CN113880565A - 微波毫米波铁氧体基片的制备方法 - Google Patents

微波毫米波铁氧体基片的制备方法 Download PDF

Info

Publication number
CN113880565A
CN113880565A CN202111319912.1A CN202111319912A CN113880565A CN 113880565 A CN113880565 A CN 113880565A CN 202111319912 A CN202111319912 A CN 202111319912A CN 113880565 A CN113880565 A CN 113880565A
Authority
CN
China
Prior art keywords
sample wafer
sample
casting
slurry
fired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111319912.1A
Other languages
English (en)
Inventor
罗现福
马毅龙
邵斌
陈登明
周新
司宇
石超
廖婉佑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Science and Technology
Original Assignee
Chongqing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Science and Technology filed Critical Chongqing University of Science and Technology
Priority to CN202111319912.1A priority Critical patent/CN113880565A/zh
Publication of CN113880565A publication Critical patent/CN113880565A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6342Polyvinylacetals, e.g. polyvinylbutyral [PVB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明公开了一种微波毫米波铁氧体基片的制备方法,首先将铁氧体粉料中加入溶剂、分散剂、粘接剂和增塑剂进行混浆,得到流延料浆;再流延成型,裁切得到待烧样片,最后将待烧样片置于保持机构烧制即得成品;保持机构包括具有烧制通孔的样片承台和样片压台,二者将待烧样片夹在中间。采用本发明的显著是,铁氧体基片厚度连续可调,不需要传统干压法的深磨、切削等加工,提高生产效率;成品表面平整,微观结构致密、气孔少、密度高,性能好,良品率高。

Description

微波毫米波铁氧体基片的制备方法
技术领域
本发明涉及磁性材料领域,具体涉及一种微波毫米波铁氧体基片的流延成型制备方法。
背景技术
微波毫米波铁氧体材料与器件是二十世纪五,六十年代发展起来的,经几十年的发展,已经成为通信设备和系统中不可缺少的元器件,广泛地使用在雷达、通信、电视、人造卫星、导弹系统、电子对抗系统及高能粒子加速器等民用和军事运用的各个方面。近年来,微波器件向小型化、微型化、片式化甚至一体化方向发展,比如片式叠层天线、片式双功器以及叠层铁氧体移相器等。
目前应用于环形器/隔离器的微波毫米波铁氧体基片主要采用干压或等静压等成型工艺制备,通过热压烧结,再对铁氧体块体材料进行深切磨削、抛光,镀膜,整个生产工艺过程繁琐复杂,成本较高。而且微波铁氧体材料硬度高,脆性强,属典型的难加工材料,生产加工效率极低。因此,开发新型高效的微波铁氧体基片制备工艺技术已迫在眉睫。流延成型是在无机粉料中加入溶剂、分散剂、粘结剂、增塑剂等成分,得到均匀分散的稳定料浆,在流延机上制得要求厚度薄膜的一种成型方法。该法设备简单、可连续操作、生产效率高、自动化水平高、工艺稳定、成型坯体性能的重复性和尺寸的一致性较高,坯体性能均一等优点,其更多的适用于薄膜材料的制备;对于厚度要求更高的片材,流延成型法的应用较少。
发明内容
有鉴于此,本发明提供了一种微波毫米波铁氧体基片的制备方法,其技术方案如下:
一种微波毫米波铁氧体基片的制备方法,其关键在于按以下步骤进行:
步骤一、将钇铁石榴石研磨为铁氧体粉料;
步骤二、向铁氧体粉料中加入溶剂和分散剂,球磨分散后再加入粘接剂和增塑剂进行混浆,最后经除泡得到流延料浆;
步骤三、将所述流延料浆倒入流延机进行流延成型,得到流延生带;
步骤四、将所述流延生带干燥后裁切为待烧样片,并将所述待烧样片二次干燥;
步骤五、将所述待烧样片置于保持机构内,再将其在1000-1800℃条件下烧制2-8h,得成品;
所述保持机构包括样片承台和样片压台,所述待烧样片水平放置在所述样片承台的上表面,所述样片压台放置在所述待烧样片的上表面,所述样片承台和样片压台将所述待烧样片约束,所述样片承台和样片压台上对应所述待烧样片分别设有烧制通孔。
附图说明
图1为流延生带的状态图;
图2为待烧样片的状态图;
图3为实施例2得到的成品的微观结构图;
图4为实施例2得到的成品的晶相组成图;
图5为实施例11、12烧制得到的成品状态图;
图6为实施例13、14烧制得到的成品状态图;
图7为实施例15、16烧制得到的成品状态图;
图8为实施例11-16烧制得到的成品的相对密度图。
具体实施方式
以下结合实施例和附图对本发明作进一步说明。
实施例1:
一种微波毫米波铁氧体基片的制备方法,其按以下步骤进行:
步骤一、按微波毫米波铁氧体的组成分别称取氧化钇和氧化铁,将二者置于球磨罐中,加入不锈钢球、乙醇进行一次球磨10-20h,得一次料浆;
再将所述一次料浆于100℃下烘干,再将其置于1100-1300℃下预烧0.5-6h,获得钇铁石榴石;
之后将所述钇铁石榴石破碎,并再次置于球磨罐中,加入不锈钢球、乙醇进行二次球磨8-15h,得二次料浆;
最后将所述二次料浆烘干,过筛得到铁氧体粉料;
步骤二、首先将所述铁氧体粉料置于尼龙罐中,加入乙醇、异丙醇和二甲苯的一种或多种作为溶剂,以蓖麻油为所述分散剂,再投入不锈钢球,在行星式球磨机上球磨分散4-12h;
之后再向其加入聚乙烯醇缩丁醛作为粘结剂,邻苯二甲酸二丁酯作为增塑剂,继续混浆12-36h;
最后取出置于(-0.05)Mpa—(-0.09)Mpa真空度下搅拌除泡0.5-2h,得流延料浆;
按重量百分数计,在所述流延料浆中,所述铁氧体粉料的占比为65-70%,所述溶剂为17-25%,所述分散剂1-2%,所述粘接剂5-8%,所述增塑剂3-6%;
步骤三、将所述流延料浆倒入流延机的料槽中,选用聚对苯二甲酸乙二醇酯为流延机载带,设置流延机的刮刀刀口间隙为0.5-3mm,走带速度10-50cm/min,流延成型得到流延生带;
步骤四、将所述流延生带在空气中一次干燥12-24h,再将其从PET载带上剥离,裁切为待烧样片,并置于搪瓷托盘中于80-140℃下二次干燥12-24h;
步骤五、将二次干燥后的所述待烧样片置于保持机构内,再将其在1000-1800℃条件下烧制2-8h,得成品。
所述保持机构包括样片承台和样片压台,所述待烧样片水平放置在所述样片承台的上表面,所述样片压台放置在所述待烧样片的上表面,所述样片承台和样片压台将所述待烧样片约束,所述样片承台和样片压台上对应所述待烧样片分别设有烧制通孔;烧制通孔的作用是在烧制时作为待烧样片内部气体的泄出通道;
所述样片承台和所述样片压台均为格栅,所述样片承台和所述样片压台具有大小均匀一致的方形孔洞,所述方形孔洞的规格为0.5cm*0.5cm,所述方形孔洞之间具有均匀一致的间距,其间距为3mm,所述样片压台的下表面与待烧样片的上表面接触。所述样片压台重量过大时,待烧样片在烧制表面会破裂,甚至直接压碎待烧样片;而所述样片压台重量过小时,对待烧样片的约束不够,待烧样片在烧制时会发生翘曲;因而需控样片压台对待烧样片的压力在一定范围;具体的:需要控制在样片压台与待烧样片接触面上,待烧样片单位面积受所述样片压台的重量为0.4-0.6g/cm2
实施例2:
一种微波毫米波铁氧体基片的制备方法,其按以下步骤进行:
步骤一、按微波毫米波铁氧体的组成分别称取氧化钇和氧化铁,将二者置于球磨罐中,加入不锈钢球、乙醇进行一次球磨18h,得一次料浆;
再将所述一次料浆于100℃下烘干,再将其置于1200℃下预烧3h,获得钇铁石榴石;
之后将所述钇铁石榴石破碎,并再次置于球磨罐中,加入不锈钢球、乙醇进行二次球磨12h,得二次料浆;
最后将所述二次料浆烘干,过筛得到铁氧体粉料;
步骤二、首先将所述铁氧体粉料置于尼龙罐中,加入乙醇、异丙醇和二甲苯作为溶剂,以蓖麻油为所述分散剂,再投入不锈钢球,在行星式球磨机上球磨分散7h;
之后再向其加入聚乙烯醇缩丁醛作为粘结剂,邻苯二甲酸二丁酯作为增塑剂,继续混浆18h;
最后取出置于-0.09Mpa真空度下搅拌除泡0.5h,得流延料浆;
按重量百分数计,在所述流延料浆中,所述铁氧体粉料的占比为69%,所述溶剂为20%,所述分散剂2%,所述粘接剂6%,所述增塑剂3%;
步骤三、将所述流延料浆倒入流延机的料槽中,选用聚对苯二甲酸乙二醇酯为流延机载带,设置流延机的刮刀刀口间隙为2mm,走带速度40cm/min,流延成型得到流延生带,流延生带状态如图1所示;
步骤四、将所述流延生带在空气中一次干燥18h,再将其从PET载带上剥离,裁切为70mm×70mm的正方形待烧样片,并置于搪瓷托盘中于100℃下二次干燥19h,待烧样片的状态图2所示;
步骤五、为避免待烧样片在烧制时出现翘曲和表面破裂的问题,将二次干燥后的所述待烧样片置于保持机构内,再将其在1500℃条件下烧制6h,得成品。
所述保持机构包括样片承台和样片压台,所述待烧样片水平放置在所述样片承台的上表面,所述样片压台放置在所述待烧样片的上表面,所述样片承台和样片压台将所述待烧样片约束,所述样片承台和样片压台上对应所述待烧样片分别设有烧制通孔;
所述样片承台和所述样片压台具有大小均匀一致的方形孔洞,所述方形孔洞的规格为0.5cm*0.5cm,所述方形孔洞之间具有均匀一致的间距,其间距为3mm,方形孔洞即形成所述烧制通孔,所述样片压台的下表面与待烧样片的上表面接触;需要控制在样片压台与待烧样片接触面上,待烧样片单位面积受所述样片压台的重量为0.5g/cm2,其得到的成品的微观结构如图3所示,其晶相组成如图4所示。
实施例3-6:
实施例3-6与实施例2的区别仅在于流延料浆中的铁氧体粉料、溶剂、分散剂、粘接剂、增塑剂的质量百分含量不同,具体见表1:
表1、实施例3-6流延料浆组成(单位:wt%)
Figure BDA0003345216780000061
分别测试实施例3、4、5、6得到成品的性能,结果见表2:
表2、实施例3-6成品性能
Figure BDA0003345216780000062
从表2可以看出,实施例6采用乙醇、异丙醇和二甲苯同时作为溶剂,其成品的微观结构致密、气孔少、密度高,性能更好。
实施例7-10:
实施例7-10与实施例6的区别仅在于刮刀刀口间隙为和走带速度不同,其得到的流延生带和成品厚度见表3:
表3、实施例7-10流延生带和成品厚度
Figure BDA0003345216780000071
实施例11-16:
实施例11-16与实施例6的区别仅在于:在样片压台与待烧样片接触面上,待烧样片单位面积受所述样片压台的重量的不同:
实施例11-16中,在样片压台与待烧样片接触面上,待烧样片单位面积受所述样片压台的重量依次为:0.1g/cm2、0.2g/cm2、0.4g/cm2、0.6g/cm2、0.8g/cm2、1g/cm2
实施例11、12烧制得到的成品的状态如图5所示,实施例13、14烧制得到的成品的状态如图6所示,实施例15、16烧制得到的成品的状态如图7所示,实施例11-16烧制得到的成品的相对密度见图8。
与现有技术相比,本发明的有益效果:采用本发明制备的铁氧体基片厚度连续可调,不需要传统干压法的深磨、切削等加工,提高生产效率;成品表面平整,微观结构致密、气孔少、密度高,性能好,良品率高。
最后需要说明的是,上述描述仅仅为本发明的优选实施例,本领域的普通技术人员在本发明的启示下,在不违背本发明宗旨及权利要求的前提下,可以做出多种类似的表示,这样的变换均落入本发明的保护范围之内。

Claims (9)

1.一种微波毫米波铁氧体基片的制备方法,其特征在于按以下步骤进行:
步骤一、将钇铁石榴石研磨为铁氧体粉料;
步骤二、向铁氧体粉料中加入溶剂和分散剂,球磨分散后再加入粘接剂和增塑剂进行混浆,最后经除泡得到流延料浆;
步骤三、将所述流延料浆倒入流延机进行流延成型,得到流延生带;
步骤四、将所述流延生带干燥后裁切为待烧样片,并将所述待烧样片二次干燥;
步骤五、将所述待烧样片置于保持机构内,再将其在1000-1800℃条件下烧制2-8h,得成品;
所述保持机构包括样片承台和样片压台,所述待烧样片水平放置在所述样片承台的上表面,所述样片压台放置在所述待烧样片的上表面,所述样片承台和样片压台将所述待烧样片约束,所述样片承台和样片压台上对应所述待烧样片分别设有烧制通孔。
2.根据权利要求1所述的微波毫米波铁氧体基片的制备方法,其特征在于按以下步骤进行:按重量百分数计,在所述流延料浆中,所述铁氧体粉料的占比为65-70%,所述溶剂为17-25%,所述分散剂1-2%,所述粘接剂5-8%,所述增塑剂3-6%。
3.根据权利要求1或2所述的微波毫米波铁氧体基片的制备方法,其特征在于所述铁氧体粉料按以下制备方法得到:
步骤1.1、按微波毫米波铁氧体的组成分别称取氧化钇和氧化铁,将二者置于球磨罐中,加入不锈钢球、乙醇进行一次球磨10-20h,得一次料浆;
步骤1.2、将所述一次料浆于100℃下烘干,再将其置于1100-1300℃下预烧0.5-6h,获得所述钇铁石榴石;
步骤1.3、将所述钇铁石榴石破碎,并再次置于球磨罐中,加入不锈钢球、乙醇进行二次球磨8-15h,得二次料浆;
步骤1.4、将所述二次料浆烘干,过筛得到所述铁氧体粉料。
4.根据权利要求1或2所述的微波毫米波铁氧体基片的制备方法,其特征在于:在所述步骤二中,首先将所述铁氧体粉料置于尼龙罐中,加入乙醇、异丙醇和二甲苯的一种或多种作为所述溶剂,以蓖麻油为所述分散剂,再投入不锈钢球,在行星式球磨机上球磨分散4-12h;
之后再向其加入聚乙烯醇缩丁醛作为粘结剂,邻苯二甲酸二丁酯作为增塑剂,继续混浆12-36h;最后取出置于(-0.05)Mpa—(-0.09)Mpa真空度下搅拌除泡0.5-2h,得所述流延料浆。
5.根据权利要求1或2所述的微波毫米波铁氧体基片的制备方法,其特征在于:所述步骤三中,将所述流延料浆倒入流延机的料槽中,选用聚对苯二甲酸乙二醇酯为流延机载带,设置流延机的刮刀刀口间隙为0.5-3mm,走带速度10-50cm/min,流延成型得到所述流延生带。
6.根据权利要求1或2所述的微波毫米波铁氧体基片的制备方法,其特征在于:所述步骤四中,将所述流延生带在空气中一次干燥12-24h,再将其从PET载带上剥离,裁切为待烧样片,并置于搪瓷托盘中于80-140℃下二次干燥12-24h。
7.根据权利要求1或2所述的微波毫米波铁氧体基片的制备方法,其特征在于:所述步骤五中,将二次干燥后的所述待烧样片置于保持机构内,再将其在1450-1650℃条件下烧制2-8h,得成品。
8.根据权利要求4所述的微波毫米波铁氧体基片的制备方法,其特征在于:所述步骤二中,将乙醇、异丙醇和二甲苯三者混合作为所述溶剂。
9.根据权利要求1或2所述的微波毫米波铁氧体基片的制备方法,其特征在于:所述步骤五中,控制待烧样片受所述样片压台的重量为0.4-0.6g/cm2
CN202111319912.1A 2021-11-09 2021-11-09 微波毫米波铁氧体基片的制备方法 Pending CN113880565A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111319912.1A CN113880565A (zh) 2021-11-09 2021-11-09 微波毫米波铁氧体基片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111319912.1A CN113880565A (zh) 2021-11-09 2021-11-09 微波毫米波铁氧体基片的制备方法

Publications (1)

Publication Number Publication Date
CN113880565A true CN113880565A (zh) 2022-01-04

Family

ID=79016904

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111319912.1A Pending CN113880565A (zh) 2021-11-09 2021-11-09 微波毫米波铁氧体基片的制备方法

Country Status (1)

Country Link
CN (1) CN113880565A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040164269A1 (en) * 2003-02-25 2004-08-26 Chaby Hsu Low temperature co-fired ferrite-ceramic composite and the process for manufacturing it
CN102582143A (zh) * 2012-02-13 2012-07-18 西南应用磁学研究所 低温磁瓷共烧复合基材及制备方法
CN103265274A (zh) * 2013-05-15 2013-08-28 江粉磁材(武汉)技术研发有限公司 一种铁氧体噪声抑制片的制备方法
CN104961471A (zh) * 2015-07-03 2015-10-07 深圳市固电电子有限公司 超薄叠层片式电感的流延膜浆料及流延膜的制作方法
CN110511039A (zh) * 2019-09-18 2019-11-29 横店集团东磁股份有限公司 一种磁片及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040164269A1 (en) * 2003-02-25 2004-08-26 Chaby Hsu Low temperature co-fired ferrite-ceramic composite and the process for manufacturing it
CN102582143A (zh) * 2012-02-13 2012-07-18 西南应用磁学研究所 低温磁瓷共烧复合基材及制备方法
CN103265274A (zh) * 2013-05-15 2013-08-28 江粉磁材(武汉)技术研发有限公司 一种铁氧体噪声抑制片的制备方法
CN104961471A (zh) * 2015-07-03 2015-10-07 深圳市固电电子有限公司 超薄叠层片式电感的流延膜浆料及流延膜的制作方法
CN110511039A (zh) * 2019-09-18 2019-11-29 横店集团东磁股份有限公司 一种磁片及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
XIANFU LUO ET AL.: "《Tape casting and characterization of yttrium iron garnet ferrite thickfilm formicrowave substrate application》", 《CERAMICS INTERNATIONAL》 *
王科等: "非水基流延法制备Y_3Fe_(4.85)O_(12)铁氧体基片", 《人工晶体学报》 *
王超等: "《陶瓷成型技术》", 15 June 2012 *

Similar Documents

Publication Publication Date Title
CN113200747B (zh) 一种低温烧结的氮化铝陶瓷材料、氮化铝流延浆料及应用
Ba et al. Comparison of aqueous-and non-aqueous-based tape casting for preparing YAG transparent ceramics
CN111747756B (zh) 一种氮化物陶瓷流延浆料及其制备的氮化物陶瓷基片
US3819785A (en) Fine-grain alumina bodies
CN102180674B (zh) 一种反应烧结SiC陶瓷的制备方法
CN112608154A (zh) 一种氮化硅陶瓷浆料及其制备方法和应用
CN110483044B (zh) 一种高q值微波介质陶瓷与铝超低温共烧方法及高q值微波介质陶瓷制备方法
CN115231903B (zh) 一种大尺寸高纯陶瓷基板的制备工艺
CN112723863A (zh) 一种高世代tft级细晶粒ito靶材的制造方法
CN113213911B (zh) 一种微波介质陶瓷材料及其制备方法
US5711833A (en) Process for the production of thin walled ceramic structures
CN106830948A (zh) 基于聚碳酸亚丙酯粘结剂的陶瓷流延浆料及其制备方法和应用
CN110655401A (zh) 氧化锆陶瓷材料、氧化锆陶瓷结构件及其制备方法
CN108863336B (zh) 一种镍系微波铁氧体基片材料及其制备方法
CN109928753A (zh) 一种低介电常数硅基微波介质陶瓷材料及其制备方法
CN107235711A (zh) 温度稳定型锑酸镁锂基微波介质复合陶瓷及其制备方法
CN113880565A (zh) 微波毫米波铁氧体基片的制备方法
CN106699192B (zh) 一种功能陶瓷凝胶流延浆料及其制备方法
US10497638B2 (en) Ceramic wafer and the manufacturing method thereof
CN103094694B (zh) 一种超材料介质基板及其加工方法
CN114751754B (zh) 一种氮化硅陶瓷基板素坯的制备方法
CN116396069A (zh) 一种非磁场取向的织构化六角铁氧体材料的制备方法
CN105884351B (zh) 一种微波介质陶瓷及其制备方法
CN111943670B (zh) LiWVO6-K2MoO4基复合陶瓷微波材料及其制备方法
CN114180949A (zh) 陶瓷材料及其制备方法、陶瓷烧结体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220104

WD01 Invention patent application deemed withdrawn after publication