CN112695380A - 一种新型透明导电氧化物薄膜的制备方法及其应用 - Google Patents

一种新型透明导电氧化物薄膜的制备方法及其应用 Download PDF

Info

Publication number
CN112695380A
CN112695380A CN202011297238.7A CN202011297238A CN112695380A CN 112695380 A CN112695380 A CN 112695380A CN 202011297238 A CN202011297238 A CN 202011297238A CN 112695380 A CN112695380 A CN 112695380A
Authority
CN
China
Prior art keywords
transparent conductive
conductive oxide
blso
film
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011297238.7A
Other languages
English (en)
Other versions
CN112695380B (zh
Inventor
张如意
曹彦伟
宋洋
彭绍勤
毕佳畅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Institute of Material Technology and Engineering of CAS
Original Assignee
Ningbo Institute of Material Technology and Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Institute of Material Technology and Engineering of CAS filed Critical Ningbo Institute of Material Technology and Engineering of CAS
Priority to CN202011297238.7A priority Critical patent/CN112695380B/zh
Publication of CN112695380A publication Critical patent/CN112695380A/zh
Priority to US18/037,565 priority patent/US11982017B2/en
Priority to PCT/CN2021/099601 priority patent/WO2022105203A1/zh
Application granted granted Critical
Publication of CN112695380B publication Critical patent/CN112695380B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/082Oxides of alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/002Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • C30B23/063Heating of the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

本发明公开一种新型透明导电氧化物薄膜的制备方法,包括以下步骤:利用固相反应法制备Ba1‑xLaxSnO3得到BLSO磁控溅射靶材;利用SrTiO3、MgO、LaAlO3、(La,Sr)(Al,Ta)O3(LSAT)、MgAl2O4、Al2O3单晶基片和BLSO磁控溅射靶材,以氩气作为溅射气体,直接沉积制备BLSO薄膜即可制备得到新型透明导电氧化物薄膜;其中,所述溅射方法中,所述基片的温度为750℃‑950℃,所述Ar气的气压为25‑77 Pa;根据本发明制备的透明导电氧化物薄膜室温迁移率可达115 cm2/V∙s,室温载流子浓度可达1.2×1021 cm‑3,室温电导率可达14000 S/cm。

Description

一种新型透明导电氧化物薄膜的制备方法及其应用
技术领域
本发明涉及透明导电氧化物薄膜制备领域,特别是涉及室温高迁移率透明导电氧化物薄膜及其制备方法及其应用。
背景技术
新型透明导电氧化物薄膜在透明显示器件、发光器件、触摸屏、光伏电池、透明逻辑器件等领域有着重要的应用。目前广泛使用的氧化铟锡(ITO)透明导电薄膜存在原料成本高(铟是一种非常稀散的贵金属)、化学性质不稳定的缺点,这需要开发包括Ba1-xLaxSnO3在内的新型透明导电氧化物薄膜材料。BaSnO3(BSO)是一种透明的介质材料,同时也是一种宽禁带半导体材料。通过La3+少量取代Ba2+离子,可实现n型掺杂的同时保持薄膜在可见光范围内高透过性。Ba1-xLaxSnO3单晶薄膜具有优异的化学和热稳定性,并且室温载流子迁移率可达183 cm2/V∙s(载流子浓度8×1019 cm-3)。但是实现上述室温高迁移率需要:(1)依赖分子束外延(MBE)、脉冲激光沉积技术(PLD)等昂贵沉积设备;(2)需要借助厚的BaSnO3绝缘透明缓冲层或者特殊退火处理工艺。 上述方法存在成本高、技术门槛高、制备过程复杂的缺点,因此有必要开发一种直接、经济、可大规模制备这种新型透明导电氧化物薄膜的方法,以及开发基于此薄膜的新型透明导电器件。
发明内容
本发明针对上述问题,提供一种新型透明导电氧化物薄膜的制备方法,并且将其运用于透明导电器件中。
获得高性能(高室温迁移率)BLSO薄膜的关键是在薄膜生长过程中有效降低薄膜中的缺陷密度(主要为位错密度)。前期研究发现通过生长200-500 nm厚的BSO缓冲层或是在缺氧氛围下退火都有助于降低BLSO薄膜位错密度,从而提高室温载流子迁移率。另外BLSO薄膜中的室温高迁移率也有赖于薄膜制备方法,通常分子束外延技术相较于其他技术能够获得更好的薄膜结晶质量,从而实现高达183 cm2/V∙s的室温载流子迁移率。但是分子束外延技术的缺点是设备和原料成本高昂、技术复杂。磁控溅射技术是一种适用于大规模生产的较低成本的薄膜制备技术,但是该技术通常被认为较难获得高质量单晶外延薄膜,并且此前极少有研究采用该方法成功制备室温高迁移率BLSO透明导电薄膜材料。本发明核心是开发了一种利用磁控溅射技术直接制备室温高迁移率透明导电氧化物薄膜的方法,并且该薄膜可被应用于各类透明导电器件中。
本发明技术方案如下:一种新型透明导电氧化物薄膜的方法,包括以下步骤:
利用固相反应法制备Ba1-xLaxSnO3(BLSO)超纯(99.99%)2英寸磁控溅射靶材;
采用磁控溅射方法,利用SrTiO3(STO)、MgO(MGO)、LaAlO3(LAO)、(La,Sr)(Al,Ta)O3(LSAT)、MgAl2O4(MAO)、Al2O3(蓝宝石)单晶基片和上述BLSO超纯靶材,以超纯氩气(99.999%)作为溅射气体,直接沉积制备BLSO薄膜。其中,所述溅射方法中,所述基片的温度为750℃ - 900℃,所述氩气的气压为25 - 77 Pa,所述薄膜为透明导电氧化物外延薄膜。
作为优化,所述BLSO磁控溅射靶材和透明导电氧化物薄膜中La的掺杂含量x介于1% ~10% 之间。
作为优化,所述单晶基片包含SrTiO3、MgO、LaAlO3、(La,Sr)(Al,Ta)O3(LSAT)、MgAl2O4、Al2O3(蓝宝石)中的任一种。
作为优化,所述磁控溅射溅射方法中,氩气的压力为25-77 Pa,射频电源的溅射功率为20W-50W。
作为优化,所述新型透明导电氧化物薄膜的厚度为5nm - 1000nm。
本发明制备的新型透明导电薄膜主要应用于透明导电器件中。
本发明的有益效果是:根据本发明制备的透明导电氧化物薄膜室温迁移率可达115 cm2/V∙s,室温载流子浓度可达1.2 × 1021 cm-3, 室温电导率可达14000 S/cm.。
附图说明
图1为本申请新型透明导电氧化物薄膜结构示意图;
图2为本申请实施例1制得的新型透明导电氧化物薄膜示意图;
图3为本申请实施例1制得的新型透明导电氧化物薄膜结构测试图;
图4为本申请实施例1制得的新型透明导电氧化物薄膜结晶质量测试图;
图5为本申请实施例1制得的新型透明导电氧化物薄膜电学性能测试图。
具体实施方式
以下将对本发明提供的室温高迁移率透明导电氧化物薄膜及其直接制备方法、透明导电器件作进一步说明。
申请人经过长期而深入的研究发现缺氧氛围溅射生长BLSO薄膜更有利于降低位错密度,提高薄膜室温迁移率,并且薄膜可见光波段透过性质并不会因为缺氧氛围生长而受到影响。
基于此,本申请提供的室温高迁移率透明导电氧化物薄膜的制备方法,包括以下步骤:
S1,按照化学计量比对La2O3/SnO2/BaCO3超纯(99.99%)初始原料进行配料,经过湿法球磨、干燥、煅烧反应、成型、烧结等标准固相反应工艺,制备2英寸超纯(99.99%)Ba1- xLaxSnO3(x = 1% ~ 10%)磁控溅射靶材,再将靶材装载到磁控溅射系统的靶枪上;
S2,依次利用丙酮和酒精溶液对氧化物单晶基片进行超声清洗5分钟-10分钟,以去除表面潜在污染物,并用氮气枪吹干,然后将基片固定在加热台上。
S3,依次利用机械泵和分子泵将磁控溅射腔体本底真空抽取到~ 10-3 Torr,并提前将加热台温度升高到750℃-950℃,然后将纯氩气(99.999%)流量设为10-40 sccm,使得溅射气压维持在25-77 Pa,设置射频电源功率为20-50W,对BLSO靶材进行预溅射10分钟,然后开启加热台挡板正式开始BLSO薄膜溅射生长。
在步骤S3中,提前将加热台温度升高到750℃-950℃有助于进一步去除基片表面有机残留物,提高基片表面洁净度,为薄膜生长做好准备。具体地讲,加热台加热时间维持在15-30分钟。在步骤S3中,对BLSO靶材进行预溅射的目的是为了去除BLSO靶材表面吸附气体并消除初期溅射不稳定对薄膜生长带来的不利影响。
考虑到具体用途,所述氧化物基片优选为SrTiO3(STO)、MgO(MGO)、LaAlO3(LAO)、(La,Sr)(Al,Ta)O3(LSAT)、MgAl2O4(MAO)、Al2O3(蓝宝石)中的一种。
发明人发现,基片的温度、氩气气压、射频电源功率对BLSO薄膜外延生长、位错密度、室温迁移率有着显著的影响。
为了提高BLSO薄膜单晶质量、减小位错密度、提高室温迁移率,基片温度优选为800-900℃。
进一步地,优选的氩气气压范围为40-60 Pa,氩气气压是通过氩气的流量进行调节。在40-60 Pa气压范围内,BLSO薄膜的生长速率适中,适宜高质量单晶外延薄膜生长。需要指出的是纯氩气溅射为BLSO薄膜生长提供了一种相对缺氧的氛围,有助于减小位错密度,同时BLSO薄膜仍保持可见光波段良好透过性。
进一步优选的射频功率范围为40-45 W,在该功率氛围下,BLSO靶材溅射速率适中,能够充分保证高质量单晶外延薄膜生长,减少位错密度。
控制溅射时间可以使得BLSO薄膜的厚度处于5-500nm范围内,在该厚度范围内薄膜具备良好的透明导电性质。
调整溅射功率、气压、时间可以将薄膜厚度控制在 5nm-1000nm范围内,在此厚度范围内均为透明导电薄膜
本方法通过BLSO薄膜关键生长参数(基片的温度、氩气气压、射频电源功率)进行了深入摸索和优化,能够达到显著降低位错密度,提高室温迁移率的目的。因此本方法具有操作直接、过程可控、可规模化制备的优点。适宜用作开发大尺寸室温高迁移率透明导电氧化物薄膜。
本发明还提供一种透明导电器件,包括所述的室温高迁移率透明导电薄膜。
具体地,所述透明导电器件透明显示器件、发光器件、触摸屏、光伏电池、透明逻辑器件等。
可以理解,所述透明导电器件除了包括所述室温高迁移率透明导电薄膜以外,还包括其他必要的组成和结构。
接下来将通过以下具体实施例对新型透明导电氧化物薄膜的制备方法及其器件应用做进一步的说明。
实施例1
选取Ba0.96La0.04SnO3(x=0.04)靶材和SrTiO3(STO)单晶基片,制备厚度为200nm的BLSO透明导电薄膜。
依次使用分析纯的丙酮和酒精溶液对STO基片进行超声清洗5分钟,并用氮气枪吹干。
将清洗后的基片装载到溅射腔中的加热台上,并抽取真空至真空度达到1*10- 3Torr,打开加热台电源,设置温度800 ℃,烘烤基片15分钟。
控制超纯氩气的流量为18 sccm,维持氮气气压在50 Pa,维持加热台温度为800℃。然后开启BLSO靶靶枪的射频电源,设置溅射功率为40W,预溅射10分钟。再调近靶枪与加热台工作距离到10cm。经过约4个小时溅射后,薄膜厚度经椭偏仪测定约为200 nm。该薄膜具有良好的可见光透过性(如图2所示)
进一步地,对上述薄膜进行微结构测试,从图3高分辨XRD 2theta-omega扫描图可以看到,BLSO薄膜沿着(001)方向择优生长,没有看到其他杂相出现。从图4对薄膜和衬底分别进行的摇摆曲线测试可以看到,BLSO薄膜的摇摆曲线的半峰高(FWHM)仅仅相对STO单晶衬底半峰高宽花了2.5倍。考虑到BLSO和STO衬底存在~5%的大的晶格失配,导致外延生长BLSO薄膜不可避免出现一定的位错密度。但是BLSO薄膜摇摆曲线半峰宽相对衬底仅有2.5倍宽化,表明BLSO具有非常高的结晶质量。
接下来,利用变温霍尔效应测试系统对该新型透明导电氧化物薄膜进行电学性能测试。如图5所示,薄膜电导率随温度单调下降,显示出良好的金属性。并且室温电导率可达6600 S/cm。载流子迁移率随着温度逐渐下降,而载流子浓度基本不随温度发生变化。室温载流子迁移率可达115 cm2/V∙s, 载流子浓度约为3.6×10-20 cm-3。将STO(001)单晶衬底替换成STO(110)衬底,载流子浓度可以进一步提升4.6×10-20 cm-3,使得室温迁移率进一步提升到8000 S/cm。
实施例2
选取Ba0.98La0.02SnO3(x=0.02)靶材和MgO单晶基片,制备厚度为500nm的BLSO透明导电薄膜。
依次使用分析纯的丙酮和酒精溶液对MgO基片进行超声清洗5分钟,并用氮气枪吹干。
将清洗后的基片装载到溅射腔中的加热台上,并抽取真空至真空度达到1*10- 3Torr以下,打开加热台电源,设置温度800 ℃,烘烤基片15分钟。
控制超纯氩气的流量为6 sccm,维持氮气气压在25 Pa,维持加热台温度为800℃。然后开启BLSO靶靶枪的射频电源,设置溅射功率为50W,预溅射10分钟。再调近靶枪与加热台工作距离到15cm。经过约7个小时溅射后,薄膜厚度经椭偏仪测定约为500 nm。该薄膜具有良好的可见光透过性(如图2所示)
通过高分辨X射线衍射测试表明BLSO薄膜能够外延生长在MgO衬底上,薄膜具有较高接近质量,电学性能测试表明BLSO薄膜具有82 cm2/V∙s室温载流子迁移率、1.4×10-20cm-3室温载流子浓度以及1830 S/cm的室温电导率。
实施例3
选取Ba0.92La0.08SnO3(x=0.08)靶材和LAO单晶基片,制备厚度为50nm的BLSO透明导电薄膜。
依次使用分析纯的丙酮和酒精溶液对LAO基片进行超声清洗5分钟,并用氮气枪吹干。
将清洗后的基片装载到溅射腔中的加热台上,并抽取真空至真空度达到1*10- 3Torr以下,打开加热台电源,设置温度850 ℃,烘烤基片15分钟。
控制超纯氩气的流量为30 sccm,维持氮气气压在77 Pa,维持加热台温度为850℃。然后开启BLSO靶靶枪的射频电源,设置溅射功率为30W,预溅射10分钟。再调近靶枪与加热台工作距离到10cm。经过约2个小时溅射后,薄膜厚度经椭偏仪测定约为50 nm。该薄膜具有良好的可见光透过性(如图2所示)
通过高分辨X射线衍射测试表明BLSO薄膜能够外延生长在LAO衬底上,具有(001)晶面取向,并且薄膜具有较高接近质量,电学性能测试表明BLSO薄膜具有50 cm2/V∙s室温载流子迁移率、8.2×10-20 cm-3室温载流子浓度以及6200S/cm的室温电导率。
对比例1
对比例1与实施例1的区别在于,加热台的温度为500℃。
加热台温度为600℃时,高分辨X射线衍射显示尽管BLSO薄膜具有001衍射峰,但是结晶质量非常差,导致薄膜导电性很差,方块电阻在兆欧量级。
对比例2
对比例3与实施例1的区别在于溅射过程中氩气气压维持1 Pa。
氩气气压维持1 Pa时,高分辨X射线衍射显示尽管BLSO薄膜具有001衍射峰,但是结晶质量非常差,导致薄膜导电性很差,方块电阻在兆欧量级。
对比例3
对比例3与实施例1的区别在于,溅射射频源功率为100W。
溅射射频源功率为100W,高分辨X射线衍射显示尽管BLSO薄膜具有001衍射峰,但是结晶质量非常差,导致薄膜导电性很差,方块电阻在兆欧量级。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (6)

1.一种新型透明导电氧化物薄膜的制备方法,其特征在于,包括以下步骤:
利用固相反应法制备Ba1-xLaxSnO3 得到BLSO磁控溅射靶材;
采用磁控溅射方法,利用SrTiO3、MgO、LaAlO3、(La,Sr)(Al,Ta)O3(LSAT)、MgAl2O4、Al2O3单晶基片和BLSO磁控溅射靶材,以氩气作为溅射气体,直接沉积制备BLSO薄膜即可制备得到新型透明导电氧化物薄膜;其中,所述溅射方法中,所述基片的温度为750℃ - 950℃,所述Ar气的气压为25 - 77 Pa。
2. 根据权利要求1所述新型透明导电氧化物薄膜的制备方法,其特征在于所述BLSO磁控溅射靶材和透明导电氧化物薄膜中La的掺杂含量x介于1% ~10% 之间。
3.根据权利要求1所述新型透明导电氧化物薄膜的制备方法,其特征在于所述单晶基片包含SrTiO3、MgO、LaAlO3、(La,Sr)(Al,Ta)O3(LSAT)、MgAl2O4、Al2O3(蓝宝石)中的任一种。
4. 根据权利要求1所述新型透明导电氧化物薄膜的制备方法,其特征在于,新型透明导电氧化物薄膜的厚度为5nm - 1000nm。
5. 根据权利要求1所述新型透明导电氧化物薄膜的制备方法,其特征在于,所述磁控溅射溅射方法中,氩气的压力为25-77 Pa,射频电源的溅射功率为20W-50W。
6.一种新型透明导电氧化物薄膜的应用,其特征在于,包括权利要求1-5任一项所述的新型透明导电氧化物薄膜在透明导电器件中的应用。
CN202011297238.7A 2020-11-19 2020-11-19 一种透明导电氧化物薄膜的制备方法及其应用 Active CN112695380B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202011297238.7A CN112695380B (zh) 2020-11-19 2020-11-19 一种透明导电氧化物薄膜的制备方法及其应用
US18/037,565 US11982017B2 (en) 2020-11-19 2021-06-11 Transparent conductive oxide thin film and use thereof
PCT/CN2021/099601 WO2022105203A1 (zh) 2020-11-19 2021-06-11 一种新型透明导电氧化物薄膜的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011297238.7A CN112695380B (zh) 2020-11-19 2020-11-19 一种透明导电氧化物薄膜的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN112695380A true CN112695380A (zh) 2021-04-23
CN112695380B CN112695380B (zh) 2021-12-28

Family

ID=75507161

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011297238.7A Active CN112695380B (zh) 2020-11-19 2020-11-19 一种透明导电氧化物薄膜的制备方法及其应用

Country Status (3)

Country Link
US (1) US11982017B2 (zh)
CN (1) CN112695380B (zh)
WO (1) WO2022105203A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022105203A1 (zh) * 2020-11-19 2022-05-27 中国科学院宁波材料技术与工程研究所 一种新型透明导电氧化物薄膜的制备方法及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111225993A (zh) * 2017-12-22 2020-06-02 株式会社Lg化学 用于制造透明导电膜的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101337297B1 (ko) 2012-09-14 2013-12-05 서울대학교산학협력단 높은 전하 이동도를 갖는 산화물 반도체 제조 시스템 및 방법
CN112695380B (zh) 2020-11-19 2021-12-28 中国科学院宁波材料技术与工程研究所 一种透明导电氧化物薄膜的制备方法及其应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111225993A (zh) * 2017-12-22 2020-06-02 株式会社Lg化学 用于制造透明导电膜的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WOONG-JHAE LEE1等: "Oxygen diffusion process in a Ba0.96La0.04SnO3 thin film on SrTiO3(001) substrate as investigated by time-dependent Hall effect measurements", 《PHYS. STATUS SOLIDI A》 *
孙伟峰: "可柔性透明导电Ba1-xLaxSnO3薄膜的光电性能研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *
费潇,罗炳成,金克新,陈长乐: "镧掺杂BaSnO3薄膜的电学和光学特性", 《物理学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022105203A1 (zh) * 2020-11-19 2022-05-27 中国科学院宁波材料技术与工程研究所 一种新型透明导电氧化物薄膜的制备方法及其应用
US11982017B2 (en) 2020-11-19 2024-05-14 Ningbo Institute Of Materials Technology And Engineering, Chinese Academy Of Sciences Transparent conductive oxide thin film and use thereof

Also Published As

Publication number Publication date
CN112695380B (zh) 2021-12-28
US20240003051A1 (en) 2024-01-04
WO2022105203A1 (zh) 2022-05-27
US11982017B2 (en) 2024-05-14

Similar Documents

Publication Publication Date Title
Cao et al. Highly transparent and conducting fluorine-doped ZnO thin films prepared by pulsed laser deposition
CN112086344B (zh) 一种铝镓氧/氧化镓异质结薄膜的制备方法及其在真空紫外探测中的应用
CN112831768B (zh) 一种高结晶质量的氮化铪薄膜制备方法及应用
JP3531865B2 (ja) 超平坦透明導電膜およびその製造方法
CN112695380B (zh) 一种透明导电氧化物薄膜的制备方法及其应用
US20130248780A1 (en) Electrically conductive film, preparation method and application therefor
CN1694225A (zh) GaN/β-Ga2O3复合衬底的材料及其制备方法
CN110724922B (zh) 一种柔性衬底上晶体取向和极性可控的外延azo薄膜及其制备方法
Yusof et al. Fabrication and characterization of copper doped zinc oxide by using Co-sputtering technique
CN105118853A (zh) 基于MgO衬底的氧化镓薄膜及其生长方法
Chen et al. Optimization of the process for preparing Al-doped ZnO thin films by sol-gel method
JP4237861B2 (ja) 高単結晶性酸化亜鉛薄膜及び製造方法
CN109504951B (zh) 一种生长混合相锌镁氧三元氧化物纳米线网的方法
CN103103479B (zh) 一种硫氮共掺杂制备p型氧化锌薄膜的方法
CN115376886B (zh) 一种氮元素掺杂p型氧化镓薄膜及其制备方法和应用
CN110993504A (zh) 基于SiC衬底的Ga2O3薄膜的制备方法及基于SiC衬底的Ga2O3薄膜
KR100806681B1 (ko) 주기적 급속 열처리에 의한 고전도성 산화아연의 제조방법
CN101792901B (zh) 一种在钇掺杂氧化锆衬底上制备立方结构氧化铟单晶薄膜的方法
KR20140120663A (ko) 산화알루미늄아연 박막의 제조 방법
CN111048404B (zh) 一种缓冲层结构及其制备方法
CN110981215B (zh) 一种提高铝掺杂氧化锌导电玻璃热稳定性的方法
KR100594383B1 (ko) 알루미늄이 도핑된 산화 아연 박막 제조 방법
CN111910158B (zh) 一种超宽禁带p型SnO2薄膜及其制备方法
CN117684137A (zh) 一种高性能多元掺杂氧化锌透明导电薄膜的制备方法
KR20230061847A (ko) 이산화탄소 레이저 보조 rf 스퍼터링 공정에 의한 질화갈륨 박막 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant