CN113265642B - 在大长径比金属筒(或管)内壁表面沉积类金刚石薄膜的方法 - Google Patents

在大长径比金属筒(或管)内壁表面沉积类金刚石薄膜的方法 Download PDF

Info

Publication number
CN113265642B
CN113265642B CN202110522893.6A CN202110522893A CN113265642B CN 113265642 B CN113265642 B CN 113265642B CN 202110522893 A CN202110522893 A CN 202110522893A CN 113265642 B CN113265642 B CN 113265642B
Authority
CN
China
Prior art keywords
anode
cylinder
wall
gas
metal cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110522893.6A
Other languages
English (en)
Other versions
CN113265642A (zh
Inventor
郑锦华
李志雄
刘青云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Jinghua Film Technology Vacuum Technology Co ltd
Zhengzhou University
Original Assignee
Henan Jinghua Film Technology Vacuum Technology Co ltd
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Jinghua Film Technology Vacuum Technology Co ltd, Zhengzhou University filed Critical Henan Jinghua Film Technology Vacuum Technology Co ltd
Priority to CN202110522893.6A priority Critical patent/CN113265642B/zh
Publication of CN113265642A publication Critical patent/CN113265642A/zh
Application granted granted Critical
Publication of CN113265642B publication Critical patent/CN113265642B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45559Diffusion of reactive gas to substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation by radiant heating of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明涉及在大长径比(L/D)或小直径金属筒(或管)内壁表面沉积类金刚石薄膜的方法,采用一个用金属丝网制作的筒(或管)状阳极,把金属筒(或管)的内壁作为阴极,在丝网阳极和金属筒(或管)内壁之间构成等离子电场,丝网阳极的网孔则成为反应气体均匀分布的通道,反应气体分别通入Ar气、或Si(CH3)4、或H2、或C2H2、或它们的混合气体。在等离子电场中施加高电压,电场中高能γ电子轰击丝网阳极,同时被丝网阳极吸收并产生电流。高能γ电子的轰击和电流使丝网阳极的温度升高,并控制丝网阳极温度稳定在300℃左右,在真空环境中丝网阳极对筒内壁辐射加热,使筒内壁达到类金刚石薄膜沉积所需的温度(150~200℃),从而提高薄膜的界面结合强度和金刚石的成分含量。

Description

在大长径比金属筒(或管)内壁表面沉积类金刚石薄膜的方法
技术领域
本发明涉及在金属筒(或管)内壁表面沉积DLC类金刚石薄膜材料的方法,特别是涉及大长径比缸体或管内壁沉积类金刚石薄膜材料的沉积方法。
背景技术
类金刚石薄膜(Diamond-Like Carbon Coatings,简称DLC薄膜)是一种具有近似于纯金刚石的硬度及耐磨损性能,同时又具有极低的摩擦系数(0.1~0.3)的固体润滑薄膜材料,它具有良好的光学、电学及力学性能,广泛地用于机械、电子、化学、生体医学以及航空航天、军事工业等领域,具有广阔的应用前景。特别是在减磨、低摩擦方面,大大改善机械零部件的运动状态,延长零部件的使用寿命,提高机器设备的运行可靠性,达到节能降耗,资源节约的目的。
目前,制备DLC类金刚石薄膜材料的方法有物理气相沉积法(PVD)和化学气相沉积法(CVD),由此衍生出了离子束沉积、阴极电弧沉积、磁控溅射沉积、激光沉积、等离子体增强化学气相沉积和热丝等离子化学气相沉积等,虽然沉积方法有很多,但是真正能够实现产业化制造的技术并不多,国外已实现了半产业化的水平,而我国仍处于研发阶段,并未实现大规模的工业化生产和市场应用,对于工业化生产还存在很多需要解决的技术难题。
目前,在金属筒(或管)内壁沉积DLC薄膜非常困难,特别是对于大的长径比(L/D)的筒状或管状零部件内壁沉积DLC薄膜未能获得良好的解决办法,主要问题是:在狭长的阴阳极板间,流通面积狭窄,反应气体运输困难,使温度场分布和电场强度分布不均,等离子体形成困难等,导致薄膜难以在大长径比筒内壁表面生长。筒内壁或管内壁沉积DLC类金刚石薄膜材料可用于各种缸体类零部件的耐磨强化,例如发动机缸体、液压活塞缸、往复式压缩缸等,同时可解决管道内壁的耐磨损问题,例如泥浆输送管、油气输送管、物料输送管等,具有摩擦磨损的管内表面的耐磨损强化;其结果是大大提高发动机等设备的运行稳定性,同时延长相关的零部件和管路的使用寿命。
物理气相沉积技术(PVD)由于其沉积原理的特殊性,无法进行大长径比筒状或管状内壁的DLC类金刚石薄膜的沉积,在金属筒(或管)内壁沉积DLC类金刚石薄膜的可行性方法只能是化学气相沉积技术(CVD),同时中间键合层(过渡层)的建立也必须采用化学气相沉积的方法。化学气相沉积是采用碳氢化合物气体,使碳氢化合物气体在阴阳极板间的等离子电场中发生电离反应,离解出C原子或含碳的活性基团,在电场力的作用下沉积到金属基材表面,并通过氢离子的“刻蚀”作用,形成具有SP、SP2和SP3结构的石墨相和金刚石相,从而构成了DLC类金刚石薄膜材料。但是所采用的碳氢化合物气体的流动状态及其分布极大地影响DLC薄膜的沉积效果,在狭长通道中难以形成稳定均匀的等离子电场和所需的均匀温度场,从而使大长径比的金属筒(或管)内壁难以沉积DLC类金刚石薄膜材料。
关于DLC类金刚石薄膜材料制备方面的专利文献报道也有不少,例如:1、申请号为200810122635.3、发明名称为“类金刚石薄膜制备方法”,该发明专利特征是采用以石墨为阴极电极的脉冲电弧放电和分解离化碳氢化合物气体的混合物理化学气相沉积法在工件表面进行类金刚石薄膜的沉积,其操作步骤是:(1)超声波清洗,将工件经常规超声波清洗并烘干后,及时放置在镀膜室内的旋转支架上;(2)抽真空,将镀膜室内的真空度抽至(2~5)×10-3Pa;(3)离子清洗,向镀膜室内通入氩气,压力为(5~8)×10-1Pa,启动旋转支架,开启离子清洗源,电压为2000~2500V,产生辉光放电,电流50~100mA,产生大量氩离子对工件表面进行轰击;(4)薄膜沉积,开启以石墨为阴极电极的脉冲电弧放电,电压为200~400V,向镀膜室内通入碳氢化合物气体,控制流量为5~10sccm,由脉冲放电形成的碳离子和碳的高能中性原子与碳氢化合物气体分子碰撞,生成新的碳离子飞向工件表面形成类金刚石薄膜。2、申请号为200610128589.9、发明名称为“类金刚石碳硬质多层薄膜形成的物体和其制造方法”的发明专利,该发明专利特征是所述类金刚石碳硬质多层薄膜形成的物体包括:基底主要由类金刚石碳构成的类金刚石碳薄膜;和在所述基底和所述类金刚石碳薄膜之间的中间层,所述类金刚石碳薄膜从所述基底侧依次由第一类金刚石碳薄膜和第二类金刚石碳薄膜构成,基于毫微级压痕试验,所述第一类金刚石碳薄膜的表面硬度为不少于10GPa至不多于40GPa。基于毫微级压痕试验,所述第二类金刚石碳薄膜的表面硬度为不小于40GPa至不多于90GPa;该方法包括以下步骤:制备基底;通过溅射在所述基底上形成中间层;通过溅射在所述中间层上形成第一类金刚石碳薄膜;和通过阴极放电式电弧离子镀在所述第一类金刚石碳薄膜上形成第二类金刚石碳薄膜。
发明内容
本发明要解决的技术问题是:提供在大长径比金属筒(或管)内壁表面沉积DLC类金刚石薄膜的方法。利用本发明技术方案能够显著增加反应气体的流通面积,同时反应气体能够均匀分布于金属筒(或管)内壁。通过控制丝网阳极温度对筒(或管)内壁进行加热,使其满足DLC类金刚石薄膜材料的沉积条件,从而制备出具有高界面结合强度的连续表面类金刚石薄膜材料。
为了解决上述问题,本发明包括以下步骤:
a、首先将丝网阳极筒固定在阳极罩上,将被镀金属筒(或管)置于导电环上,在被镀金属筒(或管)和导电环的外围安装阳极筒,并把阳极筒固定在阳极罩上,把热电偶连接在丝网阳极筒上端,并把热电偶与温度显示器通过真空电极连接;关闭沉积室上端的顶盖,利用与沉积室连通的抽真空装置将沉积室内的真空压力抽至不低于5x10-3Pa;
b、打开与沉积室连通的Ar气进气阀门,通入高纯Ar气。调节Ar气进气阀的开度,使沉积室内的压力达到5~8Pa,并保持Ar气流量不变。打开等离子发生源,使丝网阳极与被镀金属筒(或管)内壁之间产生等离子体,对被镀金属筒(或管)内壁进行20~30min的等离子轰击,清除金属筒(或管)内壁表面上的污染物;同时打开温度显示器,监测丝网阳极筒的温度;
c、a-Si:H:C中间键合层的沉积过程:关闭Ar气进气阀和等离子发生源,然后打开四甲基硅烷Si(CH3)4气体和H2气的进气阀,通入四甲基硅烷Si(CH3)4气体和H2气,按照Si(CH3)4:H2=1:5的比例调整四甲基硅烷和氢气的进气阀,使沉积室内压力保持在8~10Pa;然后打开等离子发生源,使丝网阳极与被镀金属筒(或管)内壁之间产生等离子体,沉积a-Si:H:C中间键合层10~15min。同时打开温度显示器,监测丝网阳极筒的温度;
d、DLC类金刚石薄膜材料的沉积过程:关闭四甲基硅烷Si(CH3)4气体和氢气的进气阀以及等离子发生源。然后打开Ar气、碳氢化合物气体和H2气的进气阀,调整Ar气流量至10sccm;调整碳氢化合物气体流量至5sccm;调整H2气流量至25sccm,并维持该流量比例不变。然后打开等离子发生源,使丝网阳极与被镀金属筒(或管)内壁之间产生等离子体,沉积DLC类金刚石薄膜60~70min。同时打开温度显示器,监测丝网阳极筒的温度。沉积DLC类金刚石薄膜完成后,首先关闭等离子体发生源,然后分别关闭Ar气、碳氢化合物气体和H2气的进气阀,并且关闭温度显示器开关,最后在被镀金属筒(或管)内壁得到高界面强度的连续表面类金刚石薄膜材料。
根据上述的在大长径比金属筒(或管)内壁表面沉积DLC类金刚石薄膜材料的方法,步骤a中所述的丝网阳极筒的外壁与被镀金属筒(或管)内壁的间距为10~20mm,丝网阳极筒的高度高于被镀金属筒30mm以上。阳极筒的下部开有若干个通气孔,通气孔直径大于20mm。
根据上述的在大长径比金属筒(或管)内壁表面沉积DLC类金刚石薄膜材料的方法,步骤b、c、d中所述的等离子体发生源输出功率以丝网阳极筒的温度稳定在280~320℃之间为准。
根据上述的在大长径比金属筒(或管)内壁表面沉积DLC类金刚石薄膜材料的方法,步骤d中所述碳氢化合物为乙炔H2C2、甲烷、甲苯或苯等易挥发性碳氢化合物气体。
根据上述的在大长径比金属筒(或管)内壁表面沉积DLC类金刚石薄膜材料的方法,步骤b、c、d中所述的等离子体发生源为高电压、低电流偏压电源,额定输出电压高于4000V,额定输出电流大于3A。
本发明采用较小的阴阳极间距,能够在更小直径金属筒(或管)内壁沉积薄膜,同时在电离电场中使γ-热电子具有更大的能量,从而对丝网阳极产生强烈的轰击作用,γ-电子被丝网阳极所吸收而形成阳极电流,使丝网阳极的温度快速升高,从而使丝网阳极产生热灯丝效应,热灯丝的辐射加热,满足了DLC类金刚石薄膜材料形成所需要的温度条件。
本发明所采用的丝网阳极所具备的均匀的网格结构,使气体能够通过网格而均匀地分布在整个金属筒(或管)内壁表面,从而使整个金属筒(或管)内壁上形成均匀的电场强度和气流密度。
本发明的工艺控制特点是:在所定的设备结构参数和沉积工艺条件下,通过控制丝网阳极的温度来确定等离子体发生源的输出功率,便能得到高界面强度、高金刚石含量的DLC类金刚石薄膜材料,从而使大长径比的金属筒(或管)内壁表面的耐磨损能力得到大幅提升。操作控制指标简单,易于工业化生产。
附图说明
图1用于大长径比金属筒(或管)内壁沉积类金刚石薄膜的设备结构示意图。
图2丝网阳极筒的结构示意图及实物丝网阳极筒照片(局部)。
图3内径200mm,长800mm的20号碳钢金属圆筒内壁沉积类金刚石薄膜的实物照片。
图4内径200mm,长800mm的20号碳钢金属圆筒内壁沉积类金刚石薄膜的SEM扫描电镜照片。
图5内径200mm,长800mm的20号碳钢金属圆筒内壁沉积类金刚石薄膜材料的拉曼光谱图。
图6内径80mm,长100mm的SUS304不锈钢圆筒的外形照片。
图7内径80mm,长100mm的SUS304不锈钢圆筒内壁沉积类金刚石薄膜的实物照片。
图8内径80mm,长100mm的SUS304不锈钢圆筒内壁沉积类金刚石薄膜材料的拉曼光谱图。
图9内径150mm,长600mm的球墨铸铁气缸筒的外形照片。
图10内径150mm,长600mm的球墨铸铁气缸筒内壁沉积类金刚石薄膜的实物照片。
图11内径150mm,长600mm的球墨铸铁气缸筒内壁沉积类金刚石薄膜材料的拉曼光谱图。
图中标号1、丝网阳极(1-1丝网阳极下端固定法兰),2、被镀金属圆筒,3、阳极筒,4、真空沉积室,5、阳极罩,6、阴极板,7、绝缘陶瓷板,8、真空电极,9、抽真空系统,10、等离子发生源,11、导电环,12、原料气源系统,13、双芯真空电极,14、温度显示器,15、热电偶。
具体实施方式
以下实施方式仅为了进一步详细说明本发明,并不限制本发明的内容。
实施例一:
请参阅图1及图2,本发明实施例一提供在大长径比金属筒(或管)内壁表面沉积DLC类金刚石薄膜材料的方法,所述方法的详细步骤如下:
a、首先将被镀金属筒(或管)2内壁进行表面抛光,使其表面粗糙度达到Ra0.8,然后放入超声波清洗槽中,用丙酮清洗10min,取出后用洁净干空气吹干;
b、将丝网阳极筒1固定在阳极罩5上,将被镀金属筒(或管)2置于导电环11上,在被镀金属筒(或管)2和导电环11的外围安装阳极筒3,并把阳极筒3固定在阳极罩5上,把热电偶15连接在丝网阳极筒1的上端,并把热电偶15与温度显示器14连接的真空电极13连接;关闭沉积室4上端的顶盖,利用与沉积室4连通的抽真空装置9将沉积室4内的真空压力抽至5x10-3Pa;
c、首先打开温度显示器14,然后打开与沉积室4连通的Ar气进气阀门,通入高纯Ar气。调节Ar气进气阀的开度,使沉积室4内的压力达到5~8Pa,并保持Ar气流量不变。打开等离子发生源10,使丝网阳极筒1与被镀金属筒(或管)2的内壁之间产生等离子体,调节DC直流等离子发生源10的输出电压,当丝网阳极筒1的温度稳定在300℃左右时,DC直流等离子发生源10的输出电压为4000V,电流为0.6A,输出功率为2.4Kw。被镀金属筒(或管)2的内壁进行20~30min的Ar气等离子轰击,清除金属筒(或管)2的内壁表面上的污染物;
d、a-Si:H:C中间键合层的沉积过程:关闭Ar气进气阀和等离子发生源10,然后打开四甲基硅烷Si(CH3)4气体和H2气的进气阀,通入四甲基硅烷Si(CH3)4气体和H2气,按照Si(CH3)4:H2=1:5的比例调整四甲基硅烷和氢气的进气阀,使沉积室4内压力保持在8~10Pa;然后打开等离子发生源10,使丝网阳极筒1与被镀金属筒(或管)2的内壁之间产生等离子体,调节DC直流等离子发生源10的输出电压,当丝网阳极筒1的温度稳定在300℃左右时,DC直流等离子发生源10的输出电压为3600V,电流为0.8A,输出功率为2.88Kw。沉积a-Si:H:C中间键合层10~15min;
e、DLC类金刚石薄膜材料的沉积过程:关闭四甲基硅烷Si(CH3)4气体和氢气的进气阀以及等离子发生源10。然后打开Ar气、C2H2气和H2气的进气阀,调整Ar气流量至10sccm;调整C2H2气体流量至5sccm;调整H2气流量至25sccm,并维持该流量比例不变。然后打开等离子发生源10,使丝网阳极筒1与被镀金属筒(或管)2的内壁之间产生等离子体,调节DC直流等离子发生源10的输出电压,当丝网阳极筒1的温度稳定在300℃左右时,DC直流等离子发生源10的输出电压为2500V,电流为0.6A,输出功率为1.5Kw。沉积DLC类金刚石薄膜60~70min。DLC类金刚石薄膜沉积完成后,首先关闭等离子体发生源10,然后分别关闭Ar气、C2H2气体和H2气的进气阀,并且关闭温度显示器开关,真空冷却30min,最后在被镀金属筒(或管)内壁得到高界面强度的连续表面类金刚石薄膜。
所得产品在附图3中,内径200mm,长800mm的20号碳钢金属圆筒内壁,薄膜沉积呈黑色,表面光滑、致密。从附图4的SEM扫描电镜的结果可知,薄膜厚度为14μm,而a-Si:H:C键合层厚度大约1.5μm。在附图5的拉曼光谱中,在波数1580cm-1附近有单个肩峰,为石墨特征峰,在波数1350cm-1附近有另一肩峰,为金刚石特征峰,表明该薄膜为DLC类金刚石薄膜材料的特征峰。
实施例二:与实施例一基本相同,不同之处在于:
本例中,阳极罩5与导电环11之间的间隔距离为30mm,被镀金属圆筒2的上顶端到阳极罩5的距离为135mm,因此所制作的丝网阳极筒1的总长为165mm。被镀金属圆筒2的内壁直径为Φ80mm,被镀金属圆筒2的内壁与丝网阳极筒1的外周间隔15mm,因此丝网阳极筒1为外径Φ50mm的中空丝网圆柱筒。
所得产品在附图6、7中,内径80mm,长100mm的SUS304不锈钢圆筒内壁得到了高界面强度的连续表面类金刚石薄膜,薄膜沉积呈黑色,表面光滑、致密。在附图8的拉曼光谱中,在波数1580cm-1附近有单个肩峰,为石墨特征峰,在波数1350cm-1附近有另一肩峰,为金刚石特征峰,表明该薄膜为DLC类金刚石薄膜材料的特征峰。
实施例三:与实施例一基本相同,不同之处在于:
本例中,阳极罩5与导电环11之间的间隔距离为30mm,被镀金属圆筒2的上顶端到阳极罩5的距离为640mm,因此所制作的丝网阳极筒1的总长为670mm。被镀金属圆筒2的内壁直径为Φ150mm,被镀金属圆筒2的内壁与丝网阳极筒1的外周间隔20mm,因此丝网阳极筒1为外径Φ110mm的中空丝网圆柱筒。
所得产品在附图9、10中,内径150mm,长600mm的球墨铸铁气缸筒内壁得到了高界面强度的连续表面类金刚石薄膜,薄膜沉积呈黑色,表面光滑、致密。在附图11的拉曼光谱中,在波数1580cm-1附近有单个肩峰,为石墨特征峰,在波数1350cm-1附近有另一肩峰,为金刚石特征峰,表明该薄膜为DLC类金刚石薄膜材料的特征峰。

Claims (5)

1.在金属筒内壁表面沉积金刚石薄膜的方法,包括以下步骤:
步骤一、提供的类金刚石薄膜材料沉积设备,所述沉积设备包括真空沉积室、与沉积室连通有原料进气系统和抽真空装置,在沉积室内底部设有与等离子发生源负极连接的阴极板,阴极板上连接了一个导电环,被镀金属筒置于导电环上,构成阴极部;在被镀金属筒的外围设置了阳极筒,沉积室内部的阴极板周围设置了阳极罩,共同构成阳极屏蔽;在阴极板下设置了电绝缘陶瓷板,隔离阴极板与沉积室;其中阳极罩与沉积室电连接,沉积室与地线连接,在被镀金属筒内设置了丝网阳极筒,丝网阳极筒与阳极罩电连接,形成丝网阳极;在丝网阳极上安装了热电偶,热电偶与沉积室外的温度显示器连通;调整丝网阳极与被镀金属筒内壁之间的距离,构成阴阳等离子电场区,丝网网格构成气体通道,并形成热灯丝加热效应,温度显示器可测量并显示丝网阳极的温度;所述等离子发生源的阳极接地,发生源的阴极与真空电极连接,真空电极与阴极载物台连接;采用抽真空装置将所述真空沉积室内的真空压力抽至低于5×10-3Pa;
步骤二、打开与沉积室连通的原料进气系统中的Ar气阀门,通入高纯Ar气;调节Ar气进气阀的开度,使沉积室内的压力达到5~8Pa,并保持Ar气流量不变;打开等离子发生源,使丝网阳极与被镀金属筒内壁之间产生等离子体,对被镀金属筒内壁进行20~30min的等离子轰击,清除筒内壁表面上的污染物;同时打开温度显示器,监测丝网阳极筒的温度;
步骤三、a-Si:H:C中间键合层的沉积过程:关闭Ar气进气阀和等离子发生源,然后打开四甲基硅烷Si(CH3)4气体和H2气的进气阀,通入四甲基硅烷Si(CH3)4气体和H2气,按照Si(CH3)4:H2=1:5的比例调整四甲基硅烷和氢气的进气量,使沉积室内压力保持在8~10Pa;然后打开等离子发生源,使丝网阳极与被镀金属筒内壁之间产生等离子体,沉积a-Si:H:C中间键合层10~15min;同时打开温度显示器,监测丝网阳极筒的温度;
步骤四、DLC类金刚石薄膜材料的沉积过程:关闭四甲基硅烷Si(CH3)4气体和氢气的进气阀以及等离子发生源,然后打开Ar气、碳氢化合物气体和H2气的进气阀,调整Ar气流量至10sccm;调整碳氢化合物气体流量至5sccm;调整H2气流量至25sccm,并维持该流量比例不变;然后打开等离子发生源,使丝网阳极与被镀金属筒内壁之间产生等离子体,沉积DLC类金刚石薄膜60~70min,同时打开温度显示器,监测丝网阳极筒的温度;沉积DLC类金刚石薄膜完成后,首先关闭等离子发生源,然后分别关闭Ar气、碳氢化合物气体和H2气的进气阀,并且关闭温度显示器开关,最后在被镀金属筒内壁得到高界面强度的连续表面类金刚石薄膜材料。
2.根据权利要求1所述的在金属筒内壁表面沉积金刚石薄膜的方法,其特征是:步骤一中所述的丝网阳极筒的外壁与被镀金属筒内壁的间距为10~20mm,丝网阳极筒的高度高于被镀金属筒30mm;阳极筒的下部开有若干个通气孔,通气孔直径大于20mm。
3.根据权利要求1所述的在金属筒内壁表面沉积金刚石薄膜的方法,其特征是:步骤二、三、四中所述的等离子体发生源输入功率以丝网阳极筒的温度稳定在280~320℃之间为准。
4.根据权利要求1所述的在金属筒内壁表面沉积金刚石薄膜的方法,其特征是:步骤四中所述碳氢化合物为乙炔H2C2、甲烷、甲苯或苯的易挥发性碳氢化合物气体。
5.根据权利要求1所述的在金属筒内壁表面沉积金刚石薄膜的方法,其特征是:步骤二、三、四中所述的等离子体发生源为高电压、低电流偏压电源,额定输出电压高于4000V,额定输出电流大于3A。
CN202110522893.6A 2021-05-13 2021-05-13 在大长径比金属筒(或管)内壁表面沉积类金刚石薄膜的方法 Active CN113265642B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110522893.6A CN113265642B (zh) 2021-05-13 2021-05-13 在大长径比金属筒(或管)内壁表面沉积类金刚石薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110522893.6A CN113265642B (zh) 2021-05-13 2021-05-13 在大长径比金属筒(或管)内壁表面沉积类金刚石薄膜的方法

Publications (2)

Publication Number Publication Date
CN113265642A CN113265642A (zh) 2021-08-17
CN113265642B true CN113265642B (zh) 2023-06-23

Family

ID=77230592

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110522893.6A Active CN113265642B (zh) 2021-05-13 2021-05-13 在大长径比金属筒(或管)内壁表面沉积类金刚石薄膜的方法

Country Status (1)

Country Link
CN (1) CN113265642B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113802112B (zh) * 2021-08-19 2023-10-31 郑州大学 带有键合层和过渡层的高界面强度dlc薄膜的沉积方法
FR3133788A1 (fr) * 2022-03-24 2023-09-29 Commissariat à l'Energie Atomique et aux Energies Alternatives Dispositif de diffusion d’un précurseur à contenant ayant au moins un élément poreux permettant la génération d’un aérosol vers une surface de croissance

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6042900A (en) * 1996-03-12 2000-03-28 Alexander Rakhimov CVD method for forming diamond films
US6767436B2 (en) * 2002-09-25 2004-07-27 Hrl Laboratories, Llc Method and apparatus of plasma-enhanced coaxial magnetron for sputter-coating interior surfaces
CN1851045A (zh) * 2006-05-31 2006-10-25 大连理工大学 用直流辉光放电在细长金属管内壁沉积类金刚石膜的方法
CN102011102B (zh) * 2010-12-22 2012-12-05 郑州大学 高界面强度类金刚石薄膜材料的常温沉积设备及其方法

Also Published As

Publication number Publication date
CN113265642A (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
CN113265642B (zh) 在大长径比金属筒(或管)内壁表面沉积类金刚石薄膜的方法
US7608151B2 (en) Method and system for coating sections of internal surfaces
JP5043657B2 (ja) 事前に組立済みのプロセス配管の内部表面を現場においてコーティングする方法及びシステム
EP0797688B1 (en) Method for deposition of diamondlike carbon films
CN108203090B (zh) 一种石墨烯的制备方法
CN103320772B (zh) 一种金属内表面改性的装置和方法
CN109778136B (zh) 采用热电子等离子体技术制备类金刚石涂层的方法
JP4755262B2 (ja) ダイヤモンドライクカーボン膜の製造方法
CN108374154B (zh) 带有复合磁场的类金刚石涂层制备装置及其应用
CN102011102B (zh) 高界面强度类金刚石薄膜材料的常温沉积设备及其方法
Hirata et al. Magnetron-type radio-frequency plasma control yielding vertically well-aligned carbon nanotube growth
US8691063B2 (en) Methods and apparatus for forming diamond-like coatings
CN108277474A (zh) 一种在管状工件内壁沉积高品质金刚石涂层的方法
CN109825808B (zh) 一种掺杂类金刚石薄膜制备装置及方法
CN102719788B (zh) 一种等离子全方位离子沉积设备
CN100395371C (zh) 微波等离子体增强弧辉渗镀涂层的装置及工艺
Man et al. Influence of plasma condition on carbon nanotube growth by rf-PECVD
CN1202277C (zh) 双辉放电渗镀金属碳或者氮化合物装置及工艺
CN113502463B (zh) 一种用于大长径比金属筒(或管)内壁沉积类金刚石薄膜的设备
CN113293357B (zh) 一种脉冲复合射频增强空心阴极长管内壁沉积类金刚石涂层方法
Kondo et al. Synthesis of diamond-like carbon films by nanopulse plasma chemical vapor deposition in open air
JP2017218624A (ja) 硬質膜の成膜方法
WO2015119199A1 (ja) 管状体内にプラズマを発生させる発生装置
CN114672774B (zh) 一种纳米复合MeSiCN涂层的制备装置及其制备方法
CN113201712B (zh) 一种导电耐磨自润滑碳基薄膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant