CN113549902A - 一种C/TiC/TiN/TiAlN复合涂层的制备装置及其制备方法 - Google Patents

一种C/TiC/TiN/TiAlN复合涂层的制备装置及其制备方法 Download PDF

Info

Publication number
CN113549902A
CN113549902A CN202110788498.2A CN202110788498A CN113549902A CN 113549902 A CN113549902 A CN 113549902A CN 202110788498 A CN202110788498 A CN 202110788498A CN 113549902 A CN113549902 A CN 113549902A
Authority
CN
China
Prior art keywords
plasma
arc discharge
tic
composite coating
radio frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110788498.2A
Other languages
English (en)
Inventor
陈子博
吴强
张婷
何倩
焦云飞
韩旭然
陈剑宇
应世强
李谊
马延文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Yipu Advanced Materials Research Institute Co ltd
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing Yipu Advanced Materials Research Institute Co ltd
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Yipu Advanced Materials Research Institute Co ltd, Nanjing University of Posts and Telecommunications filed Critical Nanjing Yipu Advanced Materials Research Institute Co ltd
Priority to CN202110788498.2A priority Critical patent/CN113549902A/zh
Publication of CN113549902A publication Critical patent/CN113549902A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

本发明公开了一种C/TiC/TiN/TiAlN复合涂层制备装置及其方法。本发明提出的装置主要包括弧光放电等离子体装置、射频等离子体装置和磁过滤筛选装置三部分,充分组合利用三部分的技术优势,从而达到制备优质涂层的目的。本发明提供的复合涂层的制备方法,包括以下步骤:将固态源进行弧光放电后得到弧光放电等离子体;将气态源进行射频处理后得到射频等离子体;将所述两种等离子体经过磁过滤去除较大颗粒后共沉积在基底表面,从而得到复合涂层。本发明提供的制备方法为制备不同成分的复合涂层提供了新的合成思路,且制备得到的复合涂层材料具有高均匀性,高致密性以及优异的机械性能。

Description

一种C/TiC/TiN/TiAlN复合涂层的制备装置及其制备方法
技术领域
本发明属于等离子体沉积技术及复合涂层制备技术领域,具体涉及一种磁过滤弧光放电与射频等离子体共沉积装置以及C/TiC/TiN/TiAlN复合涂层制备方法。
背景技术
传统的弧光放电等离子体增强化学气相沉积(CVD)设备工作原理为,在真空压力下,加在电弧上的强电流,使反应室气体发生弧光放电,在弧光发电区域产生大量的电子,这些电子在电场的作用下获得充足的能量,其本身温度很高,它与气体分子相碰撞,使气体分子活化。它们吸附在衬底上,并发生化学反应生成介质膜。这种方法能够显著降低CVD薄膜沉积的温度,使成膜过程易于实现。
而传统的弧光放电等离子体增强化学气相沉积同时具有一些缺点,即形成的膜不够均匀致密,力学性能差,已经难以满足如今不断提高的需求。因此,亟需开发一种沉积温度低、成膜致密、力学性能优异的新型膜层沉积装置。
磁过滤技术是通过弯曲弧磁过滤器将等离子体中的大颗粒以及中性粒子滤除,从磁过滤器中引出的纯浄等离子体受所加负偏压的作用在电势差的作用下加速轰击基体,使得膜层组分离子沉积到基底上。该方法可以获得膜层致密,性能优异的薄膜。
因此,本发明设计了一种磁过滤弧光放电与射频等离子体共沉积装置,并通过该装置在铝箔表面制备C/TiC/TiN/TiAlN复合涂层。
发明内容
本发明的目的在于设计一种磁过滤弧光放电与射频等离子体共沉积装置,采用固体弧光放电产生的等离子体和气体通过射频产生的等离子体经过磁过滤,在基底表面沉积。本发明中所设计的装置包括弧光放电等离子体装置、射频等离子体装置和磁过滤筛选装置。
本发明提出的一种C/TiC/TiN/TiAlN复合涂层的制备装置,包括磁过滤弧光放电与射频等离子体共沉积装置,由弧光放电等离子体装置、射频等离子体装置、磁过滤筛选装置和反应腔室四部分组成;其中反应腔室作为反应发生的容器,位于设备的中心位置,其两侧通过两个磁过滤筛选装置分别连接弧光放电等离子体装置和射频等离子体装置,磁过滤筛选装置将两侧装置产生的等离子体引入到反应腔室内部的反应基底上方进行沉积。
进一步的,所述射频等离子体装置为常规设备,由射频电源和靶材组成,射频电源位于靶材正上方,靶材为含碳/含氮气体。
进一步的,所述弧光放电等离子体装置为常规设备,由弧光放电电源和靶材组成,弧光放电电源位于靶材上方,靶材为C/Ti/Al材料。
进一步的,所述磁过滤筛选装置,固态和气态靶材经过上述两种等离子体装置后,再通过磁过滤筛选装置去除直径超过1μm的大颗粒。
进一步的,所述弧光放电等离子体装置、射频等离子体装置和磁过滤筛选装置之间通过管道连接,各管道之间的连接通过焊接密封。
一种C/TiC/TiN/TiAlN复合涂层制备设备的制备方法,包括如下步骤:
步骤1、制备C涂层:在弧光放电等离子体装置装置中引入固体碳源,在弧光放电作用下产生碳等离子体,同时在射频装置中引入含碳气体,在射频作用下产生碳等离子体;分别通过磁过滤筛选两种碳等离子体,去除其中直径超过1μm大颗粒,两种等离子体混合后形成结构为sp2杂化的C等离子体,继而沉积在反应基底上形成C涂层;
步骤2、制备C/TiC复合涂层:在弧光放电等离子体装置装置中引入固体钛源,在弧光放电作用下产生钛等离子体,同时在射频装置中引入含碳气体,在射频电源作用下产生碳等离子体,并分别通过磁过滤筛选去除直径超过1μm的大颗粒,形成的Ti等离子体和C等离子体发生反应,共沉积在前述C涂层表面形成C/TiC复合涂层;
步骤3、制备C/TiC/TiN复合涂层:在弧光放电等离子体装置装置中引入固体钛源,在弧光放电作用下产生钛等离子体,同时引入含氮气体在射频电源作用下产生等离子体,并分别通过磁过滤筛选去除直径超过1μm的大颗粒,形成的Ti等离子体和N等离子体发生反应,共沉积在C/TiC层表面形成C/TiC/TiN复合涂层;
步骤4、制备C/TiC/TiN/TiAlN复合涂层:在弧光放电等离子体装置装置中引入固体铝源和固体钛源在弧光放电作用下产生等离子体,通过磁过滤筛选去除直径超过1μm的大颗粒形成Al等离子体和Ti等离子体,同时引入含氮气体在射频电源作用下产生N等离子体,N等离子体与Al等离子体和Ti等离子体发生反应,共沉积在C/TiC/TiN复合涂层表面形成C/TiC/TiN/TiAlN复合涂层。
进一步的,所述步骤1中,首先将铝箔清洗后固定在反应基座上作为反应基底。
以下便结合实施例附图,对本发明的具体实施方式作进一步的详述,以使本发明技术方案更易于理解、掌握。
附图说明
图1为本发明磁过滤弧光放电与射频等离子体共沉积装置结构示意图。
图2为本发明所制备的C/TiC/TiN/TiAlN复合涂层示意图。
具体实施方式
为了更好的理解本发明,将通过下面优选实施例的非限制性说明进行图示和解释。此处所描述的实施示例仅用于说明和解释本发明,并不用于限定本发明。
一种磁过滤弧光放电与射频等离子体共沉积装置由弧光放电等离子体装置、射频等离子体装置和磁过滤筛选装置组成。装置管道之间的连接通过焊接密封。
图1所示的装置中反应室两侧分别放置了一个弧光放电电弧和一个射频电弧,与两个磁过滤管道分别连接,从而将两侧产生的等离子体引入到沉积基底上方进行沉积,沉积过程中沉积基底匀速旋转,以达到均匀沉积的目的。
第一步,制备C涂层,利用磁过滤弧光放电与射频等离子体共沉积装置实现。步骤如下:
步骤1.1:将铝箔清洗后固定在反应基座上作为沉积基底。
步骤1.2: 将固态碳源引入弧光放电等离子体装置1中得到碳等离子体。
步骤1.3:将含碳气体引入射频装置2中得到碳等离子体。
步骤1.4:将上述两种碳等离子经过磁过滤装置3进行筛选,去除大颗粒。
步骤1.5:将经过磁过滤筛选后的碳等离子体在沉积基底表面进行沉积,最终得到C涂层。其中,弧光放电电流为100~120A,射频电源频率:13.56MHz,磁过滤管电流为1.6~2.5A,负偏压为160~320V,共沉积时间为3min。
第二步,在制得C涂层的基础上继续制备C/TiC复合涂层。
步骤2.1:将固态钛源引入弧光放电等离子体装置中得到钛等离子体。
步骤2.2:将含碳气体引入射频装置中得到碳等离子体。
步骤2.3:将前述步骤中得到的钛、碳等离子体分别经过磁过滤装置进行筛选,去除大颗粒。
步骤2.4:将经过前述步骤筛选得到的钛等离子体和碳等离子体共沉积在所述碳层表面,此时关闭弧光放电等离子体装置、射频装置及磁过滤装置的电源,恢复至常压状态后取出样品,得到C/TiC复合涂层。其中,沉积弧流为100~120A,磁过滤管电流为1.6~2.5A,负偏压为160~320V,钛等离子体和碳等离子体积比为1:1,共沉积时间为3min。
第三步,在制得C/TiC复合涂层的基础上继续制备C/TiC/TiN复合涂层,步骤如下:
步骤3.1:将固态钛源引入弧光放电等离子体装置中得到钛等离子体。
步骤3.2:;将氨气引入射频装置中得到氮等离子体。
步骤3.3:将前述步骤中得到的钛、氮等离子体分别经过磁过滤装置进行筛选,去除大颗粒。
步骤3.4:经过前述步骤筛选得到的钛等离子体和氮等离子体共沉积在所述C/TiC复合涂层表面,此时关闭弧光放电等离子体装置、射频装置及磁过滤装置的电源,恢复至常压状态后取出样品,得到C/TiC/TiN复合涂层;其中,沉积弧流为100~120A,磁过滤管电流为1.6~2.5A,负偏压为160~320V,钛等离子体和氨气的体积比为1:1,共沉积时间为3min。
第四步,在制得C/TiC/TiN复合涂层的基础上继续制备C/TiC/Ti/TiAlN复合涂层。
步骤4.1:将固态钛源和固体铝源引入弧光放电等离子体装置中得到钛、铝等离子体。
步骤4.2: 将氨气引入射频装置中得到氮等离子体。
步骤4.3:将前述步骤中得到的钛、铝、氮等离子体分别经过磁过滤装置进行筛选,去除大颗粒。
步骤4.4: 经过前述步骤筛选得到的钛、铝等离子体和氮等离子体共沉积在C/TiC/TiN复合涂层表面,此时关闭弧光放电等离子体装置、射频装置及磁过滤装置的电源,恢复至常压状态后取出样品,得到C/TiC/TiN/TiAlN复合涂层;其中,沉积弧流为100~120A,磁过滤管电流为1.6~2.5A,负偏压为160~320V,钛等离子体、铝等离子体和氨气的体积比为1:1:1,共沉积时间为5min。

Claims (7)

1.一种C/TiC/TiN/TiAlN复合涂层的制备装置,其特征在于:包括磁过滤弧光放电与射频等离子体共沉积装置,由弧光放电等离子体装置、射频等离子体装置、磁过滤筛选装置和反应腔室四部分组成;其中反应腔室作为反应发生的容器,位于设备的中心位置,其两侧通过两个磁过滤筛选装置分别连接弧光放电等离子体装置和射频等离子体装置,磁过滤筛选装置将两侧装置产生的等离子体引入到反应腔室内部的反应基底上方进行沉积。
2.根据权利要求1所述的C/TiC/TiN/TiAlN复合涂层的制备设备,其特征在于:所述射频等离子体装置为常规设备,由射频电源和靶材组成,射频电源位于靶材正上方,靶材为含碳/含氮气体。
3.根据权利要求1所述C/TiC/TiN/TiAlN复合涂层的制备设备,其特征在于:所述弧光放电等离子体装置为常规设备,由弧光放电电源和靶材组成,弧光放电电源位于靶材上方,靶材为C/Ti/Al材料。
4.根据权利要求1所述C/TiC/TiN/TiAlN复合涂层的制备设备,其特征在于:所述磁过滤筛选装置,固态和气态靶材经过上述两种等离子体装置后,再通过磁过滤筛选装置去除直径超过1μm的大颗粒。
5.根据权利要求1所述C/TiC/TiN/TiAlN复合涂层的制备设备,其特征在于:所述弧光放电等离子体装置、射频等离子体装置和磁过滤筛选装置之间通过管道连接,各管道之间的连接通过焊接密封。
6.一种如权利要求1所述的C/TiC/TiN/TiAlN复合涂层制备设备的制备方法,其特征在于:包括如下步骤:
步骤1、制备C涂层:在弧光放电等离子体装置装置中引入固体碳源,在弧光放电作用下产生碳等离子体,同时在射频装置中引入含碳气体,在射频作用下产生碳等离子体;分别通过磁过滤筛选两种碳等离子体,去除其中直径超过1μm大颗粒,两种等离子体混合后形成结构为sp2杂化的C等离子体,继而沉积在反应基底上形成C涂层;
步骤2、制备C/TiC复合涂层:在弧光放电等离子体装置装置中引入固体钛源,在弧光放电作用下产生钛等离子体,同时在射频装置中引入含碳气体,在射频电源作用下产生碳等离子体,并分别通过磁过滤筛选去除直径超过1μm的大颗粒,形成的Ti等离子体和C等离子体发生反应,共沉积在前述C涂层表面形成C/TiC复合涂层;
步骤3、制备C/TiC/TiN复合涂层:在弧光放电等离子体装置装置中引入固体钛源,在弧光放电作用下产生钛等离子体,同时引入含氮气体在射频电源作用下产生等离子体,并分别通过磁过滤筛选去除直径超过1μm的大颗粒,形成的Ti等离子体和N等离子体发生反应,共沉积在C/TiC层表面形成C/TiC/TiN复合涂层;
步骤4、制备C/TiC/TiN/TiAlN复合涂层:在弧光放电等离子体装置装置中引入固体铝源和固体钛源在弧光放电作用下产生等离子体,通过磁过滤筛选去除直径超过1μm的大颗粒形成Al等离子体和Ti等离子体,同时引入含氮气体在射频电源作用下产生N等离子体,N等离子体与Al等离子体和Ti等离子体发生反应,共沉积在C/TiC/TiN复合涂层表面形成C/TiC/TiN/TiAlN复合涂层。
7.根据权利要求6所述的C/TiC/TiN/TiAlN复合涂层制备设备的制备方法,其特征在于:所述步骤1中,首先将铝箔清洗后固定在反应基座上作为反应基底。
CN202110788498.2A 2021-07-13 2021-07-13 一种C/TiC/TiN/TiAlN复合涂层的制备装置及其制备方法 Pending CN113549902A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110788498.2A CN113549902A (zh) 2021-07-13 2021-07-13 一种C/TiC/TiN/TiAlN复合涂层的制备装置及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110788498.2A CN113549902A (zh) 2021-07-13 2021-07-13 一种C/TiC/TiN/TiAlN复合涂层的制备装置及其制备方法

Publications (1)

Publication Number Publication Date
CN113549902A true CN113549902A (zh) 2021-10-26

Family

ID=78131711

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110788498.2A Pending CN113549902A (zh) 2021-07-13 2021-07-13 一种C/TiC/TiN/TiAlN复合涂层的制备装置及其制备方法

Country Status (1)

Country Link
CN (1) CN113549902A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389653A (ja) * 1986-10-02 1988-04-20 Mitsubishi Heavy Ind Ltd 炭化物被膜のコ−テイング方法
JPH01252304A (ja) * 1988-03-29 1989-10-09 Mitsubishi Metal Corp 表面被覆硬質材料製切削工具
CN1224772A (zh) * 1998-01-24 1999-08-04 西南交通大学 一种碳基薄膜合成方法
US6094012A (en) * 1998-11-06 2000-07-25 The Regents Of The University Of California Low energy spread ion source with a coaxial magnetic filter
US20040219737A1 (en) * 2001-12-20 2004-11-04 Tokyo Electron Limited Method and apparatus for processing a workpiece with a plasma
CN102321873A (zh) * 2011-10-14 2012-01-18 成都名钨科技有限责任公司 一种TiAlN涂层硬质合金刀片
US20180247797A1 (en) * 2011-09-07 2018-08-30 Vladimir Gorokhovsky Reactors For Plasma-Assisted Processes And Associated Methods

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389653A (ja) * 1986-10-02 1988-04-20 Mitsubishi Heavy Ind Ltd 炭化物被膜のコ−テイング方法
JPH01252304A (ja) * 1988-03-29 1989-10-09 Mitsubishi Metal Corp 表面被覆硬質材料製切削工具
CN1224772A (zh) * 1998-01-24 1999-08-04 西南交通大学 一种碳基薄膜合成方法
US6094012A (en) * 1998-11-06 2000-07-25 The Regents Of The University Of California Low energy spread ion source with a coaxial magnetic filter
US20040219737A1 (en) * 2001-12-20 2004-11-04 Tokyo Electron Limited Method and apparatus for processing a workpiece with a plasma
US20180247797A1 (en) * 2011-09-07 2018-08-30 Vladimir Gorokhovsky Reactors For Plasma-Assisted Processes And Associated Methods
CN102321873A (zh) * 2011-10-14 2012-01-18 成都名钨科技有限责任公司 一种TiAlN涂层硬质合金刀片

Similar Documents

Publication Publication Date Title
CN109778136B (zh) 采用热电子等离子体技术制备类金刚石涂层的方法
CN109295414B (zh) 一种深孔内镀膜的技术和设备
CN103695869A (zh) 一种石墨烯薄膜的制备方法
CN112853482B (zh) 一种微波等离子体-磁控溅射复合气相沉积原位制备100面金刚石的方法及设备
CN109576679A (zh) 一种燃料电池双极板碳涂层连续沉积系统及其应用
CN106637207B (zh) 一种石墨基材上的耐高温类金刚石涂层方法
KR102595151B1 (ko) 연료전지용 금속분리판 및 그 제조방법
CN111155302A (zh) 一种石墨烯复合碳纤维及其pecvd制备方法
CN113265642B (zh) 在大长径比金属筒(或管)内壁表面沉积类金刚石薄膜的方法
CN113549902A (zh) 一种C/TiC/TiN/TiAlN复合涂层的制备装置及其制备方法
CN112281141B (zh) 一种基于可控碳纳米镀层的介质表面二次电子发射系数抑制方法
Man et al. Influence of plasma condition on carbon nanotube growth by rf-PECVD
CN111005026B (zh) 一种碳纤维基复合材料及其制备方法
CN1775997A (zh) 微波等离子体增强弧辉渗镀涂层的装置及工艺
CN1141415C (zh) 一种碳基薄膜合成方法
CN102234764A (zh) 一种热解石墨的金属化工艺及焊接方法
CN113151797B (zh) 一种基于硬质合金表面镀ta-C膜的离子清洗工艺
JP2001170460A (ja) 水素分離材料及びその製造方法
JP2010225751A (ja) 原子層成長装置
KR100928970B1 (ko) 제3의 원소가 첨가된 다이아몬드상 탄소박막의 제조방법
CN113363412B (zh) 一种制备锂硫电池限硫载体的方法
CN205398722U (zh) 一种制备金刚石涂层的设备
CN113278954A (zh) 一种复合涂层及其制备方法与应用和制备系统
JPS6383271A (ja) ダイヤモンド状炭素膜の製造法
KR102653658B1 (ko) 연료전지용 금속분리판 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20211026