CN113594025B - 硅基分子束异质外延生长材料的制备方法及忆阻器和应用 - Google Patents

硅基分子束异质外延生长材料的制备方法及忆阻器和应用 Download PDF

Info

Publication number
CN113594025B
CN113594025B CN202111074604.7A CN202111074604A CN113594025B CN 113594025 B CN113594025 B CN 113594025B CN 202111074604 A CN202111074604 A CN 202111074604A CN 113594025 B CN113594025 B CN 113594025B
Authority
CN
China
Prior art keywords
layer
cavity
sputtering
srtio
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111074604.7A
Other languages
English (en)
Other versions
CN113594025A (zh
Inventor
闫小兵
贺海东
赵桢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University
Original Assignee
Hebei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University filed Critical Hebei University
Publication of CN113594025A publication Critical patent/CN113594025A/zh
Priority to US17/676,098 priority Critical patent/US11974512B2/en
Application granted granted Critical
Publication of CN113594025B publication Critical patent/CN113594025B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8836Complex metal oxides, e.g. perovskites, spinels
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/088Oxides of the type ABO3 with A representing alkali, alkaline earth metal or Pb and B representing a refractory or rare earth metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/548Controlling the composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02483Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/026Formation of switching materials, e.g. deposition of layers by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明提供了一种硅基分子束异质外延生长材料的制备方法及忆阻器和应用,所述外延生长材料的结构是在P型Si衬底上依次生长SrTiO3层、La0.67Sr0.33MnO3层、(BaTiO3)0.5‑(CeO2)0.5层;硅基外延生长结构是在特定温度和特定氧压的情况下,依次生长第一层SrTiO3层、第二层La0.67Sr0.33MnO3层、第三层BaTiO3与CeO2原子比为0.5∶0.5的(BaTiO3)0.5‑(CeO2)0.5层。本发明所提供的硅基分子束异质外延生长方法使用激光脉冲沉积法,方法比较简单,容易控制,第一层SrTiO3缓冲层的厚度可达到40nm,并实现了忆阻器功能及仿神经特性。

Description

硅基分子束异质外延生长材料的制备方法及忆阻器和应用
技术领域
本发明涉及外延生长材料制备方法技术领域,具体涉及一种硅基分子束异质外延生长材料的制备方法及忆阻器和应用。
背景技术
在当今信息时代的大背景下,电子信息产业快速发展,电容器、二极管、三极管、CMOS管等电子元器件成为了电子信息产业的基础支柱。随着人类科研事业的不断发展,电子元器件不断进行着技术更新,从而极大的推动了电子信息产业的发展,改善人们生活的方方面面。
脉冲沉积技术这种新型的外延生长工艺在科学研究和生产制备上展现了不同于以往制备方法的特性,拥有优良的应用前景。自从上个世纪50年代末60年代初开始发展外延生长技术之后,由于其优异的生长特性成为电子及通信等领域新的研究热点,并在制造高频大功率器件,新材料科研探索等方面具有广泛地应用潜力。在作为科研探索基底领域,我们可以研究开发新的硅基分子束异质外延生长制造方法。
众所周知,外延生长是指在单晶衬底(基片)上生长一层有一定要求的、与衬底晶相相同的单晶层,犹如晶体向外延伸了一段。外延的质量可以随外延的方法的不同而发生显著的变化,并且和所选用的方法的及具体步骤的变化而产生相当大的变化,外延材料在集成电路和PN结隔离技术和大规模集成电路中有改善材料质量的特性被广泛应用,可以根据这一特性进行研发硅基分子束异质外延生长制备方法。PLD分子束外延技术是最新的晶体生长技术,将衬底置于超真空生长空腔内,将所需生长的单晶物质分别放到靶材靶套上,当衬底加热到一定温度,通入所需压强气体,打开激光使分子流射出,即可生长出单晶。其操作简单、制备方便,在未来应用上有着美好的前景。
在本发明中,我们通过调控不同温度、氧压、激光模式、激光频率的制备条件,制备出了可重复生长的外延样品。
发明内容
本发明的目的是提供一种硅基分子束异质外延生长材料的制备方法及忆阻器和应用,以解决现有方法难以控制,一般只能生长一层外延材料的问题。
本发明为实现其目的采用的技术方案是:一种硅基分子束异质外延生长材料的制备方法,包括以下步骤:
a、将清洗好的Si衬底固定在脉冲激光沉积设备腔体的衬底台上,并将腔体抽真空至1×10-4~5×10-4Pa;
b、将腔体温度升至90~110℃,向腔体内通入Ar,并维持腔体中气体压强为0.8~1.2Pa,打开激光,开始预溅射SrTiO3靶材1~2min,然后正式溅射SrTiO3靶材,形成厚度为4~8nm的SrTiO3薄膜,当溅射完成后,向腔体内通入N2,并维持腔体内压强为90~110Pa,继续升温至550~650℃时,抽净腔体气体至1×10-4~5×10-4Pa,再向腔体内通入O2,调整接口阀使腔体内的压强维持在0.8~1.2Pa,当温度达到680~720℃时,打开激光开始预溅射SrTiO3靶材1~2min;
c、当温度达到740~760℃时,正式溅射SrTiO3靶材10~20min,在Si衬底上形成第一层SrTiO3层;
d、调节O2压强使其稳定于20~30pa,预溅射La0.67Sr0.33MnO3靶材1~2min,然后正式溅射20~40min,在第一层SrTiO3层上形成第二层La0.67Sr0.33MnO3层;
e、调节O2压强稳定于0.8~1.2pa,预溅射BTO-CeO2靶材1~2min,之后正式溅射10~20min,在第二层La0.67Sr0.33MnO3层上形成第三层BTO-CeO2层;
f、调节O2压强稳定于2×104~5×104pa,原位退火,待温度降至室温后取出。
步骤a中,将Si衬底依次在丙酮、酒精中用超声波清洗,再用稀释的HF酸溶液除去SiO2并在去离子水中用超声波清洗,然后取出用 N2吹干。
制备过程中,设定温度程序如下:
第一步:从0℃上升至100℃,用时5min;
第二步:在100℃保持3min;
第三步:从100℃上升至500℃,用时30min;
第四步:从500℃上升至750℃,用时25min;
第五步:在750℃保持90min;
第六步:从750℃下降至0℃,用时150min。
制备过程中,设定激光为EGY NGR模式,预溅射频率设定为1~3HZ,正式溅射频率设定为3~7 HZ。
第一、第二和第三层的厚度分别为42nm、30nm、40nm。
第一、第二和第三层的晶相分别是(001)(002);(001)(002);(001)(002)BTO、(002)(004)CeO2
第三层BaTiO3与CeO2 原子比为0.5∶0.5。
一种忆阻器,其结构是在上述方法制备的硅基分子束异质外延生长材料上生长Pd顶电极层。
所述Pd顶电极层的厚度为30-50nm,直径为80-100μm。
上述的忆阻器在仿神经器件和铁电器件中的应用。
本发明的制备方法在硅基衬底上通过调节第一层SrTiO3缓冲层的设计,以及每一层的生长温度、生长时间、氧气压强、激光模式、激光频率的调节,从而达到生长出异质外延材料的目的。一般的外延方法只是提供了在硅基衬底上生长一种外延材料,并且一般外延方法的缓冲层仅为几纳米,且十分难以控制,而本发明所提供的方法可以生长三种异质结材料,对于缓冲层的设计十分巧妙,可保证三种材料都为外延,重复率更加可靠并易于制备。在本发明中,以P型硅为衬底,分别通过控制不同生长条件外延生长了三种异质外延材料,通过XRD扫描和TEM电镜测试证明用该种方法具有稳定性和可重复性。
本发明通过调控不同温度、氧压、激光模式、激光频率的制备条件,制备出了可重复生长的外延样品。本发明以Pd层为顶电极,LSMO层为底电极,测得制备样品的I-V和脉冲电学性能,其表现为忆阻器特性,并在脉冲调制过程中成功模仿了神经突出特性及铁电特性。众所周知,忆阻器的阻值大小是随着流过它的电量变化而变化的,经历过的阻值变化大小是能够记忆的,这一点和人类大脑极其的相似,在我们的研究中,通过施加不同大小的脉冲参数,很好的实现了对忆阻器电阻的控制。
附图说明
图1是本发明方法所制备的样品的结构示意图。其中,1、衬底,2、第一外延层,3、第二外延层,4、第三外延层。
图2是本发明中应用于制备的脉冲沉积溅射设备的结构示意图。其中,a为腔体,b为插板阀,c为激光束,d为衬底台,e为靶台,f为压片台,g为靶材。
图3是实施例2所得样品的原子力显微镜(AFM)的扫描图像。
图4是实施例2所得样品的XRD测试结果图。
图5是用-10V~10V范围的连续电压对实施例2样品进行扫描所记录的电流变化,显示出了忆阻器特性,从0 V → +10 V → 0 V (从1到2)电阻从高阻值转变为低阻值,从0 V→ –10 V→0 V(从3到4)电阻重低阻值转变为高阻值。
图6是实施例2样品的TEM测试结果图。
图7是实施例2样品外延层φ扫的测试结果图。
图8是通过对忆阻器的电阻调制进而实现的spiking-time-dependentplasticity (STDP) and paired-pulse facilitation (PPF) 神经特性模仿。
图 9 是P-E铁电性测试结果。
具体实施方式
下面结合实施例对本发明做进一步的阐述,下述实施例仅作为说明,并不以任何方式限制本发明的保护范围。
实施例1 外延生长样品
如图1所示,本发明方法制备的外延样品结构,其结构包括最底层的衬底1、衬底1上的第一外延层2、第一外延层2上的第二外延层3、第二外延层3上的第三外延层4。衬底1为Si衬底,外延层由下至上依次为第一外延层SrTiO3层、第二外延层La0.67Sr0.33MnO3层,第三外延层BaTiO3)0.5-(CeO2 )0.5层。
实施例2 硅基分子束异质外延生长方法
本发明的制备方法包括如下步骤:
准备合适的衬底
选择P型Si作为衬底,然后将Si衬底放在丙酮中用超声波清洗10min,然后放入酒精中用超声波清洗10min,再夹入稀释的HF酸溶液中浸泡90s,最后用木夹子取出放入去离子水中用超声波清洗5min,最后取出,用N2吹干。
②将Si衬底放入脉冲激光沉积设备的腔体中并抽真空
如图2所示,打开脉冲沉积设备腔体a,拿出压片台f,用砂纸打磨去掉表面污渍,用丙酮清洗打磨下来的废物和表面附着的有机物,用酒精最后擦拭干净。将清洗好的基片(即Si衬底)放在涂好银胶(使受热均匀)的压片台f上压片,压片时保证衬底稳固压在压片台f上并且压平,保证溅射时生长薄膜均匀。将整理好的压片台放入腔体内的衬底台d上,固定好后关闭腔体a,腔体抽真空至5×10-4Pa。
③通入气体
在腔体内压片台f(内有热耦丝控制温度)的正对面设置有四个靶台e,靶台e上分别放置外延一、二、三层的靶材(有一个空着)。压片台f正对的靶台由设备外激光束c通过玻璃窗射入激光到对面靶台上来,起辉。
本步骤中首先由压片台f内热耦丝进行加热,之后通过控制插板阀b抽出腔体a内的氧气,在100℃时通入压强为1Pa的Ar,再溅射1min的SrTiO3,之后通入N2维持在100Pa,温度达到600℃时,抽净腔体气体,使压强至5×10-4Pa,再向腔体内通入流量为25sccm的O2,调整插板阀b使腔体内的压强维持在1Pa,打开激光控制器设定模式为EGY NGR模式,调整脉冲频率预溅射为2 HZ、正式溅射为5 HZ,温度达到700℃时正式溅射SrTiO3靶材,预溅射1~2min。
④外延第一层SrTiO3
在SrTiO3预溅射之后,开始正式溅射15min,再静置10min,在Si衬底上外延形成第一层42nm SrTiO3层。
⑤外延第二层La0.67Sr0.33MnO3
外延第一层SrTiO3后,再调整插板阀b使腔体内的压强维持在26Pa,预溅射1~2min,在LaSrMnO3预溅射之后,开始正式溅射30min,再静置10min,在外延第一层SrTiO3上外延形成第二层30nm La0.67Sr0.33MnO3层。
外延第三层(BaTiO3)0.5-(CeO2 )0.5
外延第二层La0.67Sr0.33MnO3后,再调整插板阀b使腔体内的压强维持在1Pa,预溅射1~2min,在(BaTiO3)0.5-(CeO2 )0.5预溅射之后,开始正式溅射15min,再静置10min,在外延第二层L0.67Sr0.33MnO3上外延形成第三层40nm BTO-CeO2层。再调整插板阀b使腔体内的压强维持在3×104pa,原位退火,待温度至室温取出。
所取出样品在磁控溅射设备下生长厚度为40nm,直径为90μm的Pd顶电极,底电极为LSMO层;测定I-V和脉冲电学性能及铁电特性。
图3为用原子力显微镜(AFM)随机选取两块不同大小(5μm和10μm)的扫描图像,扫描结果表明该方法所制备的样片表面极为平整,表面起伏仅在3.3nm-3.4nm。
图4为随机位置所测X-Ray Diffractometer(XRD)结果图。XRD结果图显示所生长的三层衍射尤为明显,所得晶相可进一步证明应用该方法所制备的三层皆为外延生长。
图5为实施例2制备了顶电极样品的I-V曲线图。上电极为磁控溅射上的Pd,底电极为外延第二层LSMO薄膜,从图中我们可以看到器件同样具有明显的高低组态,但是在高低组态之间电阻的变化是缓慢变化的,即在高低组态之间具有许多明显、确定的组态。完全符合目前科研探索中的忆阻器特性。
如图6所示为实施例2样品的TEM测试结果图,图6 (a)验证了所得样品由上至下为BaTiO3-CeO2/L0.67Sr0.33MnO3/SrTiO3/ Si该种结构;图6 (b)为所做的衍射结果,验证了图4的XRD测试结果,并再一次证明了该种方法所制备样品为外延生长;图6 (c)- (f)分别展现了各层结晶情况以及异质结过度情况,其中STO为缓冲层,起初生长有过度态,生长一段时间即为外延生长结晶态,再次验证了所制备样品为外延生长。
图7为外延层CeO2和LSMO的外延φ扫测试结果,再次验证了外延生长。
图8是 通过对忆阻器的电阻调制进而实现的spiking-time-dependentplasticity (STDP) and paired-pulse facilitation (PPF) 神经特性模仿。
图 9 是P-E铁电性测试结果。

Claims (10)

1.一种硅基分子束异质外延生长材料的制备方法,其特征在于,包括以下步骤:
a、将清洗好的Si衬底固定在脉冲激光沉积设备腔体的衬底台上,并将腔体抽真空至1×10-4~5×10-4Pa;
b、将腔体温度升至90~110℃,向腔体内通入Ar,并维持腔体中气体压强为0.8~1.2Pa,打开激光,开始预溅射SrTiO3靶材1~2min,然后正式溅射SrTiO3靶材,形成厚度为4~8nm的SrTiO3薄膜,当溅射完成后,向腔体内通入N2,并维持腔体内压强为90~110Pa,继续升温至550~650℃时,抽净腔体气体至1×10-4~5×10-4Pa,再向腔体内通入O2,调整接口阀使腔体内的压强维持在0.8~1.2Pa,当温度达到680~720℃时,打开激光开始预溅射SrTiO3靶材1~2min;
c、当温度达到740~760℃时,正式溅射SrTiO3靶材10~20min,在Si衬底上形成第一层SrTiO3层;
d、调节O2压强使其稳定于20~30pa,预溅射La0.67Sr0.33MnO3靶材1~2min,然后正式溅射20~40min,在第一层SrTiO3层上形成第二层La0.67Sr0.33MnO3层;
e、调节O2压强稳定于0.8~1.2pa,预溅射BTO-CeO2靶材1~2min,之后正式溅射10~20min,在第二层La0.67Sr0.33MnO3层上形成第三层BTO-CeO2层;
f、调节O2压强稳定于2×104~5×104pa,原位退火,待温度降至室温后取出。
2.根据权利要求1所述的制备方法,其特征在于,步骤a中,将Si衬底依次在丙酮、酒精中用超声波清洗,再用稀释的HF酸溶液除去SiO2并在去离子水中用超声波清洗,然后取出用 N2吹干。
3.根据权利要求1所述的制备方法,其特征在于,制备过程中,设定温度程序如下:
第一步:从0℃上升至100℃,用时5min;
第二步:在100℃保持3min;
第三步:从100℃上升至500℃,用时30min;
第四步:从500℃上升至750℃,用时25min;
第五步:在750℃保持90min;
第六步:从750℃下降至0℃,用时150min。
4.根据权利要求1所述的制备方法,其特征在于,制备过程中,设定激光为EGY NGR模式,预溅射频率设定为1~3HZ,正式溅射频率设定为3~7 HZ。
5.根据权利要求1所述的制备方法,其特征在于,第一、第二和第三层的厚度分别为42nm、30nm、40nm。
6.根据权利要求1所述的制备方法,其特征在于,第一、第二和第三层的晶相分别是(001)(002);(001)(002);(001)(002)BTO、(002)(004)CeO2
7.根据权利要求1所述的制备方法,其特征在于,第三层BaTiO3与CeO2 原子比为0.5∶0.5。
8.一种忆阻器,其特征在于,其结构是在权利要求1-7任一方法制备的硅基分子束异质外延生长材料上生长Pd顶电极层。
9.根据权利要求8所述的忆阻器,其特征在于,所述Pd顶电极层的厚度为30-50nm,直径为80-100μm。
10.权利要求8所述的忆阻器在仿神经器件和铁电器件中的应用。
CN202111074604.7A 2021-06-11 2021-09-14 硅基分子束异质外延生长材料的制备方法及忆阻器和应用 Active CN113594025B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/676,098 US11974512B2 (en) 2021-06-11 2022-02-18 Preparation method of silicon-based molecular beam heteroepitaxy material, memristor, and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110654621 2021-06-11
CN2021106546211 2021-06-11

Publications (2)

Publication Number Publication Date
CN113594025A CN113594025A (zh) 2021-11-02
CN113594025B true CN113594025B (zh) 2023-07-28

Family

ID=78241781

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111074604.7A Active CN113594025B (zh) 2021-06-11 2021-09-14 硅基分子束异质外延生长材料的制备方法及忆阻器和应用

Country Status (2)

Country Link
US (1) US11974512B2 (zh)
CN (1) CN113594025B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1722390A (zh) * 2004-07-13 2006-01-18 中国科学院物理研究所 在硅片上外延生长掺杂锰酸镧薄膜异质结材料及制备方法
KR100740318B1 (ko) * 2006-07-27 2007-07-18 전남대학교산학협력단 질화티타늄을 이용하여 실리콘 기판상에SrTi03/BaTi03 인공초격자를 제조하는 방법
CN102723400A (zh) * 2011-12-31 2012-10-10 中国科学院半导体研究所 在SrTiO3衬底上调控多铁铁酸铋外延薄膜带隙的方法
CN105103277A (zh) * 2013-03-22 2015-11-25 国立研究开发法人科学技术振兴机构 电介质层及电介质层的制造方法、以及固态电子装置及固态电子装置的制造方法
CN106206944A (zh) * 2016-09-29 2016-12-07 南京大学 一种纳米薄膜忆阻器及其制备方法
CN106784307A (zh) * 2016-11-10 2017-05-31 河北大学 一种基于TiO2神经仿生层的神经仿生器件及其制备方法
CN107681048A (zh) * 2017-09-01 2018-02-09 河北大学 一种具有神经仿生功能的忆阻器及制备方法和应用
CN110060932A (zh) * 2019-04-25 2019-07-26 中南大学 铝酸镧/钛酸锶异质结及其制备方法
WO2021003683A1 (zh) * 2019-07-10 2021-01-14 中国科学院化学研究所 一种基于溶液法的氧化硅基忆阻器及其制备方法与应用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0445350A3 (en) * 1990-03-09 1991-12-11 The Regents Of The University Of California Microelectronic superconducting crossover and coil
US6888156B2 (en) * 2001-06-29 2005-05-03 National Institute For Materials Science Thin film device
JP2003142479A (ja) * 2001-11-02 2003-05-16 Fujitsu Ltd 半導体装置、エピタキシャル膜の製造方法、およびレーザアブレーション装置
US7879410B2 (en) * 2004-06-09 2011-02-01 Imra America, Inc. Method of fabricating an electrochemical device using ultrafast pulsed laser deposition
TWI349042B (en) * 2006-02-09 2011-09-21 Sputtering system providing large area sputtering and plasma-assisted reactive gas dissociation
US8110412B2 (en) * 2006-12-22 2012-02-07 Spansion Llc Integrated circuit wafer system with control strategy
KR20090120459A (ko) * 2007-03-19 2009-11-24 아사히 가라스 가부시키가이샤 도전체의 제조 방법
US20130168233A1 (en) * 2012-01-03 2013-07-04 Wisconsin Alumni Research Foundation Apparatus and methods for heteroepitaxial growth using pulsed laser and sputtering deposition with real-time, in situ rheed imaging
US11098403B2 (en) * 2017-02-07 2021-08-24 City University Of Hong Kong High entropy alloy thin film coating and method for preparing the same
CN109913813B (zh) * 2019-03-26 2023-03-28 南开大学 一种外延取向铌酸锂薄膜及其制备方法
CN110518117B (zh) * 2019-08-22 2021-06-11 华中科技大学 一种二维材料异质结的忆阻器及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1722390A (zh) * 2004-07-13 2006-01-18 中国科学院物理研究所 在硅片上外延生长掺杂锰酸镧薄膜异质结材料及制备方法
KR100740318B1 (ko) * 2006-07-27 2007-07-18 전남대학교산학협력단 질화티타늄을 이용하여 실리콘 기판상에SrTi03/BaTi03 인공초격자를 제조하는 방법
CN102723400A (zh) * 2011-12-31 2012-10-10 中国科学院半导体研究所 在SrTiO3衬底上调控多铁铁酸铋外延薄膜带隙的方法
CN105103277A (zh) * 2013-03-22 2015-11-25 国立研究开发法人科学技术振兴机构 电介质层及电介质层的制造方法、以及固态电子装置及固态电子装置的制造方法
CN106206944A (zh) * 2016-09-29 2016-12-07 南京大学 一种纳米薄膜忆阻器及其制备方法
CN106784307A (zh) * 2016-11-10 2017-05-31 河北大学 一种基于TiO2神经仿生层的神经仿生器件及其制备方法
CN107681048A (zh) * 2017-09-01 2018-02-09 河北大学 一种具有神经仿生功能的忆阻器及制备方法和应用
CN110060932A (zh) * 2019-04-25 2019-07-26 中南大学 铝酸镧/钛酸锶异质结及其制备方法
WO2021003683A1 (zh) * 2019-07-10 2021-01-14 中国科学院化学研究所 一种基于溶液法的氧化硅基忆阻器及其制备方法与应用

Also Published As

Publication number Publication date
CN113594025A (zh) 2021-11-02
US20230081176A1 (en) 2023-03-16
US11974512B2 (en) 2024-04-30

Similar Documents

Publication Publication Date Title
Muthukumar et al. Control of morphology and orientation of ZnO thin films grown on SiO2/Si substrates
TWI260352B (en) Method for obtaining reversible resistance switches on a PCMO thin film when integrated with a highly crystallized seed layer
CN110165053A (zh) 一种面向铁电存储器应用的ALD制备Hf0.5Zr0.5O2铁电薄膜的方法
CN104962858A (zh) 基于GaAs衬底的氧化镓薄膜及其生长方法
CN105714379A (zh) 一种硅上直接生长高掺杂钇铁石榴石薄膜的制备方法
CN109411328B (zh) 一种通过掺杂铁降低结晶温度的氧化镓薄膜制备方法
CN109023261B (zh) 一种石墨烯促进结晶的可转移钙钛矿氧化物压电织构薄膜的制备方法
CN109881157B (zh) 一种周期性调控二氧化钒薄膜相变性质的方法
CN113594025B (zh) 硅基分子束异质外延生长材料的制备方法及忆阻器和应用
CN104790029B (zh) 一种制备SnO外延薄膜的方法
CN110224035B (zh) 一种异质结、其制备方法和应用
CN108441824B (zh) 基于Pt衬底的外延取向铌酸锂薄膜及其生长方法
CN114380340B (zh) 无限层镍基超导体前驱物Nd1-xSrxNiO3的制备方法
CN107195534B (zh) Ge复合衬底、衬底外延结构及其制备方法
Tang et al. Electrical properties of highly (111)-oriented lead zirconate thin films
CN101752410A (zh) 一种用于高介电常数栅介质的外延薄膜及其制备方法
Gorka et al. Low-temperature epitaxy of silicon by electron beam evaporation
CN1664988A (zh) 一种在铝酸镁衬底上制备高质量ZnO单晶薄膜的方法
KR20140128735A (ko) 이온 주입법에 의한 그래핀의 두께 조절 방법 및 그래핀의 제조방법
Shih et al. Preparation of highly C-axis-oriented PZT films on Si substrate with MgO buffer layer by the sol–gel method
CN103215643B (zh) 一种锗衬底上制备单晶氧化物薄膜的方法
CN112695380A (zh) 一种新型透明导电氧化物薄膜的制备方法及其应用
CN114108087B (zh) 一种正交相五氧化二钽单晶薄膜的制备方法
CN103578934B (zh) 一种硅基绝缘体上锗衬底结构及其制备方法
CN109898138B (zh) 一种在锗衬底上外延生长单晶钛酸钡薄膜的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant