CN113787194A - 利用单宁酸涂层辅助酚醛树脂微球表面原位还原形成超小尺寸和高密度纳米银粒子的方法 - Google Patents

利用单宁酸涂层辅助酚醛树脂微球表面原位还原形成超小尺寸和高密度纳米银粒子的方法 Download PDF

Info

Publication number
CN113787194A
CN113787194A CN202111086873.5A CN202111086873A CN113787194A CN 113787194 A CN113787194 A CN 113787194A CN 202111086873 A CN202111086873 A CN 202111086873A CN 113787194 A CN113787194 A CN 113787194A
Authority
CN
China
Prior art keywords
phenolic resin
tannic acid
resin microspheres
microspheres
cfr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111086873.5A
Other languages
English (en)
Other versions
CN113787194B (zh
Inventor
姜炜坤
张硕
刘玉
刘国龙
陈洪雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qilu University of Technology
Original Assignee
Qilu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qilu University of Technology filed Critical Qilu University of Technology
Priority to CN202111086873.5A priority Critical patent/CN113787194B/zh
Priority to PCT/CN2021/121373 priority patent/WO2023039948A1/zh
Priority to US18/030,376 priority patent/US20240051021A1/en
Publication of CN113787194A publication Critical patent/CN113787194A/zh
Application granted granted Critical
Publication of CN113787194B publication Critical patent/CN113787194B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/10Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with phenol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/20Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/20Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with polyhydric phenols
    • C08G8/22Resorcinol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • C08J7/065Low-molecular-weight organic substances, e.g. absorption of additives in the surface of the article
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0466Alloys based on noble metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • B22F2304/054Particle size between 1 and 100 nm
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08J2361/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with monohydric phenols
    • C08J2361/10Phenol-formaldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08J2361/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Dentistry (AREA)
  • Composite Materials (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Wood Science & Technology (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

本发明公开了一种利用单宁酸涂层辅助酚醛树脂微球表面原位还原形成超小尺寸和高密度纳米银粒子的方法,属于生物质基纳米材料制备技术相关领域,其制备步骤:(1)水热溶剂法制备酚醛树脂微球;(2)常温碱性条件下,搅拌酚醛树脂微球、单宁酸混合相,形成单宁酸包覆的酚醛树脂微球(简称TA‑CFR);(3)银氨溶液用于TA‑CFR表面载银,形成TA‑CFR@Ag。通过该方法形成的TA‑CFR@Ag具有超小尺寸和超高密度的银纳米粒子分布。该发明首次报道了一种利用单宁酸包覆酚醛树脂微球用以原位还原银纳米粒子的方法,制备原料价格低廉,制备过程极其简单、环保。此外,该单宁酸涂层技术还适用于其它纳米材料,如SiO2,TiO2和Fe3O4等,有着较好的应用前景和市场潜力。

Description

利用单宁酸涂层辅助酚醛树脂微球表面原位还原形成超小尺 寸和高密度纳米银粒子的方法
技术领域
本发明属于生物质基纳米材料制备技术领域,具体涉及一种利用单宁酸涂层辅助酚醛树脂微球表面原位还原形成超小尺寸和高密度纳米银粒子的方法。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
银纳米粒子(Ag NPs)由于具有良好的催化活性和较强的抗菌能力而被广泛应用于各个领域。小尺寸和高分布密度的Ag NPs可以显著提高其催化活性和抗菌能力。然而,小尺寸或高密度分布的Ag NPs通常难以制备,并且由于其高比表面能而容易聚集,导致其在溶液中不稳定,降低其可回收性。为了克服这些缺点,研究人员设计了多种材料作为Ag NPs的载体,例如氧化石墨烯(GO)片、多孔材料、二氧化硅和聚合物微/纳米球等。其中,酚醛树脂是常用的商业合成树脂,由于其成本低廉、机械性能和耐热性优于大多数其它聚合物树脂体系而被广泛应用于各个领域。
近年来,利用酚醛树脂微/纳米球来负载Ag NPs的研究得到了广泛关注。酚醛树脂微/纳米球表面上Ag NPs的大小和密度是影响其功能和应用的最重要因素。现有的报道已经显示:负载在酚醛树脂微/纳米球上的Ag NPs(直径约30nm,负载量低于20%,是绝大部分Ag NPs在酚醛树脂微/纳米球上的尺寸和分布特点) 已经显示出高的催化活性和稳定性。然而,负载更小尺寸,尤其是当Ag NPs颗粒尺寸控制在5-20nm范围内,同时获得高密度AgNPs的分布仍然是一个挑战。
目前有几种调控Ag NPs尺寸和负载量的方法,包括激光烧蚀法、电子辐照法和封端剂化学还原法。其中,化学法是最常见的一种方法。在化学方法中,选择合适的还原剂和封端剂是设计出较小尺寸和高密度银纳米颗粒分布的关键。单宁酸是一种天然水溶性植物多酚,是地球上第二大酚类生物聚合物,因其绿色、抗氧化/还原、抗菌、生物相容性和低成本等特性而被广泛应用于各领域。
发明内容
为了克服现有技术上的缺陷,本发明提供了一种利用单宁酸涂层辅助酚醛树脂微球表面原位还原形成超小尺寸和高密度纳米银粒子的方法,解决了贵金属负载粒径大和负载量低的问题。
为实现上述技术目的,本发明采用如下技术方案:
本发明的第一个方面,提供了一种利用单宁酸涂层辅助酚醛树脂微球表面原位还原形成超小尺寸和高密度纳米银粒子的方法,包括:
采用单宁酸包覆酚醛树脂微球,形成TA-CFR微球;
于碱性条件下,在所述TA-CFR微球上负载银纳米颗粒,得到TA-CFR@Ag。
本发明提出的一种利用单宁酸涂层辅助酚醛树脂微球表面原位还原形成纳米银粒子的方法,是一种简单的降低Ag NPs尺寸和提高Ag NPs负载量的方法,实现了Ag NPs的超小尺寸和高密度分布,其中在最优的条件下可以获得的Ag NPs的直径为~5nm,且其负载量超过60%,是目前报道的粒径最小的Ag NPs 尺寸,并且其在酚醛树脂微球上的最高负载量。TA-CFR作为载体用于Ag NPs 的制备基于以下原理:(1)TA-CFR中的单宁具有多个还原性酚羟基官能团,可作为还原剂实现Ag NPs的原位合成;(2)单宁酸也是一种封端剂,可以在Ag NPs 的合成过程中控制其尺寸生长;(3)单宁酸分子中含有的五个邻苯二酚基团和五个连苯三酚基团,可以通过螯合作用固定Ag NPs,提高Ag NPs的负载量。(4) 单宁涂层结构提高了酚醛树脂微球的表面电荷,进而使TA-CFR@Ag的分散性和稳定性提高,使其具有较好的稳定性和回用性。单宁酸作为一种绿色环保的生物基材料具有价格低廉、绿色可持续的特点。单宁酸包覆对酚醛树脂微球的尺寸影响较小,但显著提高了银纳米颗粒的稳定性和耐用性。所制备的TA-CFR@Ag 在不额外使用还原剂的情况下,催化还原性能表现出色。此外,TA-CFR@Ag具有良好的抗菌性能,可长期高效地抑制微生物(大肠杆菌和金黄色葡萄球菌)的生长。
本发明的第二个方面,提供了任一上述的方法制备的超小尺寸和高密度纳米银粒子,其中,Ag NPs的直径为~5nm,且其负载量超过60%。
研究发现:与单宁酸同Fe3O4纳米球、聚乳酸类聚合物等微球载银的方法相比,本发明提出的酚醛树脂微球与单宁酸的结合步骤更简单,无任何表面活性剂的添加;更为重要的是在极简单的操作步骤下,获得的纳米银的负载效果更佳。
这可能是由于酚醛树脂微球表面含有大量的芳环结构单元,可以直接和单宁酸通过π-π键进行紧密的吸附,随后单宁酸表面大量的还原性基团可以高效地还原Ag+形成小尺寸且分布均一的Ag纳米颗粒;更重要地是单宁酸表面含有大量地螯合基团,可以更好的对银纳米粒子进行螯合吸附,极大的提高了其应用的稳定性。而单宁酸与Fe3O4纳米球、聚乳酸类聚合物的结合或吸附步骤繁琐,成本消耗高。比如需要添加表面活性剂或增加SiO2过渡层等额外步骤,即便如此,Fe3O4纳米球、聚乳酸类聚合物也难以形成像酚醛树脂一样的高密度的单宁酸,导致其低的Ag纳米粒子。
值得注意的是,通过单宁酸在碱性条件的简单吸附便可实现酚醛树脂微/纳米球的吸附。随后本发明以此为核结构,获得的酚醛树脂纳米银负载量高达60%以上,是现有报道的粒径最小的Ag NPs尺寸,远小于现有酚醛树脂微/纳米球上直接负载Ag NPs直径约30nm的水平,并且其在酚醛树脂微球上的最高负载量。
本发明的第三个方面,提供了上述的超小尺寸和高密度纳米银粒子在制备抗菌材料中的应用。
本发明的有益效果在于:
(1)本发明使用的单宁酸是一种天然水溶性植物多酚,是地球上第二大酚类生物聚合物,价格低廉,来源广泛。以此为酚醛树脂微球的包覆层取代常用的表面活性剂、还原剂用以调控银纳米颗粒的尺寸并用以提高银纳米颗粒的负载量,可以有效的节约成本。与现有报道的酚醛树脂载银纳米材料相比,TA-CFR@Ag 在不改变酚醛树脂微球尺寸的前提下,可以负载尺寸更小,负载量更低的银纳米颗粒,且该纳米材料由于表面含有大量的酚羟基结构,也同时具有优异的水分散性,稳定性和可回用性。此外,单宁酸涂层技术还适合其他材料,如SiO2,TiO2和Fe3O4等。
(2)本发明制备的TA-CFR@Ag比现有报道的银纳米球材料具有更高的催化活性,其在催化剂制备领域有着广泛的应用。除可负载贵金属纳米银外,该 TA-CFR材料也可以作为贵金属金、铂及铑等纳米材料的载体。此外,此材料可用于制备多种功能性复合材料,赋予材料更多优异的性能,如提高复合材料的机械强度和导电性,赋予材料抗菌能力,抗老化能力等,有着非常广阔的商业化前景。
(3)本申请的操作方法简单、成本低、具有普适性,易于规模化生产。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1是本发明的技术路线图;
图2是本发明实施例1获得的单宁酸涂覆儿茶酚树脂球载银(TA-CFR@Ag) 的扫描电镜图;
图3是本发明实施例1获得的TA-CFR@Ag的银纳米粒子的负载量;
图4是本发明实施例1获得的TA-CFR载银纳米颗粒同现有报道的Ag NPs 在尺寸及负载量上的对比。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本发明使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
利用单宁酸涂层辅助酚醛树脂微球表面原位还原形成超小尺寸和高密度纳米银粒子的方法,包括以下实际制备步骤:
步骤1:酚醛树脂微球CFR的制备。
将邻苯二酚(100mg,0.9mmol)和25wt%氨水溶液(0.15mL,5mmol) 分别加入乙醇和水的混合溶液(20mL乙醇和8mL去离子水)中混合。将混合溶液超声处理5分钟。随后,在上述溶液中加入0.14mL甲醛溶液(3.8mmol),然后将混合溶液转移到密封的聚四氟乙烯高压釜中,在160℃恒温下保存6h,最后用水和乙醇多次洗涤CFR微球,离心后收集干燥,得到酚醛树脂微球CFR。
步骤2:单宁酸包覆的酚醛树脂微球TA-CFR的制备。
首先用单宁酸(400mg)在Tris-HCl缓冲液(200mL,100mm,pH=8.5) 中制备单宁酸溶液(2mg·mL-1),然后将干燥的CFR微球(100mg)浸泡在单宁酸溶液中,在室温下保持磁力搅拌。36h后即可得到核壳结构的TA-CFR复合球。将制备的TA-CFR微球经离心分离、超声波清洗、去离子水多次漂洗后收集干燥得到TA-CFR。
步骤3:银纳米颗粒的负载,即TA-CFR@Ag的制备。
以银氨溶液为Ag前驱体溶液,在TA-CFR微球上合成Ag纳米粒子。将5wt%的氨水溶液加入16.9mg·mL-1的AgNO3溶液50mL中,直至棕色沉淀全部溶解,即可得到银氨溶液。将所制备的TA-CFR微球(100mg)加入上述银氨溶液中,室温搅拌6h,用水和乙醇多次洗涤TA-CFR@Ag微球,离心后收集干燥得到 TA-CFR@Ag。
下面结合具体的实施例,对本发明做进一步的详细说明,应该指出,所述具体实施例是对本发明的解释而不是限定。
实施例1
采用改进的
Figure BDA0003265874060000061
法制备邻苯二酚树脂微球(CFR):将邻苯二酚(100mg,0.9mmol)和25wt%的氨水溶液(0.15mL,5mmol)分别加入乙醇和水的混合溶液(20mL乙醇和8mL去离子水)中混合。将混合溶液超声处理5分钟。然后在上述溶液中加入0.14mL(3.8mmol)甲醛溶液,然后将混合溶液转移到密封的聚四氟乙烯高压釜中,在160℃恒温下保存6h,最后用水和乙醇多次洗涤 CFR微球,离心后收集干燥。用单宁酸(400mg)在Tris-HCl缓冲液(200mL,100mm,pH=8.5)中制备了TA-CFR微球(2mg·mL-1),然后将干燥后的CFR微球(100mg)浸泡在单宁酸溶液中,在室温下保持磁力搅拌。36h后反应完全,得到了核壳结构的TA-CFR复合球。制备的TA-CFR微球经离心分离、超声波清洗、去离子水多次漂洗。TA-CFR@Ag微球的典型合成工艺为:以银氨溶液 (Tollens’)试剂为Ag前驱体溶液,在TA-CFR微球上合成Ag纳米粒子。将5wt%的氨水溶液加入16.9mg·mL-1的AgNO3溶液50mL中,直至棕色沉淀全部溶解,即可得到银氨溶液。将所制备的TA-CFR微球(100mg)加入上述银氨溶液中,室温搅拌6h。在原位还原后,用水和乙醇多次洗涤TA-CFR@Ag微球,离心后收集干燥。获得的单宁酸涂覆儿茶酚树脂球载银(TA-CFR@Ag)的扫描电镜图如图2所示,TA-CFR@Ag的银纳米粒子的负载量如图3所示,TA-CFR载银纳米颗粒同现有报道的Ag NPs在尺寸及负载量上的对比如图4所示。
实施例2
采用改进的
Figure BDA0003265874060000071
法制备苯酚树脂微球(PR):首先将200mg苯酚、280mg 37%甲醛溶液和17mg氢氧化钠充分混合在乙醇水溶液中(20mL蒸馏水和8mL 乙醇)。然后将混合溶液在65℃加热1h,在90℃加热30min。然后,将混合溶液转移到密封的聚四氟乙烯高压釜中,在120℃加热12h,然后自然冷却至室温。离心(10000rpm,5min)收集固体产物,分别用去离子水和乙醇洗涤3次。最后,通过80℃真空干燥12h得到热固性PR微球。用单宁酸(400mg)在Tris-HCl 缓冲液(200mL,100mm,pH=8.5)中制备了TA-PR微球(2mg·mL-1),然后将干燥后的PR微球(100mg)浸泡在单宁酸溶液中,在室温下保持磁力搅拌。36 h后反应完全,得到了核壳结构的TA-PR复合球。制备的TA-PR微球经离心分离、超声波清洗、去离子水多次漂洗。TA-PR@Ag微球的典型合成工艺为:以银氨溶液为Ag前驱体溶液,在TA-PR微球上合成Ag纳米粒子。将5wt%的氨水溶液加入16.9mg·mL-1的AgNO3溶液50mL中,直至棕色沉淀全部溶解,即可得到银氨溶液。将所制备的TA-PR微球(100mg)加入上述银氨溶液中,室温搅拌6h。在原位还原后,用水和乙醇多次洗涤TA-PR@Ag微球,离心后收集干燥。
实施例3
采用改进的
Figure BDA0003265874060000081
法制备间苯二酚树脂微球(RF):将氨水溶液(0.1mL, 25wt%)与含有无水乙醇(8mL)和去离子水(20mL)的溶液混合,搅拌1h 以上,然后加入200mg间苯二酚,连续搅拌30min。然后将0.28mL的甲醛溶液加入反应溶液中,在30℃下搅拌24h,然后在密封的聚四氟乙烯高压釜中,在100℃下静态加热24h,分别用去离子水和乙醇洗涤3次。最后,通过100℃真空干燥12h得到热固性RF微球。用单宁酸(400mg)在Tris-HCl缓冲液(200mL,100mm,pH=8.5)中制备了TA-RF微球(2mg·mL-1),然后将干燥后的 RF微球(100mg)浸泡在单宁酸溶液中,在室温下保持磁力搅拌。36h后反应完全,得到了核壳结构的TA-RF复合球。制备的TA-RF微球经离心分离、超声波清洗、去离子水多次漂洗。TA-RF@Ag微球的典型合成工艺为:以银氨溶液为 Ag前驱体溶液,在TA-RF微球上合成Ag纳米粒子。将5wt%的氨水溶液加入 16.9mg·mL-1的AgNO3溶液50mL中,直至棕色沉淀全部溶解,即可得到银氨溶液。将所制备的TA-RF微球(100mg)加入上述银氨溶液中,室温搅拌6h。在原位还原后,用水和乙醇多次洗涤TA-RF@Ag微球,离心后收集干燥。
最后应该说明的是,以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种利用单宁酸涂层辅助酚醛树脂微球表面原位还原形成超小尺寸和高密度纳米银粒子的方法,其特征在于,包括:
采用单宁酸包覆的酚醛树脂微球,形成TA-CFR微球;
于碱性条件下,在所述TA-CFR微球上负载银纳米颗粒,得到TA-CFR@Ag。
2.如权利要求1所述的利用单宁酸涂层辅助酚醛树脂微球表面原位还原形成超小尺寸和高密度纳米银粒子的方法,其特征在于,所述采用单宁酸包覆的酚醛树脂微球的具体步骤为:将酚醛树脂微球浸泡在单宁酸溶液中,机械搅拌36~42h,固液分离、清洗、干燥,即得。
3.如权利要求2所述的利用单宁酸涂层辅助酚醛树脂微球表面原位还原形成超小尺寸和高密度纳米银粒子的方法,其特征在于,所述单宁酸溶液的浓度为1~5mg·mL-1,优选地,浓度为2mg·mL-1
4.如权利要求1所述的利用单宁酸涂层辅助酚醛树脂微球表面原位还原形成超小尺寸和高密度纳米银粒子的方法,其特征在于,负载银纳米颗粒的具体方法为:将所述TA-CFR微球加入到银氨溶液中,机械搅拌4~8h,洗涤、固液分离,干燥,即得。
5.如权利要求4所述的利用单宁酸涂层辅助酚醛树脂微球表面原位还原形成超小尺寸和高密度纳米银粒子的方法,其特征在于,所述银氨溶液的制备方法为:将氨水溶液加入AgNO3溶液中,直至棕色沉淀全部溶解,即得。
6.如权利要求4所述的利用单宁酸涂层辅助酚醛树脂微球表面原位还原形成超小尺寸和高密度纳米银粒子的方法,其特征在于,所述酚醛树脂微球的制备方法为改进的
Figure FDA0003265874050000011
法制备。
7.如权利要求1所述的利用单宁酸涂层辅助酚醛树脂微球表面原位还原形成超小尺寸和高密度纳米银粒子的方法,其特征在于,所述酚醛树脂微球的制备的具体步骤为:将邻苯二酚、间苯二酚或苯酚,和氨水溶液分别加入乙醇和水的混合溶液中,超声处理,再加入甲醛溶液,在密闭条件下,于160~180℃下反应6h,洗涤,固液分离、干燥,得到酚醛树脂微球。
8.权利要求1-7任一项所述的方法制备的超小尺寸和高密度纳米银粒子。
9.权利要求8所述的超小尺寸和高密度纳米银粒子,其特征在于,Ag NPs的直径为~5nm,且其负载量超过60%。
10.权利要求8或9所述的超小尺寸和高密度纳米银粒子在制备抗菌材料中的应用。
CN202111086873.5A 2021-09-16 2021-09-16 利用单宁酸涂层辅助酚醛树脂微球表面原位还原形成超小尺寸和高密度纳米银粒子的方法 Active CN113787194B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202111086873.5A CN113787194B (zh) 2021-09-16 2021-09-16 利用单宁酸涂层辅助酚醛树脂微球表面原位还原形成超小尺寸和高密度纳米银粒子的方法
PCT/CN2021/121373 WO2023039948A1 (zh) 2021-09-16 2021-09-28 利用单宁酸涂层辅助酚醛树脂微球表面原位还原形成超小尺寸和高密度纳米银粒子的方法
US18/030,376 US20240051021A1 (en) 2021-09-16 2021-09-28 Method for in situ synthesizing ultrafine and highly loaded ag nps on the surface of tannin-coated phenolic resin microspheres

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111086873.5A CN113787194B (zh) 2021-09-16 2021-09-16 利用单宁酸涂层辅助酚醛树脂微球表面原位还原形成超小尺寸和高密度纳米银粒子的方法

Publications (2)

Publication Number Publication Date
CN113787194A true CN113787194A (zh) 2021-12-14
CN113787194B CN113787194B (zh) 2022-10-25

Family

ID=78878576

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111086873.5A Active CN113787194B (zh) 2021-09-16 2021-09-16 利用单宁酸涂层辅助酚醛树脂微球表面原位还原形成超小尺寸和高密度纳米银粒子的方法

Country Status (3)

Country Link
US (1) US20240051021A1 (zh)
CN (1) CN113787194B (zh)
WO (1) WO2023039948A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117443455A (zh) * 2023-12-26 2024-01-26 吉林农业大学 一种邻苯二酚-甲醛树脂微球光催化杂化材料及其制备方法和应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030215731A1 (en) * 2001-08-20 2003-11-20 Canon Kabushiki Kaisha Developing assembly, process cartridge and image-forming method
CN101328252A (zh) * 2008-07-29 2008-12-24 武汉理工大学 低游离单体、可降解的柿单宁改性酚醛树脂的制备方法
US20100143183A1 (en) * 2006-12-20 2010-06-10 Servicios Industriales Peñoles, S.A. De C.V. Process for manufacture of nanometric, monodisperse, stable metallic silver and a product obtained therefrom
CN103801396A (zh) * 2014-01-21 2014-05-21 吉林大学 一种制备纳米级球形酚醛树脂负载金的复合粒子的方法
CN107841268A (zh) * 2017-11-28 2018-03-27 南京林业大学 一种葡萄皮单宁改性酚醛树脂胶粘剂的制备方法
CN109647513A (zh) * 2018-12-12 2019-04-19 天津科技大学 一种木质素改性酚醛树脂纳米球负载纳米银的制备方法
CN109939741A (zh) * 2019-04-12 2019-06-28 福建农林大学 一种快速还原对硝基苯酚的磁性核壳结构催化剂的制备方法
CN111202091A (zh) * 2020-01-08 2020-05-29 华南理工大学 一种纳米银负载介孔二氧化硅抗菌材料及其制备方法与应用
CN112048268A (zh) * 2020-09-18 2020-12-08 西南林业大学 一种单宁改性酚醛树脂胶黏剂的制备方法
CN112661981A (zh) * 2020-12-11 2021-04-16 齐鲁工业大学 一种由木质素酚醛树脂载银纳米球触发的多功能水凝胶及其制备方法、应用
CN112675318A (zh) * 2020-12-30 2021-04-20 齐鲁工业大学 适用于作为多道生理记录处理系统水凝胶电极膜片及方法
CN113030064A (zh) * 2021-05-27 2021-06-25 北京市疾病预防控制中心 一种表面增强拉曼散射基底及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191760A1 (en) * 2012-06-22 2013-12-27 Dow Corning Corporation Silver-loaded silicone particles and their silver-containing polymer composites
US20210230777A1 (en) * 2020-01-29 2021-07-29 Wisconsin Alumni Research Foundation Tanin composite fibers
CN111875816B (zh) * 2020-09-08 2023-01-06 沙县宏盛塑料有限公司 一种凹凸结构酚醛树脂微球及其制备方法
CN113106749B (zh) * 2021-04-15 2022-03-11 苏州大学 一种基于单宁酸的结构色织物及其制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030215731A1 (en) * 2001-08-20 2003-11-20 Canon Kabushiki Kaisha Developing assembly, process cartridge and image-forming method
US20100143183A1 (en) * 2006-12-20 2010-06-10 Servicios Industriales Peñoles, S.A. De C.V. Process for manufacture of nanometric, monodisperse, stable metallic silver and a product obtained therefrom
CN101328252A (zh) * 2008-07-29 2008-12-24 武汉理工大学 低游离单体、可降解的柿单宁改性酚醛树脂的制备方法
CN103801396A (zh) * 2014-01-21 2014-05-21 吉林大学 一种制备纳米级球形酚醛树脂负载金的复合粒子的方法
CN107841268A (zh) * 2017-11-28 2018-03-27 南京林业大学 一种葡萄皮单宁改性酚醛树脂胶粘剂的制备方法
CN109647513A (zh) * 2018-12-12 2019-04-19 天津科技大学 一种木质素改性酚醛树脂纳米球负载纳米银的制备方法
CN109939741A (zh) * 2019-04-12 2019-06-28 福建农林大学 一种快速还原对硝基苯酚的磁性核壳结构催化剂的制备方法
CN111202091A (zh) * 2020-01-08 2020-05-29 华南理工大学 一种纳米银负载介孔二氧化硅抗菌材料及其制备方法与应用
CN112048268A (zh) * 2020-09-18 2020-12-08 西南林业大学 一种单宁改性酚醛树脂胶黏剂的制备方法
CN112661981A (zh) * 2020-12-11 2021-04-16 齐鲁工业大学 一种由木质素酚醛树脂载银纳米球触发的多功能水凝胶及其制备方法、应用
CN112675318A (zh) * 2020-12-30 2021-04-20 齐鲁工业大学 适用于作为多道生理记录处理系统水凝胶电极膜片及方法
CN113030064A (zh) * 2021-05-27 2021-06-25 北京市疾病预防控制中心 一种表面增强拉曼散射基底及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JOLANTA PULIT-PROCIAK等: "A phenol-formaldehyde resin loaded with in situ synthesised silver nanoparticles", 《THE JOURNAL OF ADHESION》 *
易庆平等: "植物单宁材料吸附贵金属的研究进展", 《贵金属》 *
李冬冬等: "基于单宁酸的功能材料研究进展", 《高分子通报》 *
章晶等: "超声化学法制备PS/Ag核壳型复合微球", 《材料导报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117443455A (zh) * 2023-12-26 2024-01-26 吉林农业大学 一种邻苯二酚-甲醛树脂微球光催化杂化材料及其制备方法和应用
CN117443455B (zh) * 2023-12-26 2024-05-03 吉林农业大学 一种邻苯二酚-甲醛树脂微球光催化杂化材料及其制备方法和应用

Also Published As

Publication number Publication date
WO2023039948A1 (zh) 2023-03-23
US20240051021A1 (en) 2024-02-15
CN113787194B (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
Siddiqui et al. Fabrication of advance magnetic carbon nano-materials and their potential applications: a review
Zhang et al. Preparation of ultrafine and highly loaded silver nanoparticle composites and their highly efficient applications as reductive catalysts and antibacterial agents
CN102861921A (zh) 一种核壳型磁/金纳米粒子的制备方法
Jiang et al. Synthesis, properties and photocatalytic activity of a semiconductor/cellulose composite for dye degradation-a review
CN103361885A (zh) 一种抗菌丝素纤维膜的制备方法
CN112056310B (zh) 一种dfns负载碳量子点/二硫化钼量子点及其制备方法和应用
CN109621961B (zh) 一种生长二维纳米片原位制备金属高分散催化剂的方法
CN113731408B (zh) MoO3载体包裹贵金属纳米粒子的负载型催化剂及其制备方法
CN105688992A (zh) 一种Ag/Fe3O4/纳米纤维素三元复合材料及其制备方法
CN113787194B (zh) 利用单宁酸涂层辅助酚醛树脂微球表面原位还原形成超小尺寸和高密度纳米银粒子的方法
CN111234049A (zh) 自组装型环糊精功能化磁性-金复合材料及其制备方法和应用
CN111569882A (zh) 一种四氧化三钴负载铜纳米催化剂及其制备方法
CN112791714A (zh) 吸附酚类污染物的磁性核壳纳米微球、制备方法及应用
CN110302837B (zh) 一种用于高级氧化工艺处理染料废水的纤维素基催化膜及其制备方法
Qian et al. Selenium-doped phenolic resin spheres: ultra-high adsorption capacity of noble metals
CN112753698A (zh) 纳米金属-还原氧化石墨烯复合材料及其制备方法和应用
Liu et al. Core-shell Fe3O4@ catechol-formaldehyde trapped satellite-like silver nanoparticles toward catalytic reduction in cationic and anionic dyes
CN111995799B (zh) 一种纳米银/纤维素复合抗菌材料的制备方法
Jiang et al. Preparation of silver quantum dots embedded water-soluble silica/PAAc hybrid nanoparticles and their bactericidal activity
CN113680291B (zh) 一种顺磁性金属氧化物/尖晶石/碳复合微球的制备方法
CN114525269B (zh) 一种基于聚乙二醇和超顺磁性氧化铁纳米颗粒共价结合固定化漆酶的方法
CN110898854B (zh) 一种负载金粒子的磁性纳米空心材料及其制备方法与应用
Nasrollahzadeh et al. Synthesis of biopolymer-based metal nanoparticles
CN114570421A (zh) 酵母原位固定纳米零价铁磁性材料及其制备方法与应用
CN114160155A (zh) 纳米级Co3O4@Pt制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant