A (ja) 2011-07-11 2014-08-25 セルラー ダイナミクス インターナショナル, インコーポレイテッド 細胞のリプログラミング方法およびゲノムの改変方法
CN102940631B (zh) * 2012-11-02 2015-04-15 清华大学 Blebbistatin在促进干细胞存活和维持干细胞干性中的应用
CN104342401B (zh) * 2013-07-25 2017-04-05 中国科学院广州生物医药与健康研究院 利用确定的细胞因子组合促进成纤维细胞转分化为脂肪细胞
CN104372024A (zh) 2014-10-30 2015-02-25 西北农林科技大学 一种诱导牛成纤维细胞/成肌细胞转分化为脂肪细胞的方法
EP3307874A4 (en) 2015-06-12 2019-04-24 Agency For Science, Technology And Research DERIVATION OF HEPATIC STEM CELLS AND TYPES OF HEPATIC CELLS AND ASSOCIATED USES THEREOF
US20180258400A1 (en) 2015-09-15 2018-09-13 Agency For Science, Technology And Research (A*Star) Derivation of liver organoids from human pluripotent stem cells
CN105754935B (zh) 2016-04-07 2019-01-04 浙江大学 一种诱导成纤维细胞转分化为脂肪细胞的诱导培养基及其应用

Also Published As

Publication number Publication date
JP7473209B2 (ja) 2024-04-23
US20210230550A1 (en) 2021-07-29
WO2019144968A1 (zh) 2019-08-01
JP2021512643A (ja) 2021-05-20
JP2022166007A (ja) 2022-11-01
EP3747991A4 (en) 2022-01-19
CN111344392B (zh) 2021-07-30
CN111344392A (zh) 2020-06-26
JP7407469B2 (ja) 2024-01-04
EP3747991A1 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
LU500561B1 (en) In vitro construction method and use of liver organoids
JP4383896B2 (ja) 脈管形成性の始原細胞をインビトロで同定し、単離し、または分化させるための新規な方法
CA2921948C (en) Method for preparing pluripotent stem cells
CN111344392B (zh) 一种细胞诱导的方法
JP2005151907A (ja) 胎盤又は羊膜由来ヒト幹細胞及びその樹立方法並びに臓器への分化誘導方法
JP2005151907A5 (zh)
CN104988110A (zh) 脐带间充质干细胞转化为胰岛细胞的方法
CN109689858A (zh) 用于产生具有体内血管形成能力的中胚层和/或内皮集落形成细胞样细胞的方法
WO2017097007A1 (zh) 分化培养基及其在制备神经干细胞中的用途
CN104845932A (zh) 淫羊藿苷的新用途
CN111575227B (zh) 一种人源性糖尿病心肌病疾病模型的建立方法
CN104988111A (zh) 用于将uc-msc转化为胰岛细胞的诱导液及其应用
WO2023246644A1 (zh) 一种用于治疗肌萎缩侧索硬化症的脊髓祖细胞及其诱导分化方法和用途
Galli et al. Adult neural stem cells
CN108048390B (zh) 一种制备血管内皮细胞的方法及其专用试剂盒
CN110093305B (zh) 一种诱导肝细胞体外扩增的方法
CN107058225B (zh) 一种复合诱导培养基以及采用该培养基诱导脐带间充质干细胞成神经元样细胞的方法
KR101390613B1 (ko) Selenium을 이용한 인간 만능줄기세포의 혈액전구세포, 혈관전구세포, 내피세포 및 평활근세포로의 분화방법
KR102650805B1 (ko) 인간 만능 줄기세포로부터 제작된 3d 오가노이드를 해체하여 희소돌기아교세포를 다량 확보하는 분화방법
CN105073978B (zh) 利用植物干细胞或植物去分化干细胞的提取物诱导定制亚全能干细胞的方法以及利用该方法的方式制得的亚全能干细胞
CN110093310B (zh) 一种将成纤维细胞转化为永生化细胞的方法及其应用
CN105039239A (zh) 细胞转化诱导液及其应用
KR100683199B1 (ko) 신경전구세포를 콜린성 신경세포로 분화시키는 방법 및그에 사용되는 배지
JP6516280B2 (ja) iPS細胞の樹立方法および幹細胞の長期維持方法
KR102218303B1 (ko) 혈관 조직을 포함하는 오가노이드의 제조 방법 및 이의 용도

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination