CN113845095B - 一种基于超声喷雾热解制备的二硒化钼纳米片及其制备方法及应用 - Google Patents

一种基于超声喷雾热解制备的二硒化钼纳米片及其制备方法及应用 Download PDF

Info

Publication number
CN113845095B
CN113845095B CN202111143795.8A CN202111143795A CN113845095B CN 113845095 B CN113845095 B CN 113845095B CN 202111143795 A CN202111143795 A CN 202111143795A CN 113845095 B CN113845095 B CN 113845095B
Authority
CN
China
Prior art keywords
molybdenum diselenide
spray pyrolysis
ultrasonic spray
ultrasonic
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111143795.8A
Other languages
English (en)
Other versions
CN113845095A (zh
Inventor
王溦
欧阳杰
侯朝辉
李丽芩
陈俊宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Institute of Science and Technology
Original Assignee
Hunan Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Institute of Science and Technology filed Critical Hunan Institute of Science and Technology
Priority to CN202111143795.8A priority Critical patent/CN113845095B/zh
Publication of CN113845095A publication Critical patent/CN113845095A/zh
Application granted granted Critical
Publication of CN113845095B publication Critical patent/CN113845095B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/78Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by stacking-plane distances or stacking sequences
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/17Nanostrips, nanoribbons or nanobelts, i.e. solid nanofibres with two significantly differing dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明属于纳米能源材料的制备技术领域,公开了一种基于超声喷雾热解制备的二硒化钼纳米片及其制备方法及应用。本发明所涉及的二硒化钼纳米片具有团球状、低层数、大层间距的特点,作为锂离子电池负极材料,在200 mA/g的电流密度下,具有较高的放电比容量,并能保持良好的循环稳定性。所述方法为:将钼酸盐与六亚甲基四胺在溶剂中充分溶解;所得前驱体溶液放置于超声雾化室内,进行超声雾化,通过载气将其带入高温区迅速热解;将获得的超声喷雾热解前驱体与硒粉同置于管式炉内,在惰性气体保护下进行高温煅烧硒化,获得最终产物。该方法操作简单、可重复性高、成本低、产量大。

Description

一种基于超声喷雾热解制备的二硒化钼纳米片及其制备方法 及应用
技术领域
本发明涉及纳米能源材料制备技术领域,尤其涉及一种基于超声喷雾热解制备的二硒化钼纳米片及其制备方法及运用。
背景技术
离子电池是目前解决能源问题的有效途径,其中锂离子电池以其高容量、低自放电率以及环境友好等优势,已广泛应用于国民生产生活中。但随着社会需求不断上升,目前使用较多的石墨负极,由于其容量相对较低的问题,成为制约锂离子发展的瓶颈之一。
与石墨负极相比,过渡金属二硫属材料(MX2,X=S、Se)具有与石墨类似的层状结构,且其比容量更高。其中二硒化钼的层状结构和电荷分布较优,在储能过程中可同时展现出嵌入与脱出式材料和相转变式材料的优势,是锂离子电池负极材料的研究热点。但相比石墨负极材料,二硒化钼的循环稳定性依旧有所不足,目前的研究主要是针对二硒化钼严重的体积膨胀问题,制备具有特殊结构的硒化钼材料,使其具有更高的比表面、更多的体积缓冲空间,进而提升材料的循环稳定性能。目前制备硒化钼材料的方法主要是钼酸盐水热法或水热-煅烧法,以硼氢化钠或水合肼提供强还原性环境,同时引入柠檬酸或葡萄糖等碳源。
授权公告号为:CN 106669763 B名称为一种氮掺杂碳包覆纳米花状MoSe2复合材料及制备与应用,公开了一种二硒化钼材料的制备方法,但是该方法使用强还原性原料硼氢化钠以及压力设备高压反应釜,制备过程繁琐,且对环境造成较大污染。因此寻找新方法制备具有优异储锂特性的二硒化钼材料,对于提升电池设备的性能,降低设备成本等方面具有重要意义。
本发明为解决上述技术问题,提供了一种新的技术方案制备二硒化钼材料,所得材料具有显著的优异储锂性能,尤其涉及一种基于超声喷雾热解制备的二硒化钼纳米片及其制备方法及应用。
发明内容
本发明的主要目的在于克服现有技术中的不足,提供一种基于超声喷雾热解制备的二硒化钼纳米片及其制备方法及应用。该材料具有团球状、低层数、大层间距的特点,并且制备方法简单、环境友好,在锂离子电池负极方面有良好的应用前景。
本发明为实现其技术目的所采用的技术方案是:一种基于超声喷雾热解制备的二硒化钼纳米片,该材料具有团球状可以缓冲储锂时的体积膨胀,低层数可以提供更多的电化学反应活性位点,大层间距利于锂离子在材料体相内部扩散。具体是以钼酸盐和六亚甲基四胺为原料,利用超声喷雾形成团球状结构,同时在热解时利用六亚甲基四胺提供还原性环境,将钼元素还原为四价,易于后续硒化处理。随后在惰性气氛下,用硒粉将喷雾热解所得煅烧前驱体进行硒化,获得具有团球状结构(直径500 nm ~ 1 μm),且层数较低(5~10层),层间距较大(超过0.7 nm)的二硒化钼纳米片。其中:所述钼酸盐和六亚甲基四胺的物质的量比为1:1~1:5;煅烧前驱体和硒粉模板的质量比为1:5~1:20。
一种如上所述的基于超声喷雾热解制备的二硒化钼纳米片的制备方法,方法包括以下步骤:
步骤1:分别称取钼酸盐与六亚甲基四胺,在溶剂中充分溶解,将混合均匀的前驱体溶液放置于超声喷雾热解系统的超声雾化室内,设置雾化功率、载气流速以及热解温度进行超声喷雾热解,得到煅烧前驱体;
步骤2:将步骤1获得的煅烧前驱体与硒粉一同进行高温煅烧,煅烧气氛为氩氢气气氛,获得最终产物二硒化钼纳米片。
优选地,所述钼酸盐为钼酸钠或钼酸铵,钼酸钠或钼酸铵煅烧后不会引入其他元素带来的杂质。
优选地,步骤1中所述钼酸盐与所述六亚甲基四胺的物质的量比为1:1~1:5,六亚甲基四胺可以在热解过程中提供还原性环境,利于后续硒化。
优选地,步骤1中所述溶剂为去离子水或氧化石墨烯水溶液,所述钼酸盐与六亚甲基四胺均可溶于水,若使用氧化石墨烯水溶液作为溶剂可以进一步提高产物的导电性。
优选地,步骤2中超声喷雾雾化功率为10~15 W,载气为空气,流速为5~10 L/min,热解温度为400~800 ℃,使雾化液滴在空气氛围下迅速高温热解,同时保留雾化时的团球状结构。
优选地,所述步骤2中所述煅烧前驱体与所述硒粉的质量比为1:5~1:20,使前驱体能够完全硒化。
优选地,高温煅烧的顺序为升温至300~500 ℃,保温2~4 h,升温速率为3~5 ℃/min。
本发明还提供了一种锂电池负极材料的制备方法,运用上述方法制备得到的二硒化钼纳米片,还包括以下步骤:
步骤1:将二硒化钼纳米片涂布于铜箔上作为电极片;
步骤2:将该电极作为工作极片,将该电极与锂片以及锂电常规电解液、隔膜组装纽扣电池(CR 2025);
步骤3:在电流密度为200 mA/g下步骤2所得的纽扣电池进行长循环测试,电压窗口设置为0.01~3 V。
与现有技术相比,本发明具有以下有益效果:该方案采用超声喷雾热解工艺,再通过简单的高温煅烧硒化得到二硒化钼纳米片,减去了现有技术方案中的强还原性反应条件,实现了环境友好;不使用高压反应设备,实现了操作简单;材料结构独特,喷雾热解过程造就的团球状结构可以提供体积缓冲空间,低层数可以暴露出更多的活性位点,大层间距允许外来锂离子在材料体相内嵌入和脱嵌,从而提升电池负极性能。该方法有利于开拓电池负极技术的应用领域,尤其在锂离子电池方面具有广大的市场前景。
附图说明
图1是实施例一制得的二硒化钼纳米片的XRD检测示意图。
图2是实施例二制得的二硒化钼纳米片的XRD检测示意图。
图3是实施例一制得的二硒化钼纳米片的扫描电镜SEM检测示意图。
图4是实施例二制得的二硒化钼纳米片的扫描电镜SEM检测示意图。
图5是实施例一制得的二硒化钼纳米片的高倍透射电镜HRTEM检测示意图。
图6是实施例二制得的二硒化钼纳米片的高倍透射电镜HRTEM检测示意图。
图7是实施例二制得的二硒化钼纳米片的锂离子电池充放电循环测试示意图。
具体实施方式
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位,以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本发明的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
为使本发明的目的、技术方案和优点更加清楚明了,下面通过附图及实施例,对本发明进行进一步详细说明。但是应该理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
一种基于超声喷雾热解制备的二硒化钼纳米片的制备方法,以钼酸盐和六亚甲基四胺为原料,采用超声喷雾热解和高温煅烧相结合的方法,制成二硒化钼纳米片,本方法获得的二硒化钼纳米片具有团球状结构(直径500 nm ~ 1 μm),且层数较低(5~10层),层间距较大(超过0.7 nm)的二硒化钼纳米片。
制备方法实施例一:
(1)称取0.0025 mol钼酸铵和0.005 mol六亚甲基四胺,在100 ml的去离子水中超声充分溶解。将得到的溶液加入到超声雾化室中,设置雾化功率10 W、载气流速10 L/min以及热解温度400 ℃进行超声喷雾热解,得到煅烧前驱体。
(2)将步骤(1)得到煅烧前驱体与硒粉按质量比1:5,置于管式炉中在氩氢气氛围下煅烧,先升温至300 ℃,保温2 h,升温速率为3 ℃/min,制成二硒化钼纳米片。
制备方法实施例二:
(1)称取0.00025 mol钼酸铵和0.00075 mol六亚甲基四胺,加入100 ml的0.5 mg/ml的氧化石墨烯水溶液中超声充分溶解。将得到的分散溶液加入到超声雾化室中,设置雾化功率15 W、载气流速5 L/min以及热解温度600 ℃进行超声喷雾热解,得到煅烧前驱体。
(2)将步骤(1)得到煅烧前驱体与硒粉按质量比1:10,置于管式炉中在氩氢气氛围下煅烧,升温至400 ℃,保温4 h,升温速率为3 ℃/min,制成二硒化钼纳米片。
制备方法实施例三:
(1)称取0.00025 mol钼酸铵和0.00025 mol六亚甲基四胺,加入100 ml的0.5 mg/ml的氧化石墨烯水溶液中超声充分溶解。将得到的分散溶液加入到超声雾化室中,设置雾化功率15 W、载气流速5 L/min以及热解温度600 ℃进行超声喷雾热解,得到煅烧前驱体。
(2)将步骤(1)得到煅烧前驱体与硒粉按质量比1:5,置于管式炉中在氩氢气氛围下煅烧,升温至400 ℃,保温3 h,升温速率为3 ℃/min,制成二硒化钼纳米片。
制备方法实施例四:
(1)称取0.00025 mol钼酸铵和0.00125 mol六亚甲基四胺,加入100 ml的0.5 mg/ml的氧化石墨烯水溶液中超声充分溶解。将得到的分散溶液加入到超声雾化室中,设置雾化功率15 W、载气流速5 L/min以及热解温度600 ℃进行超声喷雾热解,得到煅烧前驱体。
(2)将步骤(1)得到煅烧前驱体与硒粉按质量比1:20,置于管式炉中在氩氢气氛围下煅烧,升温至400 ℃,保温4 h,升温速率为3 ℃/min,制成二硒化钼纳米片。
上述方法制备得到二硒化钼纳米片,对材料进行的相关表征如下:
参阅图1,如图所示,XRD检测表明实施例一制得的二硒化钼纳米片属六方晶系。
参阅图2,如图所示,XRD检测表明实施例二制得的二硒化钼纳米片属六方晶系。
参阅图3,如图所示,扫描电镜SEM检测表明,实施例一制得的二硒化钼呈现微球状团球结构,主要由二硒化钼纳米片组成,存在大量狭缝孔隙,使得材料具有充裕的体积膨胀缓冲空间。
参阅图4,如图所示,扫描电镜SEM检测表明,实施例二制得的二硒化钼呈现褶皱状团球结构,主要由二硒化钼纳米片和还原氧化石墨烯共同组成,可以提供较高比表面和狭缝孔隙,使得材料具有充裕的体积膨胀缓冲空间。
参阅图5,如图所示,高倍透射电镜HRTEM检测表明,实施例一制得的二硒化钼纳米片明显为层状结构,且层数较低仅为5层左右。对于层状结构的(002)晶面而言其晶面距有明显的增宽,从理论的0.646 nm增至0.73 nm。
参阅图6,如图所示,高倍透射电镜HRTEM检测表明,实施例二制得的二硒化钼纳米片保持层状结构,与还原氧化石墨烯碳层有较好的贴合,并且二硒化钼层数较低仅为10层左右。对于层状结构的(002)晶面而言,其晶面距由理论的0.646 nm增宽至0.71 nm。
本发明的二硒化钼纳米片材料可应用于电化学能量转化与储存等多种领域,主要包括锂离子电池。
应用实施例二:
使用该二硒化钼纳米片作为锂离子电池负极材料:以长循环为测试手段评价该材料的电池循环稳定性。实验条件设置为:(1)将该材料涂布于铜箔上;(2)将该电极作为工作极片,与锂片以及锂电常规电解液、隔膜组装纽扣电池(CR 2025);(3)在电流密度为200mA/g下对材料进行长循环测试,电压窗口设置为0.01~3 V。
参阅图7,如图所示为使用该二硒化钼纳米片作为锂电负极进行长循环测试的结果,曲线1为该材料的恒流充电曲线,曲线2为该材料的放电曲线,曲线3为该材料的库伦效率曲线,可以看出该材料具有较高的循环可逆容量,以及稳定的循环性能。
本发明的制备方法减去了传统的强还原性和压力设备的反应条件,利用喷雾热解与高温煅烧的工艺制备得到了具有团球状、低层数、大层间距的二硒化钼纳米片。这种方法具有环境友好、操作简单的优点,所得材料具有更高的比表面积、体积缓冲空间,暴露出更多的活性位点,使整个材料展现较高的储锂性能。该二硒化钼纳米片主要是用在锂离子电池负极材料中。
需要说明的是,尽管在本文中已经对上述各实施例进行了描述,但并非因此限制本发明的专利保护范围。因此,基于本发明的创新理念,对本文所述实施例进行的变更和修改,或利用本发明说明书及附图内容所作的等效结构或等效流程变换,直接或间接地将以上技术方案运用在其他相关的技术领域,均包括在本发明专利的保护范围之内。

Claims (5)

1.一种基于超声喷雾热解制备的二硒化钼纳米片,其特征在于:
所述二硒化钼纳米片具有如下结构:直径500 nm ~ 1 μm的团球状、5~10层的低层数、层距超过0.7 nm的大层间距;
方法包括以下步骤:
步骤1:分别称取钼酸盐与六亚甲基四胺,在溶剂中充分溶解,将混合均匀后得到的溶液作为前驱体溶液放置于超声喷雾热解系统的超声雾化室内,设置雾化功率、载气流速以及热解温度进行超声喷雾热解,得到煅烧前驱体;
步骤2:将步骤1获得的煅烧前驱体与硒粉一同进行高温煅烧,煅烧气氛为氩气、氢气混合气氛,获得最终产物二硒化钼纳米片;
所述步骤1中所述钼酸盐与所述六亚甲基四胺的物质的量比为1:1~1:5;
所述步骤1中所述溶剂为去离子水或氧化石墨烯水溶液;
所述步骤2中所述煅烧前驱体与所述硒粉的质量比为1:5~1:20。
2.如权利要求1所述的一种基于超声喷雾热解制备的二硒化钼纳米片,其特征在于:
所述钼酸盐为钼酸钠或钼酸铵。
3.如权利要求1所述的一种基于超声喷雾热解制备的二硒化钼纳米片,其特征在于:
所述步骤2中的超声喷雾雾化功率为10~15 W,载气为空气,流速为5~10 L/min,热解温度为400~800 ℃。
4.如权利要求1所述的一种基于超声喷雾热解制备的二硒化钼纳米片,其特征在于:
所述高温煅烧的顺序为升温至300~500 ℃,保温2~4 h,升温速率为3~5 ℃/min。
5.一种锂离子电池负极材料的制备方法,其特征在于:运用权利要求1至4中任一项所述基于超声喷雾热解制备的二硒化钼纳米片,还包括以下步骤:
步骤1:将二硒化钼纳米片涂布于铜箔上作为电极片;
步骤2:将该电极作为工作极片,将该电极与锂片以及锂电常规电解液、隔膜组装纽扣电池(CR 2025);
步骤3:在电流密度为200 mA/g下步骤2所得的纽扣电池进行长循环测试,电压窗口设置为0.01~3 V。
CN202111143795.8A 2021-09-28 2021-09-28 一种基于超声喷雾热解制备的二硒化钼纳米片及其制备方法及应用 Active CN113845095B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111143795.8A CN113845095B (zh) 2021-09-28 2021-09-28 一种基于超声喷雾热解制备的二硒化钼纳米片及其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111143795.8A CN113845095B (zh) 2021-09-28 2021-09-28 一种基于超声喷雾热解制备的二硒化钼纳米片及其制备方法及应用

Publications (2)

Publication Number Publication Date
CN113845095A CN113845095A (zh) 2021-12-28
CN113845095B true CN113845095B (zh) 2024-01-12

Family

ID=78980342

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111143795.8A Active CN113845095B (zh) 2021-09-28 2021-09-28 一种基于超声喷雾热解制备的二硒化钼纳米片及其制备方法及应用

Country Status (1)

Country Link
CN (1) CN113845095B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105887132A (zh) * 2016-06-24 2016-08-24 复旦大学 一种二硒化钼纳米片/碳纳米纤维杂化材料及其制备方法
CN109279583A (zh) * 2018-09-25 2019-01-29 岭南师范学院 一种二硒化钼/氮掺杂碳复合纳米材料及其制备方法与应用
WO2019173581A1 (en) * 2018-03-07 2019-09-12 Nanotek Instruments, Inc. Electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries and methods of producing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105887132A (zh) * 2016-06-24 2016-08-24 复旦大学 一种二硒化钼纳米片/碳纳米纤维杂化材料及其制备方法
WO2019173581A1 (en) * 2018-03-07 2019-09-12 Nanotek Instruments, Inc. Electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries and methods of producing
CN109279583A (zh) * 2018-09-25 2019-01-29 岭南师范学院 一种二硒化钼/氮掺杂碳复合纳米材料及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Gi Dae Park et.MoSe2 Embedded CNT-Reduced Graphene Oxide Composite Microsphere with Superior Sodium Ion Storage and Electrocatalytic Hydrogen Evolution Performances.《American Chemical Society》.2017,第第10卷卷第10673−10683页. *
MoSe2 Embedded CNT-Reduced Graphene Oxide Composite Microsphere with Superior Sodium Ion Storage and Electrocatalytic Hydrogen Evolution Performances;Gi Dae Park et;《American Chemical Society》;第第10卷卷;第10673−10683页 *

Also Published As

Publication number Publication date
CN113845095A (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
CN110299530B (zh) 一种zif-67基钴钼氧化物空心纳米笼/石墨烯复合材料及其制备方法与应用
CN106229498B (zh) 一种适用于水系金属离子电池的负极材料及其制备方法
CN110034283B (zh) 磷化锡复合材料及其制备方法和应用
CN110311092B (zh) 一种SnO2/碳/V2O5/石墨烯复合纳米材料作为电池负极材料的应用
CN110600695A (zh) 蛋黄-蛋壳结构锡@空心介孔碳球材料及其制备方法
CN110581264B (zh) 一种高性能镍锌电池负极活性材料及其制备方法
CN115172724A (zh) 硫酸亚铁钠/碳纳米管复合正极材料、制备方法及钠离子电池
CN103490055A (zh) 一种镍钴锰酸锂复合正极材料的制备方法
CN111540900A (zh) 氟磷酸钒钠正极材料的制备方法
CN111785946B (zh) 负极活性材料及其制备及应用
CN115215321B (zh) 一种硬炭微球材料的制备方法及应用
CN110492076B (zh) 一种二维多孔六边形金属氧化物纳米片复合材料的制备方法及其在钾离子电池中的应用
CN112357956A (zh) 碳/二氧化钛包覆氧化锡纳米颗粒/碳组装介孔球材料及其制备和应用
CN110224126B (zh) 一种铁镍硫化物纳米材料及其制备方法和应用
CN103682277A (zh) 氮掺杂碳层包裹的空心多孔氧化镍复合材料及其制备方法
CN108598403B (zh) 锂离子电池二元过渡金属氧化物负极材料的形成方法
CN113346055A (zh) 复合磷酸盐包覆的锂离子电池高镍正极材料及其制备方法
CN113054164A (zh) 一种低内阻三元单晶极片的制备方法
CN112694080A (zh) 一种具有嵌入式导电网络结构的炭微球、制备方法及其储能应用
Zhao et al. A CoSe 2-based 3D conductive network for high-performance potassium storage: enhancing charge transportation by encapsulation and restriction strategy
CN108183217B (zh) 锂离子电池复合负极材料及其制备方法
CN114804039B (zh) 一种碳基体复合氮化钒纳米阵列及其制备方法与应用
CN101143734A (zh) 锂离子电池纳米晶氧化镍阳极材料的制备方法
CN113845095B (zh) 一种基于超声喷雾热解制备的二硒化钼纳米片及其制备方法及应用
CN112421027B (zh) 表面改性的多孔六边形Na3V2(PO4)2F3碳包覆微米球及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant