CN113457743A - 一种纳米铬酸铋/g-C3N4改性MOFs复合材料制备方法及其应用 - Google Patents

一种纳米铬酸铋/g-C3N4改性MOFs复合材料制备方法及其应用 Download PDF

Info

Publication number
CN113457743A
CN113457743A CN202110661570.5A CN202110661570A CN113457743A CN 113457743 A CN113457743 A CN 113457743A CN 202110661570 A CN202110661570 A CN 202110661570A CN 113457743 A CN113457743 A CN 113457743A
Authority
CN
China
Prior art keywords
solution
composite material
nano
mofs composite
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202110661570.5A
Other languages
English (en)
Inventor
赵丹
王金宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Lingsheng Biomedical Technology Co ltd
Original Assignee
Harbin Lingsheng Biomedical Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Lingsheng Biomedical Technology Co ltd filed Critical Harbin Lingsheng Biomedical Technology Co ltd
Priority to CN202110661570.5A priority Critical patent/CN113457743A/zh
Publication of CN113457743A publication Critical patent/CN113457743A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1616Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/34Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/29Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of hydroxy groups
    • C07C45/292Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of hydroxy groups with chromium derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0202Polynuclearity
    • B01J2531/0205Bi- or polynuclear complexes, i.e. comprising two or more metal coordination centres, without metal-metal bonds, e.g. Cp(Lx)Zr-imidazole-Zr(Lx)Cp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/26Zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种纳米铬酸铋/g‑C3N4改性MOFs复合材料制备方法及其应用,所述MOFs材料为类沸石咪唑酯骨架材料,以咪唑‑2‑甲酸为有机配体,以Zn2+、Ni2+、Co2+为无机配体,通过酰胺化反应及酯化反应与功能化g‑C3N4接枝共聚,负载纳米铬酸铋催化剂,包括以下步骤:S1:制备功能化g‑C3N4;S2:制备无机配体溶液;S3:制备有机配体溶液;S4:制备g‑C3N4改性MOFs复合材料;S5:将所得g‑C3N4改性MOFs复合材料加入0.15~0.2mol/L K2CrO4溶液中,浸渍吸附0.5~3h,再滴加乙酸铋‑盐酸溶液,25℃室温下,搅拌反应1~6h,过滤、洗涤、干燥,即得。本发明改性MOFs复合材料具有三维沸石拓扑结构、高孔隙率、高稳定性、高催化活性特点,高效分离光生电子和空穴,应用于催化氧化芳香醇制芳香醛。

Description

一种纳米铬酸铋/g-C3N4改性MOFs复合材料制备方法及其应用
技术领域
本发明属于MOFs功能化改性领域,具体涉及一种纳米铬酸铋/g-C3N4改性MOFs复合材料制备方法及其应用。
背景技术
金属-有机骨架材料,是由过渡金属离子与羧酸类或含氮类有机多齿配体通过配位作用自主装形成具有周期性的多维网状结构的一类新型多孔材料,具有高孔隙率、低密度、大比表面积、孔道规则、孔径可调以及拓扑结构多样性和可裁剪性等优点。MOFs材料兼具无机材料刚性和有机材料柔韧性的特征,在气体的存储、催化剂、分离、吸附以及光电磁材料中具有重要应用,同时,由于MOFs材料具有大量不饱和金属位,具有高度的分子选择性。类沸石咪唑酯骨架材料简称ZIFs,是由二价过渡族金属离子与咪唑基配体络合后形成的一种具有沸石拓扑结构的新型MOFs材料。ZIFs材料不仅具有传统MOFs材料的优点,而且具有无机沸石的高稳定性,其热稳性达到550℃,耐热碱和有机溶剂等,还可以通过调节金属离子与有机配体获得不同的结构和功能。
纳米铬酸铋是一种新型铬酸盐光催化剂,具有非常宽的光谱吸收范围,可将吸收带边拓展至610nm的红光区,其禁带宽度为2.03eV,远低于传统TiO2光催化剂的3.0~3.2eV,对可见光具有良好的响应能力,同时,其光电压响应范围也可拓展至红光区,表现出优异的光生电子与光生空穴的分离效率,因此,铬酸铋具有优异的可见光催化性质。目前,关于纳米铬酸铋的研究及应用还较为罕见,仅三例报道,具体为:申请号为CN201711286334.X的专利,公开一种高活性铬酸铋纳米光催化剂的制备方法及其应用;申请号为CN202010883227.0的专利,公开一种复合光催化剂在染料废水处理中的应用;申请号为CN00818717.7的专利,公开补充促进剂与碳担载的含贵金属的催化剂一起在液相氧化反应中的用途;但利用纳米铬酸铋与MOFs材料尤其是与ZIFs材料复合研发新型催化剂还未有相关资料报道,是新材料领域的空白。
因此,本发明公开一种纳米铬酸铋/g-C3N4改性MOFs复合材料制备方法及其在催化氧化芳香醇制芳香醛中的应用,以MOFs材料为载体,接枝g-C3N4,并进一步原位生长纳米铬酸铋;该MOFs材料为类沸石咪唑酯骨架材料,以咪唑-2-甲酸为有机配体,以Zn2+、Ni2+、Co2+为无机配体,通过酰胺化反应及酯化反应与富-OH及-NH2的功能化g-C3N4接枝共聚,再通过化学沉淀法原位沉积纳米铬酸铋催化剂,合成的新型异质结催化剂可高选择性地催化氧化醇成醛。
发明内容
针对现有技术的不足之处,本发明的目的在于提供一种纳米铬酸铋/g-C3N4改性MOFs复合材料制备方法及其应用。
本发明的技术方案概述如下:
一种纳米铬酸铋/g-C3N4改性MOFs复合材料制备方法,所述MOFs材料为类沸石咪唑酯骨架材料,以咪唑-2-甲酸为有机配体,以Zn2+、Ni2+、Co2+为无机配体,通过酰胺化反应及酯化反应与功能化g-C3N4接枝共聚,负载纳米铬酸铋催化剂,包括以下步骤:
S1:将纳米g-C3N4加入去离子水中,超声分散后,加入乙醇胺、N-2-(氨乙基)-3-氨丙基三甲氧基硅烷,搅拌均匀后,80~100℃水热反应0.5~2h,离心、洗涤、干燥后,得功能化g-C3N4
S2:将锌盐、镍盐、钴盐加入体积浓度为75%乙醇溶液中,50℃搅拌溶解后,得到无机配体溶液;
S3:将咪唑-2-甲酸溶解于DMF中,得到有机配体溶液;
S4:将无机配体溶液和有机配体溶液混合均匀后,加入功能化g-C3N4和EDC·HCL,超声分散后,移至反应釜中,100~160℃溶剂热条件下,搅拌反应12~36h,冷却至室温,过滤、洗涤、干燥,即得g-C3N4改性MOFs复合材料;
S5:将所得g-C3N4改性MOFs复合材料加入0.15~0.2mol/L K2CrO4溶液中,浸渍吸附0.5~3h,再滴加乙酸铋-盐酸溶液,25℃室温下,搅拌反应1~6h,过滤、洗涤、干燥,即得所述纳米铬酸铋/g-C3N4改性MOFs复合材料。
优选的是,所述锌盐为硝酸锌、醋酸锌、氯化锌、硫酸锌中的一种或多种。
优选的是,所述镍盐为硝酸镍、醋酸镍、氯化镍、硫酸镍中的一种或多种。
优选的是,所述钴盐为硝酸钴、醋酸钴、氯化钴、硫酸钴中的一种或多种。
优选的是,所述乙酸铋-盐酸溶液制备方法为:将乙酸铋加入0.05mol/L稀HCl溶液中,控制用量比为(0.6~1)mmol:10mL,40~60℃搅拌溶解,即得乙酸铋-盐酸溶液,4℃保存备用。
优选的是,所述纳米g-C3N4的制备方法为:将三聚氰胺加入无水乙醇中,控制固液比为0.5g/mL,超声溶解后,90~150℃蒸发乙醇后,再置于马弗炉中加热至550~600℃,恒温煅烧4~6h,充分研磨后,即得纳米g-C3N4
优选的是,所述纳米g-C3N4、去离子水、乙醇胺、N-2-(氨乙基)-3-氨丙基三甲氧基硅烷用量比为1g:10mL:(0.2~0.4)g:(0.3~0.6)mL。
优选的是,S2~S4中,所述锌盐、镍盐、钴盐、乙醇溶液、咪唑-2-甲酸、DMF、功能化g-C3N4、EDC·HCL用量比为(2~10)mmol:(2~10)mmol:(1~5)mmol:20mL:(20~30)mmol:20mL:(0.2~0.8)g:(0.2~0.3)g。
优选的是,所述g-C3N4改性MOFs复合材料、K2CrO4溶液、乙酸铋-盐酸溶液用量比为2g:(10~15)mL:(10~15)mL。
一种纳米铬酸铋/g-C3N4改性MOFs复合材料在催化氧化芳香醇制芳香醛中的应用。
本发明的有益效果:
1、本发明首次以咪唑-2-甲酸为有机配体,以Zn2+、Ni2+、Co2+为无机配体,通过酰胺化反应及酯化反应与富氨基、羟基功能化g-C3N4接枝共聚,再通过化学沉淀法原位沉积纳米铬酸铋,合成具有三维沸石拓扑结构、高孔隙率、高稳定性、高催化活性的纳米铬酸铋/g-C3N4改性MOFs复合材料,应用于催化氧化芳香醇制芳香醛。
2、本发明利用酰胺化反应及酯化反应将富氨基、羟基的功能化g-C3N4接枝到MOFs骨架结构中,通过化学键实现分子内键合,显著提高氧化石墨烯改性MOFs的结构稳定性。
3、本发明通过利用化学沉淀法实现纳米铬酸铋与g-C3N4改性MOFs复合材料的结合,由于三者的费米能级不同,形成异质结结构,改变电子的传递路径,g-C3N4和MOFs作为电荷传输介质,使光生电子自发地从纳米铬酸铋晶面转移到g-C3N4和MOFs的导带,高效分离光生电子和空穴,使空穴积累在纳米铬酸铋上,显著提高光催化氧化能力;MOFs具有发达的孔道结构和高比面积,为纳米铬酸铋量子点提供了充足的生长位点,避免了纳米铬酸铋间的团聚,使其保持良好的表面效应和量子尺寸。
附图说明
图1为本发明纳米铬酸铋/g-C3N4改性MOFs复合材料制备方法流程图。
具体实施方式
下面结合实施例对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
本发明提供一实施例的纳米铬酸铋/g-C3N4改性MOFs复合材料制备方法,所述MOFs材料为类沸石咪唑酯骨架材料,以咪唑-2-甲酸为有机配体,以Zn2+、Ni2+、Co2+为无机配体,通过酰胺化反应及酯化反应与功能化g-C3N4接枝共聚,负载纳米铬酸铋催化剂,包括以下步骤:
S1:将三聚氰胺加入无水乙醇中,控制固液比为0.5g/mL,超声溶解后,90~150℃蒸发乙醇后,再置于马弗炉中加热至550~600℃,恒温煅烧4~6h,充分研磨后,即得纳米g-C3N4
S2:将纳米g-C3N4加入去离子水中,超声分散后,加入乙醇胺、N-2-(氨乙基)-3-氨丙基三甲氧基硅烷,控制纳米g-C3N4、去离子水、乙醇胺、N-2-(氨乙基)-3-氨丙基三甲氧基硅烷用量比为1g:10mL:(0.2~0.4)g:(0.3~0.6)mL,搅拌均匀后,80~100℃水热反应0.5~2h,离心、洗涤、干燥后,得功能化g-C3N4
S3:将锌盐、镍盐、钴盐加入体积浓度为75%乙醇溶液中,50℃搅拌溶解后,得到无机配体溶液;所述锌盐为硝酸锌、醋酸锌、氯化锌、硫酸锌中的一种或多种;所述镍盐为硝酸镍、醋酸镍、氯化镍、硫酸镍中的一种或多种;所述钴盐为硝酸钴、醋酸钴、氯化钴、硫酸钴中的一种或多种;
S4:将咪唑-2-甲酸溶解于DMF中,得到有机配体溶液;
S5:将无机配体溶液和有机配体溶液混合均匀后,加入功能化g-C3N4和EDC·HCL,超声分散后,移至反应釜中,100~160℃溶剂热条件下,搅拌反应12~36h,冷却至室温,过滤、洗涤、干燥,即得g-C3N4改性MOFs复合材料;
所述锌盐、镍盐、钴盐、乙醇溶液、咪唑-2-甲酸、DMF、功能化g-C3N4、EDC·HCL用量比为(2~10)mmol:(2~10)mmol:(1~5)mmol:20mL:(20~30)mmol:20mL:(0.2~0.8)g:(0.2~0.3)g;
S6:将乙酸铋加入0.05mol/L稀HCl溶液中,控制用量比为(0.6~1)mmol:10mL,40~60℃搅拌溶解,即得乙酸铋-盐酸溶液,4℃保存备用;
S7:将所得g-C3N4改性MOFs复合材料加入0.15~0.2mol/L K2CrO4溶液中,浸渍吸附0.5~3h,再滴加乙酸铋-盐酸溶液,控制g-C3N4改性MOFs复合材料、K2CrO4溶液、乙酸铋-盐酸溶液用量比为2g:(10~15)mL:(10~15)mL,25℃室温下,搅拌反应1~6h,过滤、洗涤、干燥,即得所述纳米铬酸铋/g-C3N4改性MOFs复合材料。
本发明进一步提供该实施例的纳米铬酸铋/g-C3N4改性MOFs复合材料在催化氧化芳香醇制芳香醛中的应用。
实施例1
一种纳米铬酸铋/g-C3N4改性MOFs复合材料制备方法,,包括以下步骤:
S1:将10g三聚氰胺加入20mL无水乙醇中,超声溶解后,90℃蒸发乙醇后,再置于马弗炉中加热至550℃,恒温煅烧4h,充分研磨后,即得纳米g-C3N4
S2:将1g纳米g-C3N4加入10mL去离子水中,超声分散后,加入0.2g乙醇胺、0.3mL N-2-(氨乙基)-3-氨丙基三甲氧基硅烷,搅拌均匀后,80℃水热反应0.5h,离心、洗涤、干燥后,得功能化g-C3N4
S3:将2mmol硝酸锌、2mmol硝酸镍、1mmol硝酸钴加入20mL体积浓度为75%乙醇溶液中,50℃搅拌溶解后,得到无机配体溶液;
S4:将20mmol咪唑-2-甲酸溶解于20mL DMF中,得到有机配体溶液;
S5:将S3所得无机配体溶液和S4所得有机配体溶液混合均匀后,加入0.2g功能化g-C3N4和0.2g EDC·HCL,超声分散后,移至反应釜中,100℃溶剂热条件下,搅拌反应24h,冷却至室温,过滤、洗涤、干燥,即得g-C3N4改性MOFs复合材料;
S6:将1.2mmol乙酸铋加入20mL的0.05mol/L稀HCl溶液中,40℃搅拌溶解,即得乙酸铋-盐酸溶液,4℃保存备用;
S7:将2g的g-C3N4改性MOFs复合材料加入10mL的0.15mol/L K2CrO4溶液中,浸渍吸附1h,再滴加10mL乙酸铋-盐酸溶液,25℃室温下,搅拌反应1h,过滤、洗涤、干燥,即得所述纳米铬酸铋/g-C3N4改性MOFs复合材料。
实施例2
一种纳米铬酸铋/g-C3N4改性MOFs复合材料制备方法,,包括以下步骤:
S1:将10g三聚氰胺加入20mL无水乙醇中,超声溶解后120℃蒸发乙醇后,再置于马弗炉中加热至550℃,恒温煅烧5h,充分研磨后,即得纳米g-C3N4
S2:将1g纳米g-C3N4加入10mL去离子水中,超声分散后,加入0.3g乙醇胺、0.5mL N-2-(氨乙基)-3-氨丙基三甲氧基硅烷,搅拌均匀后,90℃水热反应1h,离心、洗涤、干燥后,得功能化g-C3N4
S3:将6mmol醋酸锌、6mmol醋酸镍、3mmol醋酸钴加入20mL体积浓度为75%乙醇溶液中,50℃搅拌溶解后,得到无机配体溶液;
S4:将25mmol咪唑-2-甲酸溶解于20mL DMF中,得到有机配体溶液;
S5:将S3所得无机配体溶液和S4所得有机配体溶液混合均匀后,加入0.5g功能化g-C3N4和0.25g EDC·HCL,超声分散后,移至反应釜中,130℃溶剂热条件下,搅拌反应30h,冷却至室温,过滤、洗涤、干燥,即得g-C3N4改性MOFs复合材料;
S6:将1.6mmol乙酸铋加入20mL的0.05mol/L稀HCl溶液中,40~60℃搅拌溶解,即得乙酸铋-盐酸溶液,4℃保存备用;
S7:将2g的g-C3N4改性MOFs复合材料加入12.5mL的0.18mol/L K2CrO4溶液中,浸渍吸附2h,再滴加12.5mL乙酸铋-盐酸溶液,25℃室温下,搅拌反应3h,过滤、洗涤、干燥,即得所述纳米铬酸铋/g-C3N4改性MOFs复合材料。
实施例3
一种纳米铬酸铋/g-C3N4改性MOFs复合材料制备方法,,包括以下步骤:
S1:将10g三聚氰胺加入20mL无水乙醇中,超声溶解后,150℃蒸发乙醇后,再置于马弗炉中加热至600℃,恒温煅烧6h,充分研磨后,即得纳米g-C3N4
S2:将1g纳米g-C3N4加入10mL去离子水中,超声分散后,加入0.4g乙醇胺、0.6mL N-2-(氨乙基)-3-氨丙基三甲氧基硅烷,搅拌均匀后,100℃水热反应2h,离心、洗涤、干燥后,得功能化g-C3N4
S3:将10mmol硫酸锌、10mmol硫酸镍、5mmol硫酸钴加入20mL体积浓度为75%乙醇溶液中,50℃搅拌溶解后,得到无机配体溶液;
S4:将20~30mmol咪唑-2-甲酸溶解于20mL DMF中,得到有机配体溶液;
S5:将S3所得无机配体溶液和S4所得有机配体溶液混合均匀后,加入0.8g功能化g-C3N4和0.3g EDC·HCL,超声分散后,移至反应釜中,160℃溶剂热条件下,搅拌反应36h,冷却至室温,过滤、洗涤、干燥,即得g-C3N4改性MOFs复合材料;
S6:将2mmol乙酸铋加入20mL的0.05mol/L稀HCl溶液中,60℃搅拌溶解,即得乙酸铋-盐酸溶液,4℃保存备用;
S7:将2g的g-C3N4改性MOFs复合材料加入15mL的0.2mol/L K2CrO4溶液中,浸渍吸附3h,再滴加15mL乙酸铋-盐酸溶液,25℃室温下,搅拌反应6h,过滤、洗涤、干燥,即得所述纳米铬酸铋/g-C3N4改性MOFs复合材料。
对比例1以g-C3N4改性MOFs复合材料,制备方法包括以下步骤:
一种纳米铬酸铋/g-C3N4改性MOFs复合材料制备方法,,包括以下步骤:
S1:将10g三聚氰胺加入20mL无水乙醇中,超声溶解后,90℃蒸发乙醇后,再置于马弗炉中加热至550℃,恒温煅烧4h,充分研磨后,即得纳米g-C3N4
S2:将1g纳米g-C3N4加入10mL去离子水中,超声分散后,加入0.2g乙醇胺、0.3mL N-2-(氨乙基)-3-氨丙基三甲氧基硅烷,搅拌均匀后,80℃水热反应0.5h,离心、洗涤、干燥后,得功能化g-C3N4
S3:将2mmol硝酸锌、2mmol硝酸镍、1mmol硝酸钴加入20mL体积浓度为75%乙醇溶液中,50℃搅拌溶解后,得到无机配体溶液;
S4:将20mmol咪唑-2-甲酸溶解于20mL DMF中,得到有机配体溶液;
S5:将S3所得无机配体溶液和S4所得有机配体溶液混合均匀后,加入0.2g功能化g-C3N4和0.2g EDC·HCL,超声分散后,移至反应釜中,100℃溶剂热条件下,搅拌反应24h,冷却至室温,过滤、洗涤、干燥,即得g-C3N4改性MOFs复合材料。
采用实施例1~3及对比例1制备出的复合材料催化氧化肉桂醇生成肉桂醛,试验方法如下:
将20mg复合材料加入20mL N,N-二甲基甲酰胺,超声分散后,制成悬液;
将0.5mmol肉桂醇加入到悬液中,搅拌均匀,打开氙灯灯源,控制光辐射密度为200mW/cm2
反应3h后,离心取上清液,对其进行GC-MS、GC定性、定量分析。
试验结果如下表所示:
实施例1 实施例2 实施例3 对比例1
转化率/% 58.1 60.6 63.4 24.7
肉桂醛选择性/% 96.8 97.5 97.2 92.9
产率/% 55.7 58.4 61.6 22.1
实施例1~3首次以咪唑-2-甲酸为有机配体,以Zn2+、Ni2+、Co2+为无机配体,通过酰胺化反应及酯化反应与富氨基、羟基功能化g-C3N4接枝共聚,再通过化学沉淀法原位沉积纳米铬酸铋,合成具有三维沸石拓扑结构、高孔隙率、高稳定性、高催化活性的纳米铬酸铋/g-C3N4改性MOFs复合材料,应用于催化氧化芳香醇制芳香醛。
实施例1~3利用酰胺化反应及酯化反应将富氨基、羟基的功能化g-C3N4接枝到MOFs骨架结构中,通过化学键实现分子内键合,显著提高氧化石墨烯改性MOFs的结构稳定性。
实施例1~3通过利用化学沉淀法实现纳米铬酸铋与g-C3N4改性MOFs复合材料的结合,由于三者的费米能级不同,形成异质结结构,改变电子的传递路径,g-C3N4和MOFs作为电荷传输介质,使光生电子自发地从纳米铬酸铋晶面转移到g-C3N4和MOFs的导带,高效分离光生电子和空穴,使空穴积累在纳米铬酸铋上,使光生电子积累在g-C3N4和MOFs上,显著提高光催化氧化还原能力;MOFs具有发达的孔道结构和高比面积,为纳米铬酸铋量子点提供了充足的生长位点,避免了纳米铬酸铋间的团聚,使其保持良好的表面效应和量子尺寸。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节。

Claims (10)

1.一种纳米铬酸铋/g-C3N4改性MOFs复合材料制备方法,其特征在于,所述MOFs材料为类沸石咪唑酯骨架材料,以咪唑-2-甲酸为有机配体,以Zn2+、Ni2+、Co2+为无机配体,通过酰胺化反应及酯化反应与功能化g-C3N4接枝共聚,负载纳米铬酸铋催化剂,包括以下步骤:
S1:将纳米g-C3N4加入去离子水中,超声分散后,加入乙醇胺、N-2-(氨乙基)-3-氨丙基三甲氧基硅烷,搅拌均匀后,80~100℃水热反应0.5~2h,离心、洗涤、干燥后,得功能化g-C3N4
S2:将锌盐、镍盐、钴盐加入体积浓度为75%乙醇溶液中,50℃搅拌溶解后,得到无机配体溶液;
S3:将咪唑-2-甲酸溶解于DMF中,得到有机配体溶液;
S4:将无机配体溶液和有机配体溶液混合均匀后,加入功能化g-C3N4和EDC·HCL,超声分散后,移至反应釜中,100~160℃溶剂热条件下,搅拌反应12~36h,冷却至室温,过滤、洗涤、干燥,即得g-C3N4改性MOFs复合材料;
S5:将所得g-C3N4改性MOFs复合材料加入0.15~0.2mol/L K2CrO4溶液中,浸渍吸附0.5~3h,再滴加乙酸铋-盐酸溶液,25℃室温下,搅拌反应1~6h,过滤、洗涤、干燥,即得所述纳米铬酸铋/g-C3N4改性MOFs复合材料。
2.根据权利要求1所述一种纳米铬酸铋/g-C3N4改性MOFs复合材料制备方法,其特征在于,所述锌盐为硝酸锌、醋酸锌、氯化锌、硫酸锌中的一种或多种。
3.根据权利要求1所述一种纳米铬酸铋/g-C3N4改性MOFs复合材料制备方法,其特征在于,所述镍盐为硝酸镍、醋酸镍、氯化镍、硫酸镍中的一种或多种。
4.根据权利要求1所述一种纳米铬酸铋/g-C3N4改性MOFs复合材料制备方法,其特征在于,所述钴盐为硝酸钴、醋酸钴、氯化钴、硫酸钴中的一种或多种。
5.根据权利要求1所述一种纳米铬酸铋/g-C3N4改性MOFs复合材料制备方法,其特征在于,所述乙酸铋-盐酸溶液制备方法为:将乙酸铋加入0.05mol/L稀HCl溶液中,控制用量比为(0.6~1)mmol:10mL,40~60℃搅拌溶解,即得乙酸铋-盐酸溶液,4℃保存备用。
6.根据权利要求1所述一种纳米铬酸铋/g-C3N4改性MOFs复合材料制备方法,其特征在于,所述纳米g-C3N4的制备方法为:将三聚氰胺加入无水乙醇中,控制固液比为0.5g/mL,超声溶解后,90~150℃蒸发乙醇后,再置于马弗炉中加热至550~600℃,恒温煅烧4~6h,充分研磨后,即得纳米g-C3N4
7.根据权利要求1所述一种纳米铬酸铋/g-C3N4改性MOFs复合材料制备方法,其特征在于,所述纳米g-C3N4、去离子水、乙醇胺、N-2-(氨乙基)-3-氨丙基三甲氧基硅烷用量比为1g:10mL:(0.2~0.4)g:(0.3~0.6)mL。
8.根据权利要求1所述一种纳米铬酸铋/g-C3N4改性MOFs复合材料制备方法,其特征在于,S2~S4中,所述锌盐、镍盐、钴盐、乙醇溶液、咪唑-2-甲酸、DMF、功能化g-C3N4、EDC·HCL用量比为(2~10)mmol:(2~10)mmol:(1~5)mmol:20mL:(20~30)mmol:20mL:(0.2~0.8)g:(0.2~0.3)g。
9.根据权利要求1所述一种纳米铬酸铋/g-C3N4改性MOFs复合材料制备方法,其特征在于,所述g-C3N4改性MOFs复合材料、K2CrO4溶液、乙酸铋-盐酸溶液用量比为2g:(10~15)mL:(10~15)mL。
10.如权利要求1~9任一项所述的一种纳米铬酸铋/g-C3N4改性MOFs复合材料在催化氧化芳香醇制芳香醛中的应用。
CN202110661570.5A 2021-06-15 2021-06-15 一种纳米铬酸铋/g-C3N4改性MOFs复合材料制备方法及其应用 Withdrawn CN113457743A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110661570.5A CN113457743A (zh) 2021-06-15 2021-06-15 一种纳米铬酸铋/g-C3N4改性MOFs复合材料制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110661570.5A CN113457743A (zh) 2021-06-15 2021-06-15 一种纳米铬酸铋/g-C3N4改性MOFs复合材料制备方法及其应用

Publications (1)

Publication Number Publication Date
CN113457743A true CN113457743A (zh) 2021-10-01

Family

ID=77869926

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110661570.5A Withdrawn CN113457743A (zh) 2021-06-15 2021-06-15 一种纳米铬酸铋/g-C3N4改性MOFs复合材料制备方法及其应用

Country Status (1)

Country Link
CN (1) CN113457743A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116328743A (zh) * 2023-05-11 2023-06-27 北京工业大学 一种在斜发沸石表面原位生长微晶的复合材料制备方法
CN116675223A (zh) * 2023-08-03 2023-09-01 国联汽车动力电池研究院有限责任公司 多孔复合负极材料及其制备方法、低温电池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116328743A (zh) * 2023-05-11 2023-06-27 北京工业大学 一种在斜发沸石表面原位生长微晶的复合材料制备方法
CN116328743B (zh) * 2023-05-11 2024-05-07 北京工业大学 一种在斜发沸石表面原位生长微晶的复合材料制备方法
CN116675223A (zh) * 2023-08-03 2023-09-01 国联汽车动力电池研究院有限责任公司 多孔复合负极材料及其制备方法、低温电池
CN116675223B (zh) * 2023-08-03 2023-11-28 国联汽车动力电池研究院有限责任公司 多孔复合负极材料及其制备方法、低温电池

Similar Documents

Publication Publication Date Title
CN109746022B (zh) 一种用于二氧化碳还原的高分散铜锌催化剂的制备方法及其使用方法
CN107617447B (zh) 一种Ag@MOFs/TiO2光催化剂的制备方法与应用
CN113457743A (zh) 一种纳米铬酸铋/g-C3N4改性MOFs复合材料制备方法及其应用
CN108579781B (zh) 一种苯酚加氢催化剂及其制备方法
CN107670697B (zh) 可见光催化环己烷选择性氧化的催化剂及其制备方法
CN106391007A (zh) 一种用于常温常湿条件下催化消除一氧化碳和甲醛的催化剂及其制备方法
CN110787584A (zh) 铈基金属有机骨架结构材料用于co2的吸附分离应用
CN111298842A (zh) 一种磁性金属有机骨架复合材料及其制备方法和应用
CN111111784B (zh) 一种UiO-67包裹Co催化剂及其制备方法和应用
CN109621971B (zh) 一种Fe基三元复合可见光催化剂及制备方法和应用
CN112246283A (zh) 一种钨酸铋@MIL-100(Fe)复合材料及其制备方法和应用
CN113522367A (zh) 一种纳米铬酸银改性MOFs光催化剂制备方法及其制备方法
WO2024114551A1 (zh) 一种用于低浓度甲醛降解的陶瓷基复合材料及其制备方法
CN112480421B (zh) 一种溶剂诱导海胆状MOFs的合成方法
CN113856744A (zh) 一种原子掺杂修饰的双壳层整体式中空催化剂及制备方法与应用
CN112625256B (zh) 一种介尺度调控多层级核壳结构双金属MOF-74(Co-Cu)的制备方法及脱硝应用
CN111921558B (zh) 一种可见光响应的MIL-125/BiOBr复合催化剂及其制备方法与应用
CN113522282A (zh) 一种基于咪唑-2-甲醛配体的纳米铬酸银/g-C3N4改性MOFs复合材料制备方法
CN115475654B (zh) 一种微胶囊状改性Zn@ZSM-5催化剂及其制备方法和应用
CN114849712B (zh) 一种多孔碳包覆双金属氧化物催化剂的制备方法及应用
CN114522708B (zh) 一种多孔氮杂碳材料负载钴基催化剂制备方法及其在co加氢制备高碳醇反应中的应用
CN115041167A (zh) 一种基于氧化铝骨架的双活性催化剂制备方法及其应用
CN113600194A (zh) 一种含不同价态钴的纳米光催化剂、制备方法及其应用
CN115646532B (zh) 一种co2辅助烷烃脱氢的双功能催化剂及其制备和应用
CN115254118B (zh) 一种用于光催化还原co2的有机干凝胶纳米材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20211001