CN115029683B - 一种通过低键能N2O热氧化制备高质量稳态β-Ga2O3薄膜的方法 - Google Patents

一种通过低键能N2O热氧化制备高质量稳态β-Ga2O3薄膜的方法 Download PDF

Info

Publication number
CN115029683B
CN115029683B CN202210662337.3A CN202210662337A CN115029683B CN 115029683 B CN115029683 B CN 115029683B CN 202210662337 A CN202210662337 A CN 202210662337A CN 115029683 B CN115029683 B CN 115029683B
Authority
CN
China
Prior art keywords
film
thermal oxidation
beta
preparation
bond energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210662337.3A
Other languages
English (en)
Other versions
CN115029683A (zh
Inventor
刘毅
韦素芬
李明逵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jimei University
Original Assignee
Jimei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jimei University filed Critical Jimei University
Priority to CN202210662337.3A priority Critical patent/CN115029683B/zh
Publication of CN115029683A publication Critical patent/CN115029683A/zh
Application granted granted Critical
Publication of CN115029683B publication Critical patent/CN115029683B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02614Transformation of metal, e.g. oxidation, nitridation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)

Abstract

本发明公开了一种通过低键能N2O热氧化制备高质量稳态β‑Ga2O3薄膜的制备方法,是在蓝宝石衬底上形成GaN膜层,然后在GaN膜层上生长一层Ga2O3超薄之薄膜层,作为柔性种子晶体,再在低键能N2O气氛中进行两阶段高温热氧化处理生长单晶稳态β‑Ga2O3薄膜。本发明的工艺实现方法简易、稳定且有效缓解了Ga2O3薄膜与衬底间的晶格失配问题,大大提高了薄膜质量,此方法为Ga2O3基相关器件提供了强力支撑。

Description

一种通过低键能N2O热氧化制备高质量稳态β-Ga2O3薄膜的 方法
技术领域
本发明涉及半导体薄膜制备的技术领域,具体涉及一种通过低键能N2O热氧化制备高质量稳态β-Ga2O3薄膜的方法。
背景技术
氧化镓(Ga2O3)属于宽禁带(4.2-5.3eV)半导体材料,有5种同分异构体(α、β、γ、ε和δ),其中热力学最稳定的晶相为单斜晶系的β-Ga2O3结构。Ga2O3在紫外和可见光波段均有良好透光性,对应的吸收波长为位于深紫外波段中的253nm,击穿场强大(8MV/cm),具有良好的热稳定性。因此,Ga2O3材料的诸良特性使其在日盲光电探测器、功率器件、紫外透明电极等领域具有广泛地应用潜能。
发展优异的Ga2O3基器件的关键一步是需要获取高结晶质量的Ga2O3薄膜,其中制备Ga2O3薄膜主要方法包括:化学气相沉积(CVD)、激光脉冲沉积(PLD)、分子束外延(MBE)、金属有机物化学气相外延(MOCVD)、射频磁控溅射(RFMS)和热氧化(TO)等方法。在以上沉积氧化物薄膜的不同制备方法中,MOCVD和MBE方法存在设备价格成本高的问题,普通CVD、PLD和RFMS虽然技术成熟、成本低,但生长出的氧化镓薄膜结晶质量较差,仍需经过沉积后的高温后退火处理以提升其结晶度,这不可避免地会增加薄膜被破坏的几率。在上述沉积技术中难以兼顾成本低及氧化镓薄膜结晶质量好。因此,提供一种工艺流程简易,可有效快速制备高结晶度稳态β-Ga2O3薄膜的技术方法是亟需解决的问题。
发明内容
本发明的目的是:基于气氛控制高温氧化炉系统,利用已可用MOCVD产业化生长的GaN外延层,提供一种使用低键能气体N2O灵活高效制备稳态β-Ga2O3薄膜的方法,以此来提升热氧化生长Ga2O3薄膜的结晶度,进一步克服Ga2O3薄膜P型导电的困难,并可以积极推动Ga2O3薄膜基相关器件的发展。
为了实现以上目的,本发明的技术方案为:
一种通过低键能N2O热氧化制备高质量稳态β-Ga2O3薄膜的方法,包括以下步骤:
1)于氧化铝衬底上生长GaN膜层;
2)于GaN膜层上生长Ga2O3种子层;
3)将步骤2)得到的结构置于N2O气氛中,首先加热至600~700℃并保持15~20min,然后加热至1050~1150℃并保持45~60min,通过热氧化生长β-Ga2O3薄膜。
可选的,所述步骤1)中,GaN膜层采用MOCVD工艺生长,厚度为4~5μm。
可选的,所述步骤2)中,Ga2O3种子层采用磁控溅射工艺生长,厚度为5~10nm。
可选的,所述步骤2)具体为:将步骤1)得到的结构放入磁控溅射腔室中,把溅射腔室本底真空抽至低于5.0×10-4Pa,然后通入35~45sccm的Ar2和1~5sccm的O2,将溅射工作压力设置在1~3Pa,溅射温度为室温,使用射频功率源,功率设置为80~120W,溅射Ga2O3种子层。
可选的,所述步骤3)具体为:
a)将步骤2)得到的结构置于气氛控制石英管式炉中;
b)管式炉中抽真空至压强抽至1个标准大气压下,通入Ar2气流,直至卸除管式炉内低于标准大气压的负压状态,回到常压后,关闭Ar2,维持通入50~200sccm的N2O,进行升温热氧化。
可选的,所述步骤3)中,加热至600~700℃的升温速率为15~20℃/min,加热至1050~1150℃的升温速率为25~35℃/min。
可选的,所述步骤3)中,首先加热至650℃并保持20min,然后加热至1100℃并保持45min。
由上述制备方法制备的高质量稳态β-Ga2O3薄膜。
进一步优选的,所述制备方法为:首先,对基于蓝宝石衬底的GaN薄膜依次用丙酮、无水乙醇和去离子水进行超声波清洗。然后,利用磁控溅射沉积方法,在GaN薄膜的表面生长一层Ga2O3超薄之薄膜层,作为柔性种子晶体,以提升热氧化过程中Ga2O3薄膜的自一致生长。将表面已覆盖Ga2O3超薄柔性种子层的GaN放入氧化炉,通入低键能N2O气,对GaN进行两阶段高温热氧化处理。热氧化过程发生以下反应:(1)第一阶段,升温至650℃保持20min,对最表面Ga2O3超薄柔性种子层在N2O气氛下热退火,使该种子层更致密,结晶度更优。(2)第二阶段,自650℃迅速升温至1100℃,并保持45min,发生氧化反应。由于N2O键能低,在温度至650℃以上的整个升温过程中,O原子就已摆脱了“N-O”键束缚,O原子穿过表面种子层,进入GaN层,有效做好替位准备。当温度到达1100℃并保持时,GaN发生热键断反应,GaN的N断键脱离而形成富Ga状态。因此,自界面处而逐渐向下,Ga和N2O分子中O原子逐层结合,并在种子层引导下形成Ga2O3的晶核,为Ga2O3薄膜的向下氧化生长提供有效的结合位点。此外,GaN中N形成的N替位No与Ga2O3中的本征缺陷Ga空位VGa结合,结合形成No-VGa结构——可作为有效的受主掺杂源,制备出稳定的P型掺N的Ga2O3薄膜。重要的是,采用低键能态的N2O制备出的稳态β晶相Ga2O3薄膜氧化生长速率更快,结晶度更优,掺N效果更佳。
本发明的有益效果为:
本发明以采用热氧化(TO)方法作为生成高结晶度Ga2O3薄膜的手段,且创新地使用低键能气体N2O作为氧化反应气氛,基于相同的温度和时间条件下,通入N2O氧化生成Ga2O3薄膜对比通入高纯O2气体。由于N2O具有更低键能,在同等热氧化条件下可断键获取的O原子更多,且分解出来的N还可辅助进行掺杂。利用此方法可稳定快速生长出高结晶度、p型β-Ga2O3薄膜,可有效突破制备Ga2O3基器件的关键瓶颈,并且拥有广泛地实际应用前景。
本发明的工艺实现方法简易、稳定且有效缓解了Ga2O3薄膜与衬底间的晶格失配问题,大大提高了薄膜质量,此方法为Ga2O3基相关器件提供了强力支撑。还可通过改变热氧化的温度、气体流速等参数来调整制备不同结构及功能的Ga2O3薄膜,具备灵活性。
附图说明
图1为实施例1的高质量稳态β-Ga2O3薄膜的制备方法的工艺流程图;
图2为实施例1的单晶GaN上热氧化生长β-Ga2O3薄膜的原子结构机理模型图;
图3为实施例1和对比例1制备出的Ga2O3薄膜X射线衍射图谱(XRD)对比图,图中实施例1的Ga2O3薄膜表示为N2O-TO,对比例1的Ga2O3薄膜表示为O2-TO;
图4为实施例1和对比例1制备出的Ga2O3薄膜的场发射扫描电镜图像(FESEM)。
具体实施方式
以下结合附图和具体实施例对本发明做进一步解释。
实施例1
参考图1,实施例1的高质量稳态β-Ga2O3薄膜的制备方法,其阶段步骤为:
一、氮化镓外延层制备阶段
(1)、衬底清洗过程:将c面的氧化铝衬底依次用去离子水(10min)、丙酮(15min)、去离子水(10min)、无水乙醇(15min)和去离子水(10min)中进行超声波振荡清洗,以去除衬底表面存在的杂质,其后用高纯氮气将清洗后的衬底吹扫干净。
(2)、将处理干净后的衬底放入金属有机物化学气相外延(MOCVD)外延层生长设备中,制备氮化镓膜层。氮化镓膜层的厚度范围可选为5μm。
二、表面超薄氧化镓种子层溅射阶段
将制备好的氮化镓外延层样品再次进行预处理:依次用丙酮、无水乙醇、去离子水连续清洗样品表面10min,以去除表面的原生氧化层和有机物杂质。洗净吹干后及时放入磁控溅射设备腔室中,随后进行溅射,详细步骤如下:
(1)、通过高速分子泵快速地把溅射腔室本底真空抽至2.0×10-4Pa;
(2)、本底真空达到后,关闭真空计并开始通入溅射工作气体高纯Ar2(39sccm)和高纯O2(1sccm);
(3)、溅射工作压力设置在1Pa,溅射温度为室温;
(4)、使用射频(RF)功率源,功率设置为100W;
(5)、正式开始溅射超薄氧化镓种子层,通过设备内的膜厚检测仪实时监控生长薄膜的厚度,最终在其表面层溅射上~10nm的氧化镓种子层;
三、热氧化阶段
(1)、将经上述处理后的样品放置在两端未加封口的石英舟中并缓慢推送入气氛控制石英管式炉中。
设置好程序正式进行加热升温前,还需进行以下操作:
a)使用机械泵浦将管炉中的压强抽至1个标准大气压下,此步主要目的是抽干净管炉内的空气以及杂质;
b)关闭机械泵,打开进气阀门,通入400sccm Ar2气流,直至卸除管炉内低于标准大气压的负压状态,通过压力表观察回到常压后,再打开出气阀门,关闭Ar2,开始通入200sccm的N2O,吹扫石英管式炉10min,此步是确保加热升温前炉内没有除实验所需反应气体外的任何其它杂质气体。
(2)、正式进行升温热氧化阶段,先以17℃/min的速率加热炉温度至650℃,并在该温度下保持20min,以便使种子层变成高密度的结晶体,可提升热氧化Ga2O3薄膜的自一致生长。随后,炉内温度以30.5℃/min的速率迅速升高至1100℃,并在该温度下保持45min,在此温度下,单晶GaN由于热键断反应和N2O分子及其分解出来的N、O原子的碰撞,使得表层GaN的N发生断键脱离而形成富Ga状态,而界面处的Ga和N2O分子中断键解离出来的O原子成为形成Ga2O3的晶核,为Ga2O3薄膜的生长提供有效的结合位点。如图2所示单晶GaN(0002)上热氧化生长薄膜的原子结构机理模型图。进一步通过GaN提供的Ga和N2O提供的O进行Ga2O3薄膜的连续氧化生长,同时GaN中N形成的N替位No与Ga2O3中的本征缺陷Ga空位VGa结合,形成的No-VGa复合体结构可作为有效的受主掺杂源,另加上N2O分解出的N原子,可以制备出掺N更佳的p型β-Ga2O3薄膜。高温生长结束后,自然冷却至室温后取样,且全程均通200sccm N2O。
使用HMS-5000型霍尔效应测试仪测量了该β-Ga2O3薄膜的电学性质,包括电阻率、迁移率、载流子浓度、导电类型,具体数据如下表1所示。从表1的数据可以发现,使用本发明所述方法制备的β-Ga2O3薄膜呈现p型导电性,载流子浓度达到1017cm-3数量级。
表1低键能N2O热氧化制备β-Ga2O3薄膜的Hall电学特性
温度(K) 导电类型 载流子浓度(cm-3) 迁移率(cm2/Vs) 电阻率(Ω·cm)
RT(室温) p 2.2×1017 14.7 35.1
对比例1
对比例1与实施例1的区别在于,将第三阶段的步骤(2)中的N2O换成O2,其它条件不变。
图3为基于同样的热氧化参数工序,使用不同气氛(N2O和O2),制备出的Ga2O3薄膜X射线衍射图谱(XRD)对比图,其中图(b)局部放大图为峰及其半高宽值,可以判断出薄膜为稳态β相Ga2O3,且可非常直观观察出使用N2O进行热氧化的峰值更高,强峰/>对应N2O和O2的半高全宽值(FWHM)分别为0.25°和0.35°,即N2O进行热氧化制备β-Ga2O3薄膜的结晶质量更优。图4为场发射扫描电镜图像(FESEM),由图4观察到:(a)和(b)为上层β-Ga2O3薄膜的表面形貌图,可明显看到N2O组的晶粒尺寸更大,覆盖率更广,这和XRD的结果相对应,再次证明使用N2O进行热氧化可以大大提高β-Ga2O3薄膜的结晶度;(c)为薄膜截面图,分层明显,其中Ga2O3层厚度在2μm左右,氧化的效果非常成功。本发明同时也实现了β-Ga2O3薄膜的p型导电,可大大扩展Ga2O3薄膜基器件的应用。
Ga2O3薄膜的质量性能在很大程度上取决于其所生长的晶体结构。本发明基于热氧化的方法,也可以强力缓解Ga2O3薄膜与衬底间的晶格失配等问题,又可以进一步提高薄膜晶体质量。最后,本发明可利用GaN材料制备工艺成熟,易获取到高质量的原材料,热氧化方法成本低,操作简单灵活等特点,具有很高的可操作性及实用性。
上述实施例仅用来进一步说明本发明的一种通过低键能N2O热氧化制备高质量稳态β-Ga2O3薄膜的方法,但本发明并不局限于实施例,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均落入本发明技术方案的保护范围内。

Claims (6)

1.一种通过低键能N2O热氧化制备高质量稳态β-Ga2O3薄膜的方法,其特征在于,包括以下步骤:
1)于氧化铝衬底上采用MOCVD工艺生长GaN膜层,厚度为4~5 µm;
2)于GaN膜层上采用磁控溅射工艺生长Ga2O3种子层,厚度为5~10 nm;
3)将步骤2)得到的结构置于N2O气氛中,首先加热至600~700℃并保持15~20 min,然后加热至1050~1150℃并保持45~60 min,通过热氧化生长β-Ga2O3薄膜。
2.根据权利要求1所述的通过低键能N2O热氧化制备高质量稳态β-Ga2O3薄膜的方法,其特征在于:所述步骤2)具体为:将步骤1)得到的结构放入磁控溅射腔室中,把溅射腔室本底真空抽至低于5.0×10-4 Pa,然后通入35~45 sccm的Ar2和1 ~5sccm的O2,将溅射工作压力设置在1~3 Pa,溅射温度为室温,使用射频功率源,功率设置为80~120 W,溅射Ga2O3种子层。
3.根据权利要求1所述的通过低键能N2O热氧化制备高质量稳态β-Ga2O3薄膜的方法,其特征在于:所述步骤3)具体为:
a) 将步骤2)得到的结构置于气氛控制石英管式炉中;
b) 管式炉中抽真空至压强抽至1个标准大气压下,通入Ar2气流,直至卸除管式炉内低于标准大气压的负压状态,回到常压后,关闭Ar2,维持通入50~200sccm的N2O,进行升温热氧化。
4.根据权利要求1所述的通过低键能N2O热氧化制备高质量稳态β-Ga2O3薄膜的方法,其特征在于:所述步骤3)中,加热至600~700℃的升温速率为15~20℃/min,加热至1050~1150℃的升温速率为25~35℃/min。
5.根据权利要求1所述的通过低键能N2O热氧化制备高质量稳态β-Ga2O3薄膜的方法,其特征在于:所述步骤3)中,首先加热至650℃并保持20 min,然后加热至1100℃并保持45min。
6.由权利要求1~5任一项所述的通过低键能N2O热氧化制备高质量稳态β-Ga2O3薄膜的方法制备的高质量稳态β-Ga2O3薄膜,其特征在于:所述β-Ga2O3薄膜为p型β-Ga2O3薄膜,载流子浓度为1017cm-3数量级。
CN202210662337.3A 2022-06-13 2022-06-13 一种通过低键能N2O热氧化制备高质量稳态β-Ga2O3薄膜的方法 Active CN115029683B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210662337.3A CN115029683B (zh) 2022-06-13 2022-06-13 一种通过低键能N2O热氧化制备高质量稳态β-Ga2O3薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210662337.3A CN115029683B (zh) 2022-06-13 2022-06-13 一种通过低键能N2O热氧化制备高质量稳态β-Ga2O3薄膜的方法

Publications (2)

Publication Number Publication Date
CN115029683A CN115029683A (zh) 2022-09-09
CN115029683B true CN115029683B (zh) 2023-08-22

Family

ID=83124492

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210662337.3A Active CN115029683B (zh) 2022-06-13 2022-06-13 一种通过低键能N2O热氧化制备高质量稳态β-Ga2O3薄膜的方法

Country Status (1)

Country Link
CN (1) CN115029683B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269338A (ja) * 2003-03-12 2004-09-30 Univ Waseda 薄膜単結晶の成長方法
CN104988579A (zh) * 2015-07-08 2015-10-21 西安电子科技大学 基于蓝宝石衬底的氧化镓薄膜及其生长方法
CN109346400A (zh) * 2018-10-17 2019-02-15 吉林大学 一种高质量Ga2O3薄膜及其异质外延制备方法
KR20200046623A (ko) * 2018-10-25 2020-05-07 한국세라믹기술원 스텝업 전처리 방식을 이용한 α-Ga2O3 박막 제조 방법
CN113044809A (zh) * 2021-03-22 2021-06-29 南京大学 垂直Ga2O3纳米管有序阵列及其制备方法
CN113675297A (zh) * 2021-08-10 2021-11-19 东北师范大学 一种氧化镓/氮化镓异质结光电探测器及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269338A (ja) * 2003-03-12 2004-09-30 Univ Waseda 薄膜単結晶の成長方法
CN104988579A (zh) * 2015-07-08 2015-10-21 西安电子科技大学 基于蓝宝石衬底的氧化镓薄膜及其生长方法
CN109346400A (zh) * 2018-10-17 2019-02-15 吉林大学 一种高质量Ga2O3薄膜及其异质外延制备方法
KR20200046623A (ko) * 2018-10-25 2020-05-07 한국세라믹기술원 스텝업 전처리 방식을 이용한 α-Ga2O3 박막 제조 방법
CN113044809A (zh) * 2021-03-22 2021-06-29 南京大学 垂直Ga2O3纳米管有序阵列及其制备方法
CN113675297A (zh) * 2021-08-10 2021-11-19 东北师范大学 一种氧化镓/氮化镓异质结光电探测器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
热氧化法中温度对Ga2O3薄膜性质的影响;孙景昌等;《辽宁师范大学学报(自然科学版)》;第38卷(第03期);第322-326页 *

Also Published As

Publication number Publication date
CN115029683A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
US9222198B2 (en) SiC single crystal wafer and process for production thereof
US20100178234A1 (en) Multilayer substrate and method for producing the same, diamond film and method for producing the same
CN111725072B (zh) 一种电子浓度稳定的高质量氧化镓薄膜及其制备方法
CN112647130B (zh) 一种低压化学气相沉积生长氧化镓薄膜的方法
CN105441902B (zh) 一种外延碳化硅‑石墨烯复合薄膜的制备方法
CN102623521A (zh) 一种氧化亚铜薄膜的制备方法
WO2000002240A1 (fr) PROCEDE DE SYNTHESE DE FILMS MINCES DE MONOCRISTAUX D'AlN A FAIBLE RESISTANCE DE TYPES n ET p
CN113088925B (zh) 一种Mist-CVD化学气相沉积法制备ZnS掺杂α-Ga2O3薄膜的方法
CN115029683B (zh) 一种通过低键能N2O热氧化制备高质量稳态β-Ga2O3薄膜的方法
CN103938183A (zh) 一种制备高质量ZnO材料的方法
CN104451867B (zh) 一种制备高质量ZnMgBeO薄膜的方法
CN113089091A (zh) 氮化硼模板及其制备方法
CN112695380A (zh) 一种新型透明导电氧化物薄膜的制备方法及其应用
CN112111711A (zh) 氧化镓纳米棒及其制备方法和光电探测器件
CN115376886B (zh) 一种氮元素掺杂p型氧化镓薄膜及其制备方法和应用
Chang et al. ZnO epitaxial layers grown on nitridated Si (1 0 0) substrate with HT-GaN/LT-ZnO double buffer
CN110993504A (zh) 基于SiC衬底的Ga2O3薄膜的制备方法及基于SiC衬底的Ga2O3薄膜
CN110670138A (zh) 用于氮化铝单晶生长的复合籽晶及其制备方法
CN114108087B (zh) 一种正交相五氧化二钽单晶薄膜的制备方法
CN113097055B (zh) 一种高质量p型氧化镓纳米柱状结构薄膜及其制备方法
Mao et al. Comparative study of the effect of H2 addition on ZnO films grown by different zinc and oxygen precursors
WO2024048357A1 (ja) 下地基板及び単結晶ダイヤモンド積層基板並びにそれらの製造方法
CN111048404B (zh) 一种缓冲层结构及其制备方法
CN115831715A (zh) 一种基于异质衬底的β-氧化镓薄膜及其制备方法和应用
Lobanov et al. Epitaxial GaN layers formed on langasite substrates by the plasma-assisted MBE method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant