CN113578359A - 空心氮掺杂纳米碳球负载高分散钯基催化剂及其制备方法和在乙苯脱氢中的应用 - Google Patents

空心氮掺杂纳米碳球负载高分散钯基催化剂及其制备方法和在乙苯脱氢中的应用 Download PDF

Info

Publication number
CN113578359A
CN113578359A CN202110598043.4A CN202110598043A CN113578359A CN 113578359 A CN113578359 A CN 113578359A CN 202110598043 A CN202110598043 A CN 202110598043A CN 113578359 A CN113578359 A CN 113578359A
Authority
CN
China
Prior art keywords
palladium
catalyst
ethylbenzene
nitrogen
based catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110598043.4A
Other languages
English (en)
Other versions
CN113578359B (zh
Inventor
齐伟
代雪亚
王海花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN202110598043.4A priority Critical patent/CN113578359B/zh
Publication of CN113578359A publication Critical patent/CN113578359A/zh
Application granted granted Critical
Publication of CN113578359B publication Critical patent/CN113578359B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/618Surface area more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3335Catalytic processes with metals
    • C07C5/3337Catalytic processes with metals of the platinum group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种空心氮掺杂纳米碳球负载高分散钯基催化剂的制备方法及其在乙苯脱氢中的应用,属于纳米碳催化脱氢技术领域。所述催化剂的空心结构通过硬模板法实现,钯的高分散负载通过小分子的盐酸多巴胺聚合包裹钯盐前驱体后再进行碳化和酸洗的方法来实现。所述催化剂作为乙苯脱氢反应的催化剂,在无水无氧常压的条件下可以高效的催化乙苯直接脱氢生成苯乙烯。该催化剂具有较高的贵金属钯的利用效率,能保持较长时间的催化活性,在催化乙苯气相脱氢过程中具有较好的应用前景。

Description

空心氮掺杂纳米碳球负载高分散钯基催化剂及其制备方法和 在乙苯脱氢中的应用
技术领域
本发明涉及脱氢反应催化剂技术领域,具体涉及一种空心氮掺杂纳米碳球负载高分散钯基催化剂及其制备方法和在乙苯脱氢中的应用。
背景技术
苯乙烯是重要的基础化工原材料,是合成树脂、离子交换树脂及合成橡胶等的重要单体。目前全球苯乙烯年产量超过两千万吨;国内对苯乙烯需求旺盛,近十年来年均进口苯乙烯约三百万吨。工业上苯乙烯主要由乙苯催化脱氢生成,常采用贵金属催化剂(钯、铂等)或者钾活化的氧化铁作为催化剂,在高温(>550℃)、无氧条件下进行乙苯直接脱氢。乙苯直接脱氢技术比较成熟,但催化剂极易积碳失活,需要在反应系统中通入大量的过热水蒸气来消除积碳,这造成了巨大的能源和环境压力。因此,研究能够抗积碳、在无水和较低温度下催化乙苯脱氢反应的催化剂具有重大意义。
以纳米碳为代表的载体的使用揭开了乙苯脱氢反应催化剂和体系研究的新篇章。纳米碳材料本身具有较高的热稳定性和表面有序度,具有较高的反应活性和稳定性;同时这些纳米碳材料的孔结构主要以介孔为主,也可以有效避免积碳造成的失活现象。近期,高分散的金属-掺杂氮碳基(M-N-C)催化剂因其高金属利用率,高活性和高选择性的优势更是成为了研究热点,并被应用于较低温的碳氢键活化反应中,但该催化材料在高温热催化的烷烃脱氢反应中的研究较少。以氮掺杂纳米碳做载体,制备高分散的金属-掺杂氮碳基(M-N-C)负载型催化剂,既可以提高金属的利用效率,又可以高效催化乙苯直接脱氢。在此指导下设计和制备绿色、可再生、具有抗积碳或易除去积碳的新型脱氢催化剂具有重要的基础研究意义和潜在应用价值。因此,本发明以氮掺杂纳米碳材料作为载体负载钯活性组分,制备乙苯脱氢催化剂,并证明有较好的活性和稳定性。
发明内容
为了解决现有乙苯脱氢催化剂技术中存在的反应温度高、贵金属利用效率低、易积碳失活及纳米碳催化剂活性低且长期稳定性差的难题,本发明提供了一种空心氮掺杂纳米碳球负载高分散钯基催化剂及其制备方法和在乙苯脱氢中的应用,该催化剂在乙苯脱氢反应中有良好的催化活性、苯乙烯选择性和稳定性。
为实现上述目的,本发明技术方案如下:
一种空心氮掺杂纳米碳球负载高分散钯基催化剂,该催化剂为氮掺杂的空心纳米碳球,钯元素与氮原子配位后均匀的分布在碳球上。
该催化剂中,氮元素的含量为3.1-9.5at.%,钯元素的含量为0.01-0.23at.%。
该催化剂中,空心纳米碳球直径为150~210nm,碳球壳层厚度为11~15nm,壳层为多微孔的疏松结构,比表面积最大可达1100m2·g-1
所述空心氮掺杂纳米碳球负载高分散钯基催化剂的制备方法,包括如下步骤:
(1)将正硅酸四乙酯在碱性条件下水解(PH值约为11),生成含纳米二氧化硅球的悬浊液;
(2)原位包裹:在碱性条件下,以步骤(1)所得纳米二氧化硅球悬浊液中的纳米二氧化硅球为硬模板,将盐酸多巴胺和钯盐一起聚合,原位包裹在模板表面;
(3)将原位包裹后的模板进行碳化、碱洗和酸洗处理后,获得所述空心掺杂氮纳米碳球负载高分散钯基催化剂。
步骤(2)原位包裹过程为:称取盐酸多巴胺,加入水配成90mg/mL的盐酸多巴胺溶液;将盐酸多巴胺溶液倒入步骤(1)所得纳米二氧化硅球悬浊液中,直至悬浊液中盐酸多巴胺到达2.65mg/mL,得到溶液A;再称取钯盐,配成0.2mg/mL 钯盐水溶液(钯盐水溶液浓度以钯的质量计);投料量按钯盐水溶液中钯的量为溶液 A中盐酸多巴胺量的0.01-0.06wt.%计算,将钯盐水溶液倒入溶液A中;再经搅拌、离心、用去离子水水洗,最后冻干。
步骤(2)中,所述钯盐为硝酸钯、乙酰丙酮钯、氯化钯和硫酸钯中的一种或几种。
步骤(3)中,碳化处理为:将步骤(2)得到的原位包裹后的模板(粉末状) 放入管式炉内,在惰性气氛保护下进行碳化处理,碳化处理温度600-900℃,碳化处理时间2h;碱洗处理为:将碳化处理后得到的粉末分散在浓度2mol/L的碱液中 (NaOH溶液或KOH溶液),再在80℃油浴锅中处理6h,经抽滤后再用去离子水洗涤;酸洗处理为:将碱洗处理后的粉末分散在0.5mol/L的酸溶液中(盐酸或硝酸),再在80℃油浴锅中处理2h,经抽滤后用去离子水洗涤,烘干后即得到所述的空心掺杂氮纳米碳球负载高分散钯基催化剂。
将所述催化剂作为乙苯直接脱氢制苯乙烯反应的催化剂,该反应为气固相催化反应,催化剂的使用温度为150-600℃,在无氧无水常压条件下催化乙苯直接脱氢生成苯乙烯。
所述乙苯直接脱氢制苯乙烯反应中,其中:反应物为乙苯,载气为惰性气体(氦气、氮气或氩气),乙苯分压为0.05-10kPa,空速为1000-20000mL g-1h-1
在乙苯脱氢反应过程中,乙苯转化率为1%~35%,苯乙烯选择性为90~100%;催化剂在500℃反应温度下可以稳定使用14小时。
本发明的特点和优势如下:
1、本发明以自制的纳米二氧化硅小球为硬模板,原位聚合生成了包裹钯的聚多巴胺壳层。这种空心结构使得催化剂拥有较大的比表面积,便于在乙苯脱氢反应中的传质;并暴露出更多活性位,便于反应物与活性位点充分接触,充分发挥了纳米碳结构稳定和抗积碳的优势,提高了催化剂的活性。
2、本发明采用钯盐和小分子盐酸多巴胺共聚合的方法,在制备过程中氨基与钯配位,将高分散的钯盐包裹在聚多巴胺层中,避免了在后续碳化和反应过程中的钯聚集,使催化剂具有较好的稳定性;同时,这种钯氮配位促进了乙苯脱氢反应中电子的传递,增大了对乙苯的吸附能力。
3、本发明的空心氮掺杂纳米碳球负载高分散钯基催化剂,钯大部分以单分散的形式均匀的分散在纳米碳球上,并与纳米碳之间有着强相互作用,使得该复合催化剂具有良好的结构稳定性和化学活性,使催化剂中金属活性位点的利用率得到了最大化。
4、本发明的空心氮掺杂纳米碳球负载高分散钯基催化剂在无水无氧常压、500 ℃和空速为9174mL g-1h-1的条件下催化乙苯脱氢制苯乙烯的反应中,乙苯转化率为21.75%,苯乙烯的选择性为98%,长期反应稳定性达14h。
5、本发明采用的空心氮掺杂纳米碳球负载高分散钯基催化剂的制备条件可控、碳源绿色可再生并且体现了环境友好型催化剂的发展理念,而且相对于传统的负载型贵金属催化剂具有更高的的催化活性、稳定性和苯乙烯选择性。本发明采用的催化剂在电催化、能量转化和存储等方面具有潜在应用前景。
附图说明
图1是空心氮掺杂纳米碳球负载高分散钯基催化剂的简易制备示意图。
图2是实施例1中空心氮掺杂纳米碳球负载高分散钯基催化剂的表面形貌和成分表征。其中:图(a)是透射电镜照片;图(b)是暗场透射电镜照片;、图(c) 和图(d)是透射电镜元素扫描谱图,分别代表的元素为氮(N)、和钯(Pd)。
图3是空心氮掺杂纳米碳球负载高分散钯基催化剂的X射线衍射(XRD)图。
图4是空心氮掺杂纳米碳球负载高分散钯基催化剂的N2吸附-脱附曲线图。
图5是空心氮掺杂纳米碳球负载高分散钯基催化剂的X射线光电子能谱(XPS) 图;(a)全谱(b)钯元素。
图6是空心氮掺杂纳米碳球负载高分散钯基催化剂和参比材料在乙苯脱氢反应中的活性对比图。
具体实施方式
以下结合实施例详述本发明。
实施例1
室温下,用量筒量取72mL无水乙醇、240mL去离子水和11.66mL的浓氨水 (25-28wt.%),倒入500mL的烧杯中,使用磁力搅拌器搅拌均匀;再用移液枪滴加6mL的正硅酸四乙酯,搅拌1h,得到含纳米二氧化硅球溶液的悬浊液。加入 10mL的90mg/mL的盐酸多巴胺水溶液,再用移液枪加入0.25mL的2mg/mL的硝酸钯水溶液,在磁力搅拌器上搅拌48h;待到达搅拌时间后,将所得溶液离心,并用去离子水水洗3次。冻干。将得到的粉末放入管式炉内,氩气保护下,在600℃恒温碳化2h。称取2g碳化后的材料,放入500mL的圆底烧瓶中,加入200mL 的2mol/L的氢氧化钠溶液,超声20min,再在80℃的油浴锅中处理6h。用砂芯漏斗抽滤获得碱洗后的产物,并反复用去离子水洗涤至滤液pH为7。将碱洗后的灰色浆糊状产物再转移到500mL的圆底烧瓶中,加入200mL的0.5mol/L的盐酸溶液,超声20min,再在80℃的油浴锅中处理2h。抽滤,并反复用去离子水洗涤至滤液pH为7。将得到的产物在80℃的烘箱中烘干,即得到所述的空心掺杂氮纳米碳球负载高分散钯基催化剂。
图1是空心氮掺杂纳米碳球负载高分散钯基催化剂的简易制备示意图。
图2(a)和(b)是实施例1中催化剂的形貌图,由图可得,制备得到的催化剂为空心球形,分布均匀,球直径约为200nm,壁厚15nm。图2(c)和(d)是实施例1中催化剂的透射电镜元素分布扫描图,分别代表的元素为氮(N)和钯(Pd)。从图中数据可以看到,空心掺杂氮纳米碳球负载高分散钯基催化剂中氮和钯元素均匀的分布在纳米碳球中。
图3是空心氮掺杂纳米碳球负载高分散钯基催化剂的X射线衍射(XRD)图。图中没有存在与钯元素相关的衍射峰,说明钯在载体上分散较好。
图4是空心氮掺杂纳米碳球负载高分散钯基催化剂的N2吸附-脱附曲线图。数据表明催化剂具有较大的比表面积(1100m2 g-1),存在介孔结构。
图5是空心氮掺杂纳米碳球负载高分散钯基催化剂的X射线光电子能谱(XPS) 图。(a)全谱(b)钯元素。XPS结果表明表面钯含量为0.23at.%,氮含量为6.67at.%;钯以Pdδ+(0<δ<2)的价态存在,表明钯元素与氮存在配位。
实施例2
称取100mg实施例1中制备的空心氮掺杂纳米碳球负载高分散钯基催化剂 (Pd@HNS)装入Φ10固定床石英管中,以15.29mL min-1的流速通入反应气(2kpa 的乙苯,氦气做平衡气),在500℃反应14h,产物由气相色谱在线检测。乙苯的转化率为22.80%,苯乙烯的选择性为99%。
对比例1
称取100mg空心氮掺杂纳米碳球催化剂(HNS,不引入钯源,其他步骤与实施例1相同)装入Φ10固定床石英管中,以15.29mL min-1的流速通入反应气(2kpa 的乙苯,氦气做平衡气),在500℃反应14h,产物由气相色谱在线检测。乙苯的转化率为6.94%,苯乙烯的选择性为99%。
对比例2
称取100mg的5%钯/活性炭催化剂(Pd/AC,购于Alfa,标准还原法,120℃烘干处理)装入Φ10固定床石英管中,以15.29mL min-1的流速通入反应气(2kpa 的乙苯,氦气做平衡气),在500℃反应14h,产物由气相色谱在线检测。乙苯的转化率为8.84%,苯乙烯的选择性为99%。
图6是空心氮掺杂纳米碳球负载高分散钯基催化剂和参比材料在乙苯脱氢反应中的活性对比图。从图中数据可知,空心掺杂氮纳米碳球具有一定的催化乙苯脱氢的能力(6.94%),但是活性远远小于空心掺杂氮纳米碳球负载高分散钯基催化剂的催化活性(22.80%),这表明钯元素的引入和与氮配位可以大幅提高催化活性;5%钯/ 活性炭催化剂具有一定的催化乙苯脱氢的能力(8.84%),但是活性也远远小于空心掺杂氮纳米碳球负载高分散钯基催化剂的催化活性(21.75%),这表明只提高钯的负载量而无高分散的钯氮配位对催化活性的促进作用有限,进一步证明了高分散的钯氮配位对反应的重要作用。
综合以上实施例和对比例的结果可以清楚的表明,本发明提出的空心掺杂氮纳米碳球负载高分散钯基催化剂的制备方法成熟;并且将所述催化剂在无水无氧常压的条件下用于催化乙苯直接脱氢制苯乙烯的反应中,其中乙苯的转化率和产物苯乙烯的选择性都较高。本发明提出的制备方法大大提高了贵金属钯的原子利用效率,符合绿色化学的理念,具有广阔应用前景。

Claims (10)

1.一种空心氮掺杂纳米碳球负载高分散钯基催化剂,其特征在于:该催化剂为氮掺杂的空心纳米碳球,钯元素与氮原子配位后均匀的分布在碳球上。
2.根据权利要求1所述的空心氮掺杂纳米碳球负载高分散钯基催化剂,其特征在于:该催化剂中,氮元素的含量为3.1-9.5at.%,钯元素的含量为0.01-0.23at.%。
3.根据权利要求1所述的空心氮掺杂纳米碳球负载高分散钯基催化剂,其特征在于:该催化剂中,空心纳米碳球直径为150~210nm,碳球壳层厚度为11~15nm,壳层为多微孔的疏松结构,比表面积最大可达1100m2·g-1
4.根据权利要求1所述的空心氮掺杂纳米碳球负载高分散钯基催化剂的制备方法,其特征在于:该方法包括如下步骤:
(1)将正硅酸四乙酯在碱性条件下水解,生成含纳米二氧化硅球的悬浊液;
(2)原位包裹:在碱性条件下,以步骤(1)所得纳米二氧化硅球悬浊液中的纳米二氧化硅球为硬模板,将盐酸多巴胺和钯盐一起聚合,原位包裹在模板表面;
(3)将原位包裹后的模板进行碳化、碱洗和酸洗处理后,获得所述空心掺杂氮纳米碳球负载高分散钯基催化剂。
5.根据权利要求4所述的空心掺杂氮纳米碳球负载高分散钯基催化剂的制备方法,其特征在于:步骤(2)原位包裹过程为:称取盐酸多巴胺,加入水配成90mg/mL的盐酸多巴胺溶液;将盐酸多巴胺溶液倒入步骤(1)所得纳米二氧化硅球悬浊液中,直至悬浊液中盐酸多巴胺到达2.65mg/mL,得到溶液A;再称取钯盐,配成0.2mg/mL钯盐水溶液;投料量按钯盐水溶液中钯的量为溶液A中盐酸多巴胺量的0.01-0.06wt.%计算,将钯盐水溶液倒入溶液A中;再经搅拌、离心、用去离子水水洗,最后冻干。
6.根据权利要求5所述的空心掺杂氮纳米碳球负载高分散钯基催化剂的制备方法,其特征在于:步骤(2)中,所述钯盐为硝酸钯、乙酰丙酮钯、氯化钯和硫酸钯中的一种或几种。
7.根据权利要求4所述的空心掺杂氮纳米碳球负载高分散钯基催化剂的制备方法,其特征在于:步骤(3)中,碳化处理为:将步骤(2)得到的原位包裹后的模板(粉末状)放入管式炉内,在惰性气氛保护下进行碳化处理,碳化处理温度600-900℃,碳化处理时间2h;碱洗处理为:将碳化处理后得到的粉末分散在浓度2mol/L的碱液中,再在80℃油浴锅中处理6h,经抽滤后再用去离子水洗涤;酸洗处理为:将碱洗处理后的粉末分散在0.5mol/L的酸溶液中,再在80℃油浴锅中处理2h,经抽滤后用去离子水洗涤,烘干后即得到所述的空心掺杂氮纳米碳球负载高分散钯基催化剂。
8.根据权利要求1所述的空心掺杂氮纳米碳球负载高分散钯基催化剂在乙苯脱氢中的应用,其特征在于:将所述催化剂作为乙苯直接脱氢制苯乙烯反应的催化剂,该反应为气固相催化反应,催化剂的使用温度为150-600℃,在无氧无水常压条件下催化乙苯直接脱氢生成苯乙烯。
9.根据权利要求8所述的空心掺杂氮纳米碳球负载高分散钯基催化剂在乙苯脱氢中的应用,其特征在于:所述乙苯直接脱氢制苯乙烯反应中,其中:反应物为乙苯,载气为惰性气体,乙苯分压为0.05-10kPa,空速为1000-20000mL g-1h-1
10.根据权利要求8所述的空心掺杂氮纳米碳球负载高分散钯基催化剂在乙苯脱氢中的应用,其特征在于:在乙苯脱氢反应过程中,乙苯转化率为1%~35%,苯乙烯选择性为90~100%;催化剂在500℃反应温度下可以稳定使用14小时。
CN202110598043.4A 2021-05-31 2021-05-31 空心氮掺杂纳米碳球负载高分散钯基催化剂及其制备方法和在乙苯脱氢中的应用 Active CN113578359B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110598043.4A CN113578359B (zh) 2021-05-31 2021-05-31 空心氮掺杂纳米碳球负载高分散钯基催化剂及其制备方法和在乙苯脱氢中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110598043.4A CN113578359B (zh) 2021-05-31 2021-05-31 空心氮掺杂纳米碳球负载高分散钯基催化剂及其制备方法和在乙苯脱氢中的应用

Publications (2)

Publication Number Publication Date
CN113578359A true CN113578359A (zh) 2021-11-02
CN113578359B CN113578359B (zh) 2022-11-01

Family

ID=78243216

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110598043.4A Active CN113578359B (zh) 2021-05-31 2021-05-31 空心氮掺杂纳米碳球负载高分散钯基催化剂及其制备方法和在乙苯脱氢中的应用

Country Status (1)

Country Link
CN (1) CN113578359B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114453000A (zh) * 2022-02-28 2022-05-10 陕西科技大学 一种氮掺杂介孔空心碳球负载金属基纳米催化剂及其制备方法
CN114573429A (zh) * 2022-02-28 2022-06-03 陕西科技大学 一种基于香草醛选择加氢脱氧的2-甲氧基-4甲基苯酚的制备方法
CN114618551A (zh) * 2022-03-01 2022-06-14 西北工业大学 一种负载型纳米合金催化剂及普适性制备方法
CN115518630A (zh) * 2022-10-24 2022-12-27 中国科学院金属研究所 一种硅酸锌材料作为乙苯脱氢反应制苯乙烯催化剂的应用
CN116271092A (zh) * 2023-03-02 2023-06-23 四川大学 一种形貌可控纳米级中空碳球载药载体及其制备方法
CN116328807A (zh) * 2021-12-16 2023-06-27 中国科学院大连化学物理研究所 一种氧化硅负载的含氮炭催化剂的改性方法及负载型炭催化剂和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1431047A (zh) * 2001-11-23 2003-07-23 中国科学院山西煤炭化学研究所 一种用于制备苯乙烯的催化剂及其制备方法和应用
US20120252662A1 (en) * 2009-12-18 2012-10-04 Bayer Intellectual Property Gmbh Nitrogen doped carbon nanotubes with metal nanoparticles
CN102891326A (zh) * 2012-10-23 2013-01-23 南京交通职业技术学院 氮掺杂中空碳球负载的钯基催化剂及其制备方法和应用该催化剂的乙醇燃料电池
CN104971759A (zh) * 2015-06-24 2015-10-14 东华大学 一种负载型钯碳催化剂的制备方法
CN106620702A (zh) * 2017-02-14 2017-05-10 扬州大学 一种金/氮掺杂的空心碳纳米球核壳材料的制备方法
US20180078925A1 (en) * 2016-09-19 2018-03-22 Korea Institute Of Science And Technology Catalyst for dehydrogenation reaction of formic acid and method for preparing the same
CN109225306A (zh) * 2018-10-26 2019-01-18 清华大学 用于低碳烃类脱氢制低碳烯烃的单原子催化剂及催化方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1431047A (zh) * 2001-11-23 2003-07-23 中国科学院山西煤炭化学研究所 一种用于制备苯乙烯的催化剂及其制备方法和应用
US20120252662A1 (en) * 2009-12-18 2012-10-04 Bayer Intellectual Property Gmbh Nitrogen doped carbon nanotubes with metal nanoparticles
CN102891326A (zh) * 2012-10-23 2013-01-23 南京交通职业技术学院 氮掺杂中空碳球负载的钯基催化剂及其制备方法和应用该催化剂的乙醇燃料电池
CN104971759A (zh) * 2015-06-24 2015-10-14 东华大学 一种负载型钯碳催化剂的制备方法
US20180078925A1 (en) * 2016-09-19 2018-03-22 Korea Institute Of Science And Technology Catalyst for dehydrogenation reaction of formic acid and method for preparing the same
CN106620702A (zh) * 2017-02-14 2017-05-10 扬州大学 一种金/氮掺杂的空心碳纳米球核壳材料的制备方法
CN109225306A (zh) * 2018-10-26 2019-01-18 清华大学 用于低碳烃类脱氢制低碳烯烃的单原子催化剂及催化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIAO-FENG GUO ET AL.: "Hydrogenation and dehydrogenation reactions catalyzed by CNTs supported palladium catalysts", 《CATALYSIS TODAY》 *
YU LONG ET AL.: "Distinctive morphology effects of porous-spherical/yolk-shell/hollow Pd-nitrogen-doped-carbon spheres catalyst for catalytic reduction of 4-nitrophenol", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116328807A (zh) * 2021-12-16 2023-06-27 中国科学院大连化学物理研究所 一种氧化硅负载的含氮炭催化剂的改性方法及负载型炭催化剂和应用
CN114453000A (zh) * 2022-02-28 2022-05-10 陕西科技大学 一种氮掺杂介孔空心碳球负载金属基纳米催化剂及其制备方法
CN114573429A (zh) * 2022-02-28 2022-06-03 陕西科技大学 一种基于香草醛选择加氢脱氧的2-甲氧基-4甲基苯酚的制备方法
CN114618551A (zh) * 2022-03-01 2022-06-14 西北工业大学 一种负载型纳米合金催化剂及普适性制备方法
CN115518630A (zh) * 2022-10-24 2022-12-27 中国科学院金属研究所 一种硅酸锌材料作为乙苯脱氢反应制苯乙烯催化剂的应用
CN115518630B (zh) * 2022-10-24 2024-01-30 中国科学院金属研究所 一种硅酸锌材料作为乙苯脱氢反应制苯乙烯催化剂的应用
CN116271092A (zh) * 2023-03-02 2023-06-23 四川大学 一种形貌可控纳米级中空碳球载药载体及其制备方法
CN116271092B (zh) * 2023-03-02 2024-02-20 四川大学 一种形貌可控纳米级中空碳球载药载体及其制备方法

Also Published As

Publication number Publication date
CN113578359B (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
CN113578359B (zh) 空心氮掺杂纳米碳球负载高分散钯基催化剂及其制备方法和在乙苯脱氢中的应用
US20210155649A1 (en) Ultra-thin ni-fe-mof nanosheet, preparation method and use thereof
CN110813359B (zh) 一种以氮掺杂多孔碳材料为载体的钌基氨合成催化剂及其制备方法
CN112495416B (zh) 一种MOFs衍生三维多级孔Co/NC复合材料及其制备方法
CN109482235B (zh) 一种n-掺杂介孔碳负载的金属纳米催化剂的制备方法及其应用
CN111056545A (zh) 一种MOFs衍生的中空多孔碳微球的制备方法
CN109384750B (zh) 一种催化加氢5-羟甲基糠醛制备2,5-二甲基呋喃的方法
CN109449448B (zh) 一种燃料电池阴极催化剂及其制备方法和应用
CN111644210B (zh) 一种复合载体钌基催化剂在乙炔氢氯化反应中的应用
Bu et al. Magnetic recyclable catalysts with dual protection of hollow Co/N/C framework and surface carbon film for hydrogen production from NaBH4 hydrolysis
CN111992213A (zh) 用于催化愈创木酚加氢脱氧制备环己醇的核壳型催化剂的制备方法
CN113522294B (zh) 一种Ni基催化剂及其制备方法与在还原胺化中的应用
CN114345385A (zh) 一种石墨型氮化碳负载单原子钴催化剂及其制备方法和应用
CN113694921B (zh) 纳米金刚石/石墨烯复合载体负载原子级分散铱团簇催化剂及其制备方法和应用
CN113649045A (zh) 一种以Ni-MOF为前驱体的改性氮化钛纳米管及其制备方法和应用
CN111468159B (zh) 一种mof衍生的氯化氢氧化制氯催化剂及其制备方法
CN106861683B (zh) 一种Ru基催化剂及其在CO2甲烷化中的应用
CN109675563B (zh) 一种用作合成氨催化剂的高效自负载型铁基纳米复合材料及其制备方法
CN115608375B (zh) 一种氨硼烷水解析氢用催化剂及其制备方法
CN110562958B (zh) 一种金属氮化物@含氮介孔碳纳米碳球及其制备方法
CN114522707A (zh) 一种碱土金属碳酸盐负载纳米钌复合材料及其制备方法和应用
Hao et al. Selective Hydrogenation of 5-Hydroxymethylfurfural to 2, 5-Dimethylfuran Over Popcorn-Like Nitrogen-Doped Carbon-Confined CuCo Bimetallic Catalyst
CN113680370A (zh) 一种用于邻苯二甲酸二甲酯合成1,2-环己烷二甲酸二甲酯单原子催化剂制备方法及应用
CN111229216B (zh) 一种蛋壳型银催化剂及其制备方法和应用
CN113368850A (zh) 纳米碳负载原子级分散铑催化剂及其制备方法和在腈类化合物加氢反应中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant