CN113546635B - 一种烟蒂衍生炭基材料的制备方法及其应用 - Google Patents

一种烟蒂衍生炭基材料的制备方法及其应用 Download PDF

Info

Publication number
CN113546635B
CN113546635B CN202110890889.5A CN202110890889A CN113546635B CN 113546635 B CN113546635 B CN 113546635B CN 202110890889 A CN202110890889 A CN 202110890889A CN 113546635 B CN113546635 B CN 113546635B
Authority
CN
China
Prior art keywords
lanthanum
cobalt
carbon
composite material
based composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110890889.5A
Other languages
English (en)
Other versions
CN113546635A (zh
Inventor
李炜
张华�
秦艳华
朱怀远
廖惠云
王珂清
刘梦梦
曹毅
吴洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Tobacco Jiangsu Industrial Co Ltd
Original Assignee
China Tobacco Jiangsu Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Tobacco Jiangsu Industrial Co Ltd filed Critical China Tobacco Jiangsu Industrial Co Ltd
Priority to CN202110890889.5A priority Critical patent/CN113546635B/zh
Publication of CN113546635A publication Critical patent/CN113546635A/zh
Application granted granted Critical
Publication of CN113546635B publication Critical patent/CN113546635B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4875Sorbents characterised by the starting material used for their preparation the starting material being a waste, residue or of undefined composition
    • B01J2220/4887Residues, wastes, e.g. garbage, municipal or industrial sludges, compost, animal manure; fly-ashes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明公开一种烟蒂衍生炭基材料的制备方法及其应用,材料制备包括以下步骤:S1.将钴源、镧源、废弃烟蒂分散于DMF溶剂中,加热反应,得混合溶液;S2.将混合溶液与聚四氟乙烯加热反应,得前驱体;S3.将所述前驱体于惰性环境下煅烧,得钴镧双金属负载烟蒂炭基复合材料粗产物;S4.将所述钴镧双金属负载烟蒂炭基复合材料粗产物冷却,用洗涤剂洗涤后干燥,得钴镧双金属负载烟蒂炭基复合材料,所制备的炭基材料稳定性高,去除水体中有机砷及无机砷的效果好。

Description

一种烟蒂衍生炭基材料的制备方法及其应用
技术领域
本发明涉及废弃烟蒂利用领域,具体涉及一种烟蒂衍生炭基材料的制备方法及其应用。
背景技术
砷是一种广泛存在于自然环境且毒性很大的类重金属元素。由于自然作用和一些人为活动,使得部分砷进入水环境中,造成地下水体砷污染,危害公众健康。含砷的废水如果不经过处理,直接灌溉会对土壤造成严重的污染,这一污染过程已经成为一个值得关注的重大问题。砷污染的土壤可抑制作物生长发育,导致其产量与质量的降低,并造成作物体内砷积累,若作物食用部分砷含量超标,将对食品的安全构成威胁。水体中的砷污染物包括有机砷和无机砷两种形态,机体摄取后基本很难被代谢,经过常规的污水处理方法也很难达到理想的去除效果,比如混凝/絮凝,沉淀等,这类传统的污水处理工艺并不能完全去除。
近年来,金属氧化物材料被广泛运用于吸附水和土壤中的重金属。但是由于在吸附过程中,会有一定浓度的金属离子从材料表面转移到反应体系中,溶液中出现的金属离子会对环境造成二次污染。另外,这些材料在使用后不易被回收,很难进行重复使用,从而限制了它们的发展和应用。基于此,材料的稳定性和重复性已经成为衡量材料优劣的重要指标。
碳元素作为环境中人类最早利用的元素之一,广泛存在于自然界中,其环境流失不会造成新的环境负担,因而是最具应用潜力的催化材料之一。而生物炭是一种作为土壤改良剂的木炭,能帮助植物生长,可应用于农业用途以及碳收集及储存使用,有别于一般用于燃料之传统木炭。生物炭跟一般的木炭一样是生物质能原料经热裂解之后的产物,其主要的成分是碳分子。很多其他材料也可以制造木炭,诸如农业产生的大量动植物废料:麦秆、种壳、粪便等,甚至废弃的烟蒂,也可以制造生物炭,现有技术中也有利用生物炭来吸附水体中砷污染物的,但吸附率低。
为制备稳定的金属氧化物处理污水中的砷污染物,公开号为CN201910134573 .6的中国专利公开了一种活性炭/锆-锰氧化物复合材料及其制备方法与应用,将活性炭加入水与酒精混合液中进行超声处理 ,得改性活性炭溶液;在搅拌条件下,加入氯氧化锆和硫酸锰固体,得混合溶液;将氢氧化钠溶液加入混合溶液中,继续搅拌,得灰黑色混合溶液;加入过氧化氢溶液,常温下继续搅拌,再进行超声处理;将混合溶液装入反应釜中,高温反应后进行离心、洗涤、干燥和研磨过筛,得到活性炭/锆-锰氧化物复合材料,作为吸附剂用于水污染控制领域,去除废水中的砷,并可将三价砷氧化为五价砷,但其只能处理无机砷,并不能对有机砷进行降解。
发明内容
为解决上述问题,本发明提供一种烟蒂衍生炭基材料的制备方法及其应用,所制备的炭基材料稳定性高,去除水体中有机砷及无机砷的效果好。
本发明的技术方案是,提供一种烟蒂衍生炭基材料的制备方法,包括以下步骤:
S1 .将钴源、镧源、废弃烟蒂分散于DMF溶剂中,加热反应,得混合溶液;
S2 .将混合溶液与聚四氟乙烯加热反应,得前驱体;
S3 .将所述前驱体于惰性环境下煅烧,得钴镧双金属负载烟蒂炭基复合材料粗产物;
S4 . 将所述钴镧双金属负载烟蒂炭基复合材料粗产物冷却,用洗涤剂洗涤后干燥,得钴镧双金属负载烟蒂炭基复合材料。
优选地,所述钴源为Co(NO3)2·6H2O、CoCl2中的一种或几种。
优选地,所述镧源为La(NO3)3·6H2O、LaCl3中的一种或几种。
优选地,所述步骤S1中,加热温度为80-100℃,加热时间为1-2h。
优选地,所述步骤S2中,加热温度为120-160℃,加热时间为12-24h。
优选地,所述步骤S3中,煅烧温度为300-800℃,煅烧时间为3-7h。
优选地,所述钴源与镧源的摩尔比为1:2-3。
优选地,所述步骤S4中,洗涤剂包括蒸馏水、乙醇中的一种或几种。
进一步地,提供一种烟蒂衍生炭基材料在降解水体中砷污染物的应用。
优选地,所述砷污染物包括洛克沙胂、无机砷中的一种或几种。
本发明的制备方法中,一方面,煅烧后的生物炭材料空间结构发生了变化,产生大量的细微孔道,比表面积大幅增大,比表面积是多孔类材料最重要的性能指标之一,它直接决定了单位质量多孔材料的内在总面积,从而决定了目标成分与材料孔表面发生作用的几率,比表面积的增大,能在一定程度上提升物理吸附效果;另一方面,负载的钴镧双金属纳米颗粒在废弃烟蒂碳材料表面分布不易团聚,容易和过一硫酸盐分子接触,进而产生具有强氧化能力的硫酸根自由基和羟基自由基,对有机砷如洛克沙胂进行降解,同时在降解过程中形成的含镧氧化物可以和水中无机砷通过形成配体或阴离子交换产生内层的La-O-As络合物,从而达到吸附的作用,通过负载,双金属氧化物在反应过程中较为稳定,金属不易析出,对环境的危害性显著降低。
本发明的有益效果在于:
1 .本方法制备的炭基材料活性位点多,比表面积大,对氧化剂的吸附效果极佳,而且废弃烟蒂在煅烧过程中可以生成更多的含氧官能团,这些官能团可以和氧化剂产生静电吸附、离子交换和氢键引力,大大提升了其对氧化剂的吸附效果,从而使得氧化剂与水体中砷的接触更加充分,加快了水体中砷污染物的降解与吸附转移,对于环境保护具有重要的意义;
2 .负载的钴镧双金属纳米颗粒在废弃烟蒂碳材料表面分布不易团聚,容易和过一硫酸盐分子接触,进而产生具有强氧化能力的硫酸根自由基和羟基自由基,对有机砷如洛克沙胂进行降解,在降解过程中形成的含镧氧化物可以和水中无机砷通过形成配体或阴离子交换产生内层的La-O-As络合物,达到有机砷和无机砷协同降解吸附的效果;
3 .通过负载,双金属氧化物在反应过程中较为稳定,金属不易析出,对环境的危害性显著降低;
4 .本方法使用的烟蒂为废弃烟头,将废弃物重新再利用,既能减少烟蒂对环境的污染,同时还能减少制造成本,符合环境友好发展的经济性。
附图说明
图1为砷污染物去除效果对比结果。
具体实施方式
下面结合实施例对本发明作进一步的详细描述。本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限定本发明的范围。实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过购买获得的常规产品。
实施例1
一种烟蒂衍生炭基材料的制备方法,包括以下步骤:
S1 .将1mol Co(NO3)2·6H2O、2mol La(NO3)3·6H2O、1g已粉碎的废弃烟蒂同时置于250ml烧瓶中,并加入80ml DMF溶剂,搅拌使其充分分散于DMF中,在80℃下反应1h,得混合溶液;
S2 .将混合溶液倒入装有聚四氟乙烯的不锈钢水热反应釜内,120℃加热12h,得前驱体;
S3 .将所述前驱体用超纯水和乙醇洗涤后转移至马弗炉中,于惰性环境下500℃煅烧5h,得钴镧双金属负载烟蒂炭基复合材料粗产物;
S4 .将所述钴镧双金属负载烟蒂炭基复合材料粗产物自然冷却后用蒸馏水洗涤后于60℃干燥,得钴镧双金属负载烟蒂炭基复合材料。
实施例2
一种烟蒂衍生炭基材料的制备方法,包括以下步骤:
S1 .将1mol Co(NO3)2·6H2O、3mol La(NO3)3·6H2O、1g已粉碎的废弃烟蒂同时置于250ml烧瓶中,并加入80ml DMF溶剂,搅拌使其充分分散于DMF中,在100℃下反应2h,得混合溶液;
S2 .将混合溶液倒入装有聚四氟乙烯的不锈钢水热反应釜内,160℃加热24h,得前驱体;
S3 .将所述前驱体用超纯水和乙醇洗涤后转移至马弗炉中,于惰性环境下800℃煅烧3h,得钴镧双金属负载烟蒂炭基复合材料粗产物;
S4 .将所述钴镧双金属负载烟蒂炭基复合材料粗产物自然冷却后用蒸馏水洗涤后于60℃干燥,得钴镧双金属负载烟蒂炭基复合材料。
实施例3
一种烟蒂衍生炭基材料的制备方法,包括以下步骤:
S1 .将1mol Co(NO3)2·6H2O、2mol LaCl3、1g已粉碎的废弃烟蒂同时置于250ml烧瓶中,并加入80ml DMF溶剂,搅拌使其充分分散于DMF中,在90℃下反应1.5h,得混合溶液;
S2 .将混合溶液倒入装有聚四氟乙烯的不锈钢水热反应釜内,150℃加热20h,得前驱体;
S3 .将所述前驱体用超纯水和乙醇洗涤后转移至马弗炉中,于惰性环境下300℃煅烧7h,得钴镧双金属负载烟蒂炭基复合材料粗产物;
S4 .将所述钴镧双金属负载烟蒂炭基复合材料粗产物自然冷却后用乙醇洗涤后于60℃干燥,得钴镧双金属负载烟蒂炭基复合材料。
实施例4
一种烟蒂衍生炭基材料的制备方法,包括以下步骤:
S1 .将1mol CoCl2、2 .5mol La(NO3)3·6H2O、1g已粉碎的废弃烟蒂同时置于250ml烧瓶中,并加入80ml DMF溶剂,搅拌使其充分分散于DMF中,在80℃下反应1.5h,得混合溶液;
S2 .将混合溶液倒入装有聚四氟乙烯的不锈钢水热反应釜内,120℃加热12h,得前驱体;
S3 .将所述前驱体用超纯水和乙醇洗涤后转移至马弗炉中,于惰性环境下500℃煅烧5h,得钴镧双金属负载烟蒂炭基复合材料粗产物;
S4 .将所述钴镧双金属负载烟蒂炭基复合材料粗产物自然冷却后用蒸馏水洗涤后于60℃干燥,得钴镧双金属负载烟蒂炭基复合材料。
实施例5
一种烟蒂衍生炭基材料的制备方法,包括以下步骤:
S1 .将1mol CoCl2、2mol LaCl3、1g已粉碎的废弃烟蒂同时置于250ml烧瓶中,并加入80ml DMF溶剂,搅拌使其充分分散于DMF中,在90℃下反应1h,得混合溶液;
S2 .将混合溶液倒入装有聚四氟乙烯的不锈钢水热反应釜内,150℃加热12h,得前驱体;
S3 .将所述前驱体用超纯水和乙醇洗涤后转移至马弗炉中,于惰性环境下500℃煅烧6h,得钴镧双金属负载烟蒂炭基复合材料粗产物;
S4 .将所述钴镧双金属负载烟蒂炭基复合材料粗产物自然冷却后用乙醇洗涤后于60℃干燥,得钴镧双金属负载烟蒂炭基复合材料。
实施例6
一种烟蒂衍生炭基材料的制备方法,包括以下步骤:
S1 .将1mol CoCl2、2 .3mol LaCl3、1g已粉碎的废弃烟蒂同时置于250ml烧瓶中,并加入100ml DMF溶剂,搅拌使其充分分散于DMF中,在90℃下反应1.5h,得混合溶液;
S2 .将混合溶液倒入装有聚四氟乙烯的不锈钢水热反应釜内,150℃加热12h,得前驱体;
S3 .将所述前驱体用超纯水和乙醇洗涤后转移至马弗炉中,于惰性环境下500℃煅烧5h,得钴镧双金属负载烟蒂炭基复合材料粗产物;
S4 .将所述钴镧双金属负载烟蒂炭基复合材料粗产物自然冷却后用乙醇洗涤后于60℃干燥,得钴镧双金属负载烟蒂炭基复合材料。
实施例7
烟蒂衍生炭基材料在降解水体中砷污染物的应用,首先制备烟蒂衍生炭基材料,步骤如下:
S1 .将1mol Co(NO3)2·6H2O、2mol La(NO3)3·6H2O、1g已粉碎的废弃烟蒂同时置于250ml烧瓶中,并加入80ml DMF溶剂,搅拌使其充分分散于DMF中,在80℃下反应1h,得混合
溶液;
S2 .将混合溶液倒入装有聚四氟乙烯的不锈钢水热反应釜内,120℃加热12h,得前驱体;
S3 .将所述前驱体用超纯水和乙醇洗涤后转移至马弗炉中,于惰性环境下500℃煅烧5h,得钴镧双金属负载烟蒂炭基复合材料粗产物;
S4 .将所述钴镧双金属负载烟蒂炭基复合材料粗产物自然冷却后用蒸馏水洗涤后于60℃干燥,得钴镧双金属负载烟蒂炭基复合材料。
将得到的钴镧双金属负载烟蒂炭基复合材料作为催化剂催化过一硫酸盐氧化降解水体中有机砷并吸附无机砷,具体步骤如下:在 100 mL烧杯中进行反应,反应溶液包括有机砷和无机砷的混合物、0.5M的过二硫酸钠,反应条件为室温,将溶液调为碱性后,加入钴镧双金属负载烟蒂炭基复合材料,搅拌反应。
实施例8
烟蒂衍生炭基材料在降解水体中砷污染物的应用,首先制备烟蒂衍生炭基材料,步骤如下:
S1 .将1mol CoCl2、2.5mol La(NO3)3·6H2O、1g已粉碎的废弃烟蒂同时置于250ml烧瓶中,并加入80ml DMF溶剂,搅拌使其充分分散于DMF中,在80℃下反应1.5h,得混合溶液;
S2 .将混合溶液倒入装有聚四氟乙烯的不锈钢水热反应釜内,120℃加热12h,得前驱体;
S3 .将所述前驱体用超纯水和乙醇洗涤后转移至马弗炉中,于惰性环境下500℃煅烧5h,得钴镧双金属负载烟蒂炭基复合材料粗产物;
S4 .将所述钴镧双金属负载烟蒂炭基复合材料粗产物自然冷却后用蒸馏水洗涤后于60℃干燥,得钴镧双金属负载烟蒂炭基复合材料。
将得到的钴镧双金属负载烟蒂炭基复合材料作为催化剂催化过一硫酸盐氧化降解水体中有机砷并吸附无机砷,具体步骤如下:在 100 mL烧杯中进行反应,反应溶液包括有机砷和无机砷的混合物、0.5M的过二硫酸钠,反应条件为室温,将溶液调为碱性后,加入钴镧双金属负载烟蒂炭基复合材料,搅拌反应。
对比例1
一种烟蒂衍生炭基材料的制备方法,包括以下步骤:
S1 .将1mol Co(NO3)2·6H2O、1g已粉碎的废弃烟蒂同时置于250ml烧瓶中,并加入80ml DMF溶剂,搅拌使其充分分散于DMF中,在80℃下反应1h,得混合溶液;
S2 .将混合溶液倒入装有聚四氟乙烯的不锈钢水热反应釜内,120℃加热12h,得前驱体;
S3 .将所述前驱体用超纯水和乙醇洗涤后转移至马弗炉中,于惰性环境下500℃煅烧5h,得烟蒂炭基复合材料粗产物;
S4 .将所述烟蒂炭基复合材料粗产物自然冷却后用蒸馏水洗涤后于60℃干燥,得烟蒂炭基复合材料。
对比例2
S1 .将3mol La(NO3)3·6H2O、1g已粉碎的废弃烟蒂同时置于250ml烧瓶中,并加入80ml DMF溶剂,搅拌使其充分分散于DMF中,在100℃下反应2h,得混合溶液;
S2 .将混合溶液倒入装有聚四氟乙烯的不锈钢水热反应釜内,160℃加热24h,得前驱体;
S3 .将所述前驱体用超纯水和乙醇洗涤后转移至马弗炉中,于惰性环境下800℃煅烧3h,得烟蒂炭基复合材料粗产物;
S4 .将所述烟蒂炭基复合材料粗产物自然冷却后用蒸馏水洗涤后于60℃干燥,得烟蒂炭基复合材料。
测试结果
将实施例1-8及对比例1-2所得到的烟蒂炭基复合材料做砷污染物的吸附实验,具体步骤如下:在 100 mL烧杯中进行反应,反应溶液包括洛克沙胂和Na3AsO3的混合物、0.5M的过一硫酸钠,反应条件为室温,将溶液调为碱性后,分别加入上述烟蒂炭基复合材料,搅拌反应,分别于4min和20min后测试水体中残留的有机砷与无机砷,以此得到砷污染物的吸附效率,结果如图1所示。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (5)

1.一种烟蒂衍生炭基材料在去除水体中洛克沙胂和无机砷的应用,其特征在于,包括以下步骤:
S1.将钴源、镧源、废弃烟蒂分散于DMF溶剂中,加热反应,得混合溶液,所述加热反应中的加热温度为80-100℃,加热时间为1-2h;
S2.将混合溶液倒入装有聚四氟乙烯内衬的水热反应釜内加热反应,得前驱体,本步骤中加热反应的加热温度为120-160℃,加热时间为12-24h;
S3.将所述前驱体于惰性环境下煅烧,得钴镧双金属负载烟蒂炭基复合材料粗产物,所述煅烧的温度为300-800℃,煅烧时间为3-7h;
S4.将所述钴镧双金属负载烟蒂炭基复合材料粗产物冷却,用洗涤剂洗涤后干燥,得钴镧双金属负载烟蒂炭基复合材料;
S5.使用钴镧双金属负载烟蒂炭基复合材料催化过一硫酸盐降解水中洛克沙胂并吸附无机砷。
2.根据权利要求1所述的应用,其特征在于,所述钴源为 Co(NO3)2·6H2O、CoCl2中的一种或几种。
3.根据权利要求1所述的应用,其特征在于,所述镧源为 La(NO3)3·6H2O、LaCl3中的一种或几种。
4.根据权利要求1所述的应用,其特征在于,所述钴源与镧源的摩尔比为1:2-3。
5.根据权利要求1所述的应用,其特征在于,所述步骤S4中,洗涤剂包括蒸馏水、乙醇中的一种或几种。
CN202110890889.5A 2021-08-04 2021-08-04 一种烟蒂衍生炭基材料的制备方法及其应用 Active CN113546635B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110890889.5A CN113546635B (zh) 2021-08-04 2021-08-04 一种烟蒂衍生炭基材料的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110890889.5A CN113546635B (zh) 2021-08-04 2021-08-04 一种烟蒂衍生炭基材料的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN113546635A CN113546635A (zh) 2021-10-26
CN113546635B true CN113546635B (zh) 2023-08-22

Family

ID=78105251

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110890889.5A Active CN113546635B (zh) 2021-08-04 2021-08-04 一种烟蒂衍生炭基材料的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN113546635B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106179369A (zh) * 2016-07-25 2016-12-07 牛和林 具可见光芬顿活性LaFeO3/C碳基钙钛矿半导体复合纳米材料及其制备方法和应用
CN110404526A (zh) * 2019-07-25 2019-11-05 中国科学院城市环境研究所 基于MOFs衍生La2O3@C活化过硫酸盐去除PPCPs和As(III)的方法
CN111545192A (zh) * 2020-04-30 2020-08-18 齐鲁工业大学 一种MOFs衍生的钙钛矿催化剂及其制备与催化降解有机污染物的应用
CN111968862A (zh) * 2020-08-07 2020-11-20 苏州科技大学 MnO-Co/生物碳电极材料的合成方法
CN112169760A (zh) * 2020-10-21 2021-01-05 江苏中烟工业有限责任公司 一种选择性吸附烟气中氨的烟蒂生物炭材料的制备方法
CN112295562A (zh) * 2020-10-21 2021-02-02 江苏中烟工业有限责任公司 一种烟蒂衍生炭材料的制备方法及应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106179369A (zh) * 2016-07-25 2016-12-07 牛和林 具可见光芬顿活性LaFeO3/C碳基钙钛矿半导体复合纳米材料及其制备方法和应用
CN110404526A (zh) * 2019-07-25 2019-11-05 中国科学院城市环境研究所 基于MOFs衍生La2O3@C活化过硫酸盐去除PPCPs和As(III)的方法
CN111545192A (zh) * 2020-04-30 2020-08-18 齐鲁工业大学 一种MOFs衍生的钙钛矿催化剂及其制备与催化降解有机污染物的应用
CN111968862A (zh) * 2020-08-07 2020-11-20 苏州科技大学 MnO-Co/生物碳电极材料的合成方法
CN112169760A (zh) * 2020-10-21 2021-01-05 江苏中烟工业有限责任公司 一种选择性吸附烟气中氨的烟蒂生物炭材料的制备方法
CN112295562A (zh) * 2020-10-21 2021-02-02 江苏中烟工业有限责任公司 一种烟蒂衍生炭材料的制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
载镧生物质炭吸附水体中As(Ⅴ)的过程与机制;冯彦房;薛利红;杨梖;刘杨;段婧婧;何世颖;杨林章;;农业环境科学学报(11);全文 *

Also Published As

Publication number Publication date
CN113546635A (zh) 2021-10-26

Similar Documents

Publication Publication Date Title
Lyu et al. Application of biochar and its composites in catalysis
Ahmaruzzaman Biochar based nanocomposites for photocatalytic degradation of emerging organic pollutants from water and wastewater
Wu et al. Visualizing the emerging trends of biochar research and applications in 2019: a scientometric analysis and review
Osman et al. Biofuel production, hydrogen production and water remediation by photocatalysis, biocatalysis and electrocatalysis
Kang et al. Electron-rich biochar enhanced Z-scheme heterojunctioned bismuth tungstate/bismuth oxyiodide removing tetracycline
CN111013590B (zh) 生物炭负载四氧化三钴催化材料的制备方法
CN113061441B (zh) 用于氧化修复土壤水体有机污染的生物炭负载铁材料及其制备方法、应用
CN108970608B (zh) 具有包覆结构的负载型贵金属催化剂及其制备方法和在Cu(II)液相催化还原中的应用
CN102247802A (zh) 一种活性炭的制备方法
CN108607507A (zh) 一种降解染料的高稳定性生物炭基碳化铁的制备方法
CN113943030B (zh) 用于活化过一硫酸盐处理氯苯污染水体的生物质炭包覆纳米零价铁复合材料及其制备和应用
CN110756163A (zh) 一种纳米CoFe2O4/碳纤维毡复合材料及其制备方法和应用
CN108043458A (zh) 一种固定化非均相芬顿催化剂的制备方法及其应用
CN111659453A (zh) 一种可见光-臭氧协同催化的催化剂及其制备方法
CN111450802A (zh) 一种制备碳基功能材料的方法及其应用
Ma et al. Iron pyrophosphate doped carbon nanocomposite for tetracycline degradation by activation of peroxymonosulfate
CN112295562B (zh) 一种烟蒂衍生炭材料的制备方法及应用
CN113546635B (zh) 一种烟蒂衍生炭基材料的制备方法及其应用
CN115888717B (zh) 高效活化过硫酸盐的生物炭负载纳米CoOOH催化剂及制备方法
CN115025821B (zh) 一种水热碳复合材料及其制备方法、催化体系和应用
CN114272895B (zh) 一种氮硫磷共掺杂的有序多孔生物炭及其制备方法和应用
CN115715980A (zh) Mn3O4/CNTs类芬顿催化剂及其制备方法和应用
CN115025796A (zh) 生物质负载MOFs衍生复合催化剂及其制备方法和应用
CN108452770B (zh) 一种MIL-101限域ZrO2纳米颗粒除磷吸附剂及其制备方法与应用
Teli et al. Recent insights into modified biochars: A half-decade study

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant