WO2024114551A1 - 一种用于低浓度甲醛降解的陶瓷基复合材料及其制备方法 - Google Patents

一种用于低浓度甲醛降解的陶瓷基复合材料及其制备方法 Download PDF

Info

Publication number
WO2024114551A1
WO2024114551A1 PCT/CN2023/134194 CN2023134194W WO2024114551A1 WO 2024114551 A1 WO2024114551 A1 WO 2024114551A1 CN 2023134194 W CN2023134194 W CN 2023134194W WO 2024114551 A1 WO2024114551 A1 WO 2024114551A1
Authority
WO
WIPO (PCT)
Prior art keywords
tio
mof
sol
tio2
nfc
Prior art date
Application number
PCT/CN2023/134194
Other languages
English (en)
French (fr)
Inventor
刘晓敏
吴玉锋
李彬
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Publication of WO2024114551A1 publication Critical patent/WO2024114551A1/zh
Priority to US18/757,361 priority Critical patent/US20240342653A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Definitions

  • the invention relates to the technical field of environmental engineering, and in particular to a ceramic-based composite material for degrading low-concentration formaldehyde and a preparation method thereof.
  • Indoor formaldehyde comes from a wide range of sources, such as cigarette smoke, adhesives, artificial boards, wall coverings, paints, carpets, mosquito repellent liquids, etc.
  • adhesives and cigarette smoke are considered to be the two major sources of indoor formaldehyde.
  • Mild formaldehyde poisoning may cause headaches and respiratory edema, and in severe cases may induce bronchial asthma and gene mutations.
  • China's "Indoor Air Quality Standard" stipulates that the limit of formaldehyde in the indoor air of ordinary civil buildings is 0.10mg/ m3 . Human beings are increasingly concerned about indoor formaldehyde pollution, and effective formaldehyde control is an urgent need to improve indoor air quality.
  • Adsorption is a commonly used formaldehyde removal technology and belongs to physical methods. This method mainly uses the functional atoms or groups of the adsorbent itself to adsorb and remove low-concentration formaldehyde. Commonly used adsorbents include activated carbon, MOF, zeolite, graphite, etc. This type of method is simple to operate, but the adsorbent needs to be replaced continuously, and it is impossible to fundamentally eliminate formaldehyde pollution. The development of chemical degradation methods has the advantages of completely degrading formaldehyde and pollution-free degradation products. The typical method is to use catalytic oxidation to degrade formaldehyde into CO2 and H2O .
  • the catalysts that have been reported to effectively eliminate formaldehyde under room temperature conditions include TiO2- based photocatalysts, Pt/ TiO2 catalysts, Pd/ CeO2 , etc.
  • TiO2- due to its large band gap of 3.2eV, it can only be excited by ultraviolet light to produce electron-hole pairs.
  • metal doping is considered to be an effective method to extend its excitation wavelength to visible light.
  • doping TiO2 with metal elements such as Cu, V, Cr, Mo, Fe, Co and W is beneficial to narrowing the band gap of TiO2 and increasing its electron-hole generation ability, thereby improving the photocatalytic activity of the photocatalyst.
  • metal elements such as Cu, V, Cr, Mo, Fe, Co and W
  • this method still has the problem of high cost.
  • Many studies have mechanically combined adsorption materials and catalytic materials to form composite materials to improve the material's ability to remove low-concentration formaldehyde.
  • this mechanical combination material also has problems such as large particle pressure drop and difficult mass and heat transfer.
  • porous ceramics have a large porous rigid structure and are acid-resistant and corrosion-resistant, if adsorption materials and active materials are loaded in such ceramics, on the one hand, the pressure drop, heat and mass transfer problems caused by powder accumulation can be solved. On the other hand, the dispersion area and catalytic activity of the catalyst can be increased, and the concentrated degradation of formaldehyde by ceramic-based composite materials can be improved. performance.
  • the present invention provides a ceramic-based composite material for low-concentration formaldehyde degradation and a preparation method thereof.
  • the composite material of the present invention can efficiently enrich low-concentration formaldehyde in the room, and the loading of high specific surface area MOF on the aminated macroporous ceramic and the doping of alkali metal in the active component significantly improve the concentrated degradation effect of the composite material on formaldehyde.
  • the present invention provides a ceramic-based composite material for low-concentration formaldehyde degradation and a preparation method thereof, which is characterized by having the following processes and steps:
  • a ceramic-based composite material for low-concentration formaldehyde degradation and a preparation method thereof characterized in that alkali metal-transition metal- TiO2 (i.e. AT- TiO2 ) is used as an active component and metal organic framework/aminated foam ceramic (i.e. MOF/NFC) is used as a carrier, and the simplified formula is AT- TiO2 /MOF/NFC, wherein A represents one of Na, K, and Li, T represents one of Cu, Mn, and Co, MOF represents one of ZIF-8, MOF-199, and UIO-66- NH2 , NFC represents aminated foam ceramic, and the foam ceramic is one of Al2O3 ceramic or ZrO2 ceramic.
  • alkali metal-transition metal- TiO2 i.e. AT- TiO2
  • MOF/NFC metal organic framework/aminated foam ceramic
  • the content of the active component in the composite material is 3-10%, the carrier is 90-97%, and the sum of the two is 100%.
  • the weight percentage of the three substances in the active component A:T: TiO2 is (5-10):(10-20):(70-85), and the weight percentage of the two substances in the carrier MOF:NFC is (4-6):(94-96).
  • the preparation of the AT-TiO 2 /MOF/NFC composite material includes two preparation processes of AT-TiO 2 /FC and AT-TiO 2 /MOF/NFC, which are as follows:
  • step S1 the volume ratio of the alkali metal nitrate solution to the transition metal nitrate solution is 1:(0.9-1.1); the concentration of the alkali metal nitrate solution to the transition metal nitrate solution is controlled to be 0.06-0.08 mol/L; the volume ratio of the mixed metal salt solution, TiO2 sol, and anhydrous ethanol is controlled to be (8-10):(4-6):1; the stirring time is 20-30 min; the stirring temperature is 0-2°C;
  • Preparation method of TiO2 sol tetrabutyl titanate, anhydrous ethanol and water are mixed in a volume ratio of (1-1.2): (6-7): (0.8-1) for reaction, and acetic acid is added dropwise under stirring until TiO2 sol is formed; the reaction temperature is controlled to be 0-2°C, the stirring rate is 300-350r/min, and the stirring time is 30-40min; the amount of acetic acid added is controlled to be The volume percentage is 3%-4%.
  • the concentration of TiO 2 sol is controlled to be 50-55 g L -1 , and the pH value of the sol is 3-4.
  • the activation method of HFC is as follows: immersing foam ceramics in a mixed solution of 20wt% HCl solution and 30wt% H2O2 solution and maintaining the mixture for 10-15h; then washing with deionized water until neutral, and drying the ceramics obtained after filtration at 100-120°C for 20-24h to obtain HFC; the volume ratio of the HCl solution to the H2O2 solution is (3-5):1; the volume ratio of HFC to AT- TiO2 sol is 1:(4-6); the foam ceramic is one of Al2O3 foam ceramic or ZrO2 foam ceramic; the linear pore number of the foam ceramic is 15-20ppi;
  • the dried AT-TiO 2 /HFC is placed in a tube furnace at 350-400° C. under N 2 atmosphere and calcined for 5-7 hours to obtain dehydrated and condensed AT-TiO 2 /FC.
  • step (1) Based on step (1), the specific steps of preparing AT-TiO 2 /MOF/NFC are as follows:
  • step (1) Immerse the AT-TiO 2 /FC obtained in step (1) in MOF-aminosilane sol, and add 20 wt % dilute hydrochloric acid dropwise until the pH of the mixture is 2-3, and stir for 1-2 h to obtain an aminated AT-TiO 2 /MOF/NFC precursor;.
  • MOF and aminosilane sol are mixed in a weight ratio of (5-10): (10-15) and stirred for 30-40 minutes; the preparation method of the aminosilane sol is as follows: a mixture of aminosilane, anhydrous ethanol, H2O , and 20wt% hydrochloric acid is mixed in a volume ratio of (1-2): (35-40): (50-60): (0.2-0.5), and stirred at 25-30°C for 3-4 hours.
  • the aminosilane includes 3-aminopropyltriethoxysilane (APTES), 3-aminopropyltrimethoxysilane (APTMS), tributylaminomethylsilane (TBAMS)
  • the AT-TiO 2 /MOF/NFC precursor obtained in step P1 is taken out from the MOF-aminosilane sol, and air-dried for 1-2 hours, and then dried in an oven at 60-80°C for 20-40 minutes;
  • the AT-TiO 2 /MOF/NFC precursor obtained after drying in step P2 is placed in a tube furnace at 180-200° C. under N 2 atmosphere for 2-3 hours to obtain AT-TiO 2 /MOF/NFC.
  • the MOF described in step P1 includes one of ZIF-8, MOF-199, and UIO-66-NH 2 , wherein the preparation of ZIF-8 is synthesized according to the reference method (DOI: 10.1016/j.cattod.2019.06.076); the preparation of MOF-199 is synthesized according to the reference method (DOI: 10.1016/j.ceramint.2020.12.149); the preparation of UIO-66-NH 2 is synthesized according to the reference method (DOI: 10.1016/j.cej.2020.125328), and the specific steps are as follows:
  • the present invention has the following advantages:
  • Single powder MOF materials have high specific surface area characteristics, but when used as formaldehyde capture materials, they have disadvantages such as large pressure drop and poor mass transfer capacity.
  • Foam ceramics are suitable as carriers of powder MOF materials due to their rigid structure and large pores. The ceramic framework loaded with MOF can largely alleviate or eliminate the pressure drop and heat and mass transfer problems between MOF particles.
  • the macroporous foam ceramic not only serves as the supporting material of MOF, but also increases the distribution area of the catalyst and reduces the probability of catalyst agglomeration, thereby improving the adsorption of formaldehyde and the photocatalytic activity of the composite material.
  • alkali metals such as Na, K, and Li doped in active components are beneficial to reducing costs.
  • these doped alkali metals can not only improve the stability and dispersibility of the active components, but also promote the chemical adsorption/dissociation of oxygen and the formation of surface OH groups, which is beneficial to improving the photocatalytic activity of the material.
  • Figure 1 is a flow chart for preparing the A-T-TiO2/MOF/NFC composite material of the present invention.
  • a ceramic-based composite material for low-concentration formaldehyde degradation and a preparation method thereof characterized in that A-Cu- TiO2 is used as an active component and ZIF-8/NFC is used as a carrier; its simplified formula is A-Cu- TiO2 /ZIF-8/NFC, wherein A represents one of Na, K, and Li.
  • weight percentage the content of the active component in the composite material is 3%, the carrier is 97%, and the sum of the two is 100%.
  • the weight percentage of the three substances in the active component A:Cu: TiO2 is 5:10:85, and the weight percentage of the two substances in the carrier ZIF-8:NFC is 4:96.
  • a 0.06 mol/L ANO 3 solution and a Cu(NO 3 ) 2 solution of the same concentration are mixed in a volume ratio of 1:1 to obtain a mixed metal salt solution, and then anhydrous ethanol is added to obtain an A-Cu mixed metal alcohol solution; and then TiO 2 sol and the A-Cu mixed metal alcohol solution are mixed and stirred to obtain an A-Cu-TiO 2 sol;
  • the volume ratio of the mixed metal salt solution, TiO 2 sol and anhydrous ethanol was controlled to be 8:4:1; the stirring time was 20 min; the stirring temperature was 0°C; the concentration of the TiO 2 sol was controlled to be 50 g L -1 , and the pH value was 3.
  • step 2) Immerse HFC with a size of 1 cm*1.5 cm*1.5 cm into the A-Cu-TiO 2 sol obtained in step 1), and stir at 25° C. for 1 hour to obtain A-Cu-TiO 2 /HFC;
  • the activation method of the HFC is as follows: immersing the foam ceramic in a mixed solution of 20wt% HCl solution and 30wt% H2O2 solution and maintaining the mixture for 10 hours; then washing with deionized water until neutral, and drying the ceramic obtained after filtration at 100°C for 20 hours to obtain HFC; the volume ratio of the HCl solution to the H2O2 solution is 3:1; the volume ratio of the HFC to the A-Cu- TiO2 sol is 1:4; the foam ceramic is Al2O3 foam ceramic, and the linear pore number of the foam ceramic is 15ppi;
  • step 5 The A-Cu-TiO 2 /FC obtained in step 4) was immersed in the ZIF-8/APTES sol, and 20 wt% of dilute salt was added dropwise. Acid was added until the pH of the mixture reached 2, and then stirred for 1 hour to obtain the aminated A-Cu-TiO 2 /ZIF-8/NFC precursor;.
  • the preparation method of the ZIF-8/APTES sol is as follows: ZIF-8 and APTES sol are mixed in a weight ratio of 5:10 and stirred for 30 minutes;
  • the preparation method of the APTES sol is as follows: APTES, anhydrous ethanol, H2O , and 20wt% hydrochloric acid are mixed in a volume ratio of 1:35:50:0.2 and stirred at 25°C for 3 hours;
  • step 6) taking the A-Cu-TiO 2 /ZIF-8/NFC precursor obtained in step 5) out of the ZIF-8/APTES sol, and letting it stand in air-drying for 1 hour, and then drying it in an oven at 60° C. for 20 minutes;
  • step 7) The A-Cu-TiO 2 /ZIF-8-NFC precursor obtained after drying in step 6) was placed in a tube furnace at 180° C. under N 2 atmosphere for 2 hours to obtain A-Cu-TiO 2 /ZIF-8/NFC.
  • a ceramic-based composite material for low-concentration formaldehyde degradation and a preparation method thereof characterized in that A-Cu- TiO2 is used as an active component and FC is used as a carrier; its simplified formula is A-Cu- TiO2 /FC, wherein A represents one of Na, K, and Li.
  • A represents one of Na, K, and Li.
  • the content of the active component in the composite material is 5%, the carrier is 95%, and the sum of the two is 100%.
  • the weight percentage of the three substances in the active component is A:Cu: TiO2 is 5:10:85.
  • the volume ratio of the mixed metal salt solution, TiO 2 sol and anhydrous ethanol was controlled to be 9:5:1; the stirring time was 30 min; the stirring temperature was 0°C; the concentration of the TiO 2 sol was controlled to be 55 g L -1 , and the pH value was 3.
  • step 2) Immerse HFC with a size of 1 cm*1.5 cm*1.5 cm into the A-Cu-TiO 2 sol obtained in step 1), and stir at 30° C. for 1 hour to obtain A-Cu-TiO 2 /HFC;
  • the activation method of the HFC is as follows: immersing the foam ceramic in a mixed solution of 20wt% HCl solution and 30wt% H2O2 solution and maintaining the mixture for 12 hours; then washing with deionized water until neutral, and drying the ceramic obtained after filtration at 100°C for 20 hours to obtain HFC; the volume ratio of the HCl solution to the H2O2 solution is 4:1; the volume ratio of the HFC to the A-Cu- TiO2 sol is 1:5; the foam ceramic is Al2O3 foam ceramic, and the linear pore number of the foam ceramic is 20ppi;
  • a ceramic-based composite material for low-concentration formaldehyde degradation and a preparation method thereof characterized in that T- TiO2 is used as an active component and ZIF-8/NFC is used as a carrier; its simplified formula is T- TiO2 /ZIF-8/NFC, wherein T represents one of Cu, Mn, and Co.
  • T represents one of Cu, Mn, and Co.
  • the content of the active component in the composite material is 8%
  • the carrier is 92%
  • the sum of the two is 100%.
  • the weight percentage of the two substances in the active component T: TiO2 is 10:90
  • the weight percentage of the two substances in the carrier ZIF-8:NFC is 5:95.
  • a ceramic-based composite material for low-concentration formaldehyde degradation and a preparation method thereof, wherein the preparation of the T-TiO 2 /ZIF-8/NFC composite material comprises the following steps:
  • the volume ratio of the mixed metal salt solution, TiO 2 sol and anhydrous ethanol was controlled to be 8:4:1; the stirring time was 20 min; the stirring temperature was 0°C; the concentration of the TiO 2 sol was controlled to be 50 g L -1 , and the pH value was 3.
  • the activation method of the HFC is as follows: immersing the foam ceramic in a mixed solution of 20wt% HCl solution and 30wt% H2O2 solution and maintaining the mixture for 10 hours; then washing with deionized water until neutral, and drying the ceramic obtained after filtration at 100°C for 20 hours to obtain HFC; the volume ratio of the HCl solution to the H2O2 solution is 4:1; the volume ratio of the HFC to the T- TiO2 sol is 1:5; the foam ceramic is ZrO2 foam ceramic, and the linear pore number of the foam ceramic is 20ppi;
  • T-TiO 2 /HFC was placed in a tube furnace at 380°C under N 2 atmosphere and calcined for 6 hours to obtain a dehydration condensation product. T-TiO 2 /FC after.
  • step 5) Immersing the T-TiO 2 /FC obtained in step 4) into the ZIF-8/APTES sol, and adding 20 wt % dilute hydrochloric acid dropwise until the pH of the mixture is 2, and stirring for 1 h to obtain an aminated T-TiO 2 /ZIF-8/NFC precursor;.
  • the preparation method of the ZIF-8/APTES sol is as follows: ZIF-8 and APTES sol are mixed in a weight ratio of 8:10 and stirred for 40 minutes;
  • the preparation method of the APTES sol is as follows: APTES, anhydrous ethanol, H2O , and 20wt% hydrochloric acid are mixed in a volume ratio of 1:35:50:0.2 and stirred at 25°C for 3 hours;
  • step 6) taking the T-TiO 2 /ZIF-8/NFC precursor obtained in step 5) out of the ZIF-8/APTES sol, and letting it stand in air-drying for 1 hour, and then drying it in an oven at 80° C. for 30 minutes;
  • T-TiO 2 /ZIF-8/NFC precursor obtained after drying in step 6) was placed in a tube furnace at 180° C. under N 2 atmosphere for 3 hours to obtain T-TiO 2 /ZIF-8/NFC.
  • a ceramic-based composite material for low-concentration formaldehyde degradation and a preparation method thereof characterized in that KT- TiO2 is used as an active component and MOF-199/NFC is used as a carrier; its simplified formula is KT- TiO2 /MOF-199/NFC, wherein T represents one of Cu, Mn, and Co.
  • T represents one of Cu, Mn, and Co.
  • the content of the active component in the composite material is 8%
  • the carrier is 92%
  • the sum of the two is 100%.
  • the weight percentage of the three substances in the active component K:T: TiO2 is 5:10:85
  • the weight percentage of the two substances in the carrier MOF-199:NFC is 5:95.
  • the volume ratio of the mixed metal salt solution, TiO 2 sol and anhydrous ethanol was controlled to be 8:4:1; the stirring time was 20 min; the stirring temperature was 0°C; the concentration of the TiO 2 sol was controlled to be 50 g L -1 , and the pH value was 3.
  • step 2) Immerse HFC with a size of 1.5 cm*2 cm*2 cm in the KT-TiO 2 sol obtained in step 1), and stir at 25° C. for 1 hour to obtain KT-TiO 2 /HFC;
  • the activation method of the HFC is as follows: immersing the foam ceramic in a mixed solution of 20wt% HCl solution and 30wt% H2O2 solution and maintaining the mixture for 10 hours; then washing with deionized water until neutral, and drying the ceramic obtained after filtration at 120°C for 24 hours to obtain HFC; the volume ratio of the HCl solution to the H2O2 solution is 5:1; the volume ratio of the HFC to the KT- TiO2 sol is 1:6; the foam ceramic is Al2O3 foam ceramic, and the linear pore number of the foam ceramic is 20ppi;
  • step 5) Immersing the KT-TiO 2 /FC obtained in step 4) into MOF-199/APTES sol, and adding 20 wt % dilute hydrochloric acid dropwise until the pH of the mixture is 2, and stirring for 1 hour to obtain an aminated KT-TiO 2 /MOF-199/NFC precursor;.
  • the preparation method of the MOF-199/APTES sol is as follows: MOF-199 and APTES sol are mixed in a weight ratio of 5:15 and stirred for 30 minutes;
  • the preparation method of the APTES sol is as follows: APTES, anhydrous ethanol, H2O , and 20wt% hydrochloric acid are mixed in a volume ratio of 1:40:50:0.4 and stirred at 25°C for 3 hours;
  • step 5 The KT-TiO 2 /MOF-199/NFC precursor obtained in step 5) was taken out from the MOF-199/APTES sol, and air-dried for 1 hour, and then dried in an oven at 60° C. for 20 minutes;
  • KT-TiO 2 /MOF-199/NFC precursor obtained after drying in step 6) was placed in a tube furnace at 180° C. under N 2 atmosphere for 2 hours to obtain KT-TiO 2 /MOF-199/NFC.
  • a ceramic-based composite material for low-concentration formaldehyde degradation and a preparation method thereof characterized in that K-Cu- TiO2 is used as an active component and MOF-199/NFC is used as a carrier, and the simplified formula is K-Cu- TiO2 /MOF-199/NFC.
  • the content of the active component in the composite material is 10%
  • the carrier is 90%
  • the sum of the two is 100%.
  • the weight percentage of the three substances in the active component K:Cu: TiO2 is 5:10:85
  • the weight percentage of the two substances in the carrier ZIF-8:NFC is 6:94.
  • the volume ratio of the mixed metal salt solution, TiO 2 sol and anhydrous ethanol was controlled to be 10:6:1; the stirring time was 30 min; the stirring temperature was 2°C; the concentration of the TiO 2 sol was controlled to be 55 g L -1 , and the pH value was 4.
  • step 2) Immerse HFC with a size of 1 cm*1.5 cm*1.5 cm into the A-Cu-TiO 2 sol obtained in step 1), and stir at 25° C. for 1 hour to obtain K-Cu-TiO 2 /HFC;
  • the activation method of the HFC is as follows: immersing the foam ceramic in a mixed solution of 20wt% HCl solution and 30wt% H2O2 solution and maintaining the mixture for 10 hours; then washing with deionized water until neutral, and drying the ceramic obtained after filtration at 100°C for 20 hours to obtain HFC; the volume ratio of the HCl solution to the H2O2 solution is 5:1; the volume ratio of the HFC to the K-Cu- TiO2 sol is 1:4; the foam ceramic is ZrO2 foam ceramic, and the linear pore number of the foam ceramic is 20ppi;
  • step 5) Immersing the K-Cu-TiO 2 /FC obtained in step 4) into MOF-199/aminosilane sol, and adding 20 wt % dilute hydrochloric acid dropwise until the pH of the mixture is 2, and stirring for 1 hour to obtain an aminated K-Cu-TiO 2 /MOF-199/NFC precursor;.
  • the preparation method of the MOF-199/aminosilane sol is as follows: MOF-199 and aminosilane sol are mixed in a weight ratio of 10:15 and stirred for 30 minutes; the preparation method of the aminosilane sol is as follows: a mixture of aminosilane, anhydrous ethanol, H2O , and 20wt% hydrochloric acid is mixed in a volume ratio of 2:40:60:0.5 and stirred at 30°C for 3 hours; the aminosilane includes APTES, APTMS, and TBAMS.
  • step 6) taking the K-Cu-TiO 2 /MOF-199/NFC precursor obtained in step 5) out of the MOF-199/aminosilane sol, and letting it stand in air-drying for 1 hour, and then drying it in an oven at 60° C. for 20 minutes;
  • the present invention aims to solve the problems of difficulty in enriching low-concentration formaldehyde in air or indoors and poor photocatalytic effect of transition metal- TiO2 catalyst on formaldehyde.
  • an aminated foam ceramic carrier loaded with MOF and doping alkali metal in the active component By introducing an aminated foam ceramic carrier loaded with MOF and doping alkali metal in the active component, the adsorption and degradation performance of the composite material on formaldehyde is significantly improved.
  • the embodiment shows that the loading of MOF-199 and APTES on The modification of ceramics is beneficial to formaldehyde removal.
  • the comparison results between the examples and the comparative examples show that alkali metal doping has a good promoting effect on the formaldehyde degradation performance of the AT-TiO 2 /MOF-199/NFC composite material at room temperature, and the order is K>Na>Li.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)

Abstract

一种用于低浓度甲醛降解的陶瓷基复合材料及其制备方法属于环境工程技术领域,本发明采用碱金属-过渡金属(即A-T)醇溶液与TiO2溶胶低温搅拌后得到A-T-TiO2溶胶;将活化陶瓷(HFC)浸入A-T-TiO2溶胶后常温搅拌得到A-T-TiO2/HFC;所得A-T-TiO2/HFC经一次烘干和一次低温煅烧后形成A-T-TiO2/FC;而后将A-T-TiO2/FC浸入金属有机框架(MOF)-胺基硅烷溶胶中以得到胺化A-T-TiO2/MOF/NFC前驱体;最后将所得前驱体二次烘干和二次低温煅烧后形成A-T-TiO2/MOF/NFC复合材料。本发明可有效降解室内或空气中低浓度甲醛。MOF在胺化陶瓷上的负载和碱金属的掺杂明显提升了复合材料对甲醛富集-降解性能,利于室内或空气中低浓度甲醛的彻底脱除。

Description

一种用于低浓度甲醛降解的陶瓷基复合材料及其制备方法 技术领域
本发明涉及环境工程技术领域,尤其涉及一种用于低浓度甲醛降解的陶瓷基复合材料及其制备方法。
背景技术
室内甲醛来源广泛,例如香烟烟雾、胶黏剂、人造板、贴墙布、油漆、地毯、杀蚊液体等。其中,胶黏剂和香烟烟雾被认为是室内甲醛的两大重要来源。轻微甲醛中毒可能会导致头痛和呼吸道水肿,严重时可能会诱发支气管哮喘和基因突变。我国《室内空气质量标准》规定普通民用建筑室内空气中甲醛的限值为0.10mg/m3。人类对室内甲醛污染的关注日益增加,有效治理甲醛是改善室内空气质量的迫切需要。
吸附法是目前比较常用的甲醛清除技术,属于物理方法。该方法主要利用吸附剂本身的功能原子或基团对低浓度甲醛进行吸附去除。常用的吸附剂包括活性炭、MOF、沸石、石墨等。这一类方法操作简单,但需要不断更换吸附剂,且无法从根本上消除甲醛污染。而化学降解法的开发具有彻底降解甲醛、降解产物无污染等优点。典型的方法是利用催化氧化法将甲醛降解为CO2和H2O。目前,已报道室温条件下能有效消除甲醛的催化剂有TiO2基光触媒催化剂、Pt/TiO2催化剂、Pd/CeO2等。对于贵金属,其高价格极大程度限制了它们的广泛应用,开发低成本、室温下具有良好活性的催化剂仍有很大的需求。对于TiO2,因具3.2eV的大带隙,这使其只能被紫外光激发以产生电子-空穴对。已有研究表明,金属掺杂被认为是将其激发波长扩展到可见光的一种有效方法。例如,在TiO2中掺杂Cu、V、Cr、Mo、Fe、Co和W等金属元素利于缩小TiO2带隙以及增加其电子-空穴生成能力,从而提高光催化剂的光催化活性。不过,由于室内或空气中甲醛浓度较低,导致这一方法仍存在成本高问题。许多研究将吸附材料与催化材料机械组合在一起形成复合材料,以提高材料对低浓度甲醛的脱除能力。然而,这种机械组合材料同样存在颗粒压降大、传质传热困难等问题。考虑到多孔陶瓷具有大孔刚性结构、耐酸、耐腐蚀特性,如果将吸附材料和活性材料负载在这类陶瓷中,一方面可以解决粉末堆积导致的压降、传热传质问题,另一方面,还可以增加催化剂的分散面积和催化活性,提升陶瓷基复合材料对甲醛的浓缩降解 性能。
发明内容
基于以上技术的弱点,本发明提供一种用于低浓度甲醛降解的陶瓷基复合材料及其制备方法。本发明中复合材料可高效富集室内的低浓度甲醛,高比表面积MOF在胺化大孔陶瓷上的负载和活性组份中碱金属的掺杂明显提高了复合材料对甲醛的浓缩降解效果。
本发明所提供的一种用于低浓度甲醛降解的陶瓷基复合材料及其制备方法,其特征在于具有以下过程和步骤:
一种用于低浓度甲醛降解的陶瓷基复合材料及其制备方法,其特征在于,以碱金属-过渡金属-TiO2(即A-T-TiO2)为活性组份,以金属有机框架/胺化泡沫陶瓷(即MOF/NFC)为载体,其简式为A-T-TiO2/MOF/NFC,式中A代表Na、K、Li中的一种,T代表Cu、Mn、Co中的一种,MOF代表ZIF-8、MOF-199、UIO-66-NH2中的一种,NFC代表胺化泡沫陶瓷,且泡沫陶瓷为Al2O3陶瓷或ZrO2陶瓷中的一种。按重量百分比,复合材料中活性组分的含量是3~10%,载体为90~97%,两者之和为100%。其中,活性组份中三种物质的重量百分比A:T:TiO2为(5-10):(10-20):(70-85),载体中两种物质的重量百分比MOF:NFC为(4-6):(94-96)。
所述A-T-TiO2/MOF/NFC复合材料的制备包括A-T-TiO2/FC和A-T-TiO2/MOF/NFC的制备两个过程,具体如下:
(1)制备A-T-TiO2/FC的具体步骤如下:
S1.将碱金属硝酸盐和过渡金属硝酸盐溶液按比例超声混合得到混合金属盐溶液,再加入无水乙醇,得到A-T混合金属醇溶液;再将TiO2溶胶与A-T混合金属醇溶液进行混合搅拌,得到A-T-TiO2溶胶;
步骤S1中碱金属硝酸盐溶液和过渡金属硝酸盐溶液的体积比为1:(0.9-1.1);控制碱金属硝酸盐与过渡金属硝酸盐溶液的浓度为0.06-0.08mol/L;控制混合金属盐溶液、TiO2溶胶、无水乙醇三者的体积比为(8-10):(4-6):1;搅拌时间为20-30min;搅拌温度为0-2℃;
TiO2溶胶的制备方法:将钛酸四丁酯、无水乙醇、水三者以体积比为(1-1.2):(6-7):(0.8-1)进行混合反应,并在搅拌条件下逐滴加入醋酸,直至形成TiO2溶胶;控制反应温度为0-2℃,搅拌速率为300~350r/min,搅拌时间为30-40min;控制醋酸添加量在混合溶液 中的体积百分比为3%-4%。控制TiO2溶胶的浓度为50-55g L-1,溶胶pH值为3-4。
S2.将尺寸为(1-1.5cm)*(1.5-2cm)*(1.5-2cm)的HFC浸入步骤1)所得的A-T-TiO2溶胶中,25-30℃下搅拌1-2h,得到A-T-TiO2/HFC;
所述HFC的活化方法为:将泡沫陶瓷浸入20wt%HCl溶液和30wt%H2O2溶液的混合溶液,并保持10-15h;随后用去离子水洗至中性,再将过滤后得到的陶瓷在100-120℃下干燥20-24h,得到HFC;所述HCl溶液和H2O2溶液的体积比为(3-5):1;HFC与A-T-TiO2溶胶的体积比为1:(4-6);所述泡沫陶瓷为Al2O3泡沫陶瓷或ZrO2泡沫陶瓷中的一种;泡沫陶瓷的线性孔隙数为15-20ppi;
S3.将A-T-TiO2/HFC从A-T-TiO2溶胶中取出,并静置风干0.5-1h,再将风干后的A-T-TiO2/HFC在100-120℃的烘箱中干燥4-5h;
S4.将干燥后A-T-TiO2/HFC放入N2气氛下的350-400℃管式炉中焙烧5-7h,以得到脱水缩合后的A-T-TiO2/FC。
(2)在步骤(1)的基础上,制备A-T-TiO2/MOF/NFC的具体步骤如下:
P1.将步骤(1)所得的A-T-TiO2/FC浸入MOF-胺基硅烷溶胶中,并逐滴加入20wt%稀盐酸,直至混合物的pH为2-3,再搅拌1-2h,以得到胺化A-T-TiO2/MOF/NFC前驱体;。
将MOF与胺基硅烷溶胶以(5-10):(10-15)重量比混合后搅拌30-40min;所述胺基硅烷溶胶的制备方法:将胺基硅烷、无水乙醇、H2O、20wt%盐酸的混合物以体积比为(1-2):(35-40):(50-60):(0.2-0.5)混合,并在25-30℃下搅拌3-4h。所述胺基硅烷包括3-氨丙基三乙氧基硅烷(APTES)、3-氨丙基三甲氧基硅烷(APTMS)、三丁氨基甲基硅烷(TBAMS)
P2.将步骤P1所得A-T-TiO2/MOF/NFC前驱体从MOF-胺基硅烷溶胶中取出,并静置风干1-2h,再在60-80℃烘箱中干燥20-40min;
P3.将步骤P2干燥后所得A-T-TiO2/MOF/NFC前驱体放入N2气氛下180-200℃的管式炉中保持2-3h,得到A-T-TiO2/MOF/NFC。
步骤P1中所述MOF包括ZIF-8、MOF-199、UIO-66-NH2中的一种,其中,ZIF-8的制备参照文献方法合成(DOI:10.1016/j.cattod.2019.06.076);MOF-199的制备参照文献方法合成(DOI:10.1016/j.ceramint.2020.12.149);UIO-66-NH2的制备参照文献方法合成(DOI:10.1016/j.cej.2020.125328),具体步骤如下:
ZIF-8的制备步骤:将2.9g Zn(NO3)·6H2O和6.9g 2-甲基咪唑(2-mIM)两种不同的溶液溶解在100mL甲醇中。然后,锌盐溶液与2-mim溶液在30℃下剧烈搅拌2h。合成反应结束后,将白色沉淀物离心过滤,用甲醇洗涤三次,在70℃下干燥24h,得到ZIF-8产物。
MOF-199的制备步骤:将Cu(NO3)2 .3H2O(0.27g)溶解在36mL水中,倒入含有0.12g1,3,5-苯三羧酸的36mL乙醇中搅拌30min,然后将得到的溶液转移到特氟龙不锈钢高压釜中,在120℃下加热12h,冷却至25-30℃后,用水和乙醇交替过滤和彻底清洗得到的固体3次。最后,将蓝色固体在80℃下烘干过夜。
UIO-66-NH2的制备步骤:先在含有30mL DMF和2.0mL水的混合物中加入535.9mg ZrCl4和416.6mg NH2-H2BDC。搅拌30min后,将料浆倒入100mL的特氟龙热压釜中,120℃加热24h。再离心分离UIO-66-NH2纳米晶体,用40.0mL DMF洗涤3次,去除未反应的配体。
与现有技术相比,本发明具有以下优点:
(1)选择具有高比表面积或具较小孔尺寸的MOF材料作为复合吸附剂,以提升复合材料对甲醛的吸附能力。
(2)胺化陶瓷中的胺基可形成胺-醛共轭导致增加的甲醛吸附能力,因此,通过胺基改性的泡沫陶瓷利于提升陶瓷对甲醛的吸附能力。
(3)单一的粉体MOF材料具有高比表面积特性,但用作甲醛捕获材料时,具有压降大、传质能力差等缺点。泡沫陶瓷因具刚性结构和大孔特性,适合用作粉体MOF材料的载体。负载MOF后的陶瓷框架很大程度上缓解或消除了MOF颗粒间的压降和传热传质问题。
(4)大孔泡沫陶瓷不仅充当MOF的支撑材料,还增加了催化剂的分布面积以及降低了催化剂团聚几率,从而提高了复合材料对甲醛的吸附和光催化活性。
(5)相比贵金属,活性组份中掺杂的Na、K、Li等碱金属利于降低成本。此外,这些掺杂的碱金属不仅可改善活性组份的稳定性和分散性,还可促进氧的化学吸附/解离和表面OH基团的形成,利于提高材料的光催化活性。
附图说明
图1为本发明A-T-TiO2/MOF/NFC复合材料制备流程图。
具体实施方式
现将本发明的具体实施例叙述如下,但本发明的实施方式不限于此。
实施例1
一种用于低浓度甲醛降解的陶瓷基复合材料及其制备方法,其特征在于,以A-Cu-TiO2为活性组份,以ZIF-8/NFC为载体;其简式为A-Cu-TiO2/ZIF-8/NFC,式中A代表Na、K、Li中的一种。按重量百分比,复合材料中活性组分的含量是3%,载体为97%,两者之和为100%。其中,活性组份中三种物质的重量百分比A:Cu:TiO2为5:10:85,载体中两种物质的重量百分比ZIF-8:NFC为4:96。
一种用于低浓度甲醛降解的陶瓷基复合材料及其制备方法,其特征在于,所述A-Cu-TiO2/ZIF-8/NFC复合材料的制备包括以下步骤:
1)将0.06mol/L的ANO3溶液和同浓度的Cu(NO3)2溶液按1:1体积比混合得到混合金属盐溶液,再加入无水乙醇,得到A-Cu混合金属醇溶液;再将TiO2溶胶与A-Cu混合金属醇溶液进行混合搅拌,得到A-Cu-TiO2溶胶;
控制混合金属盐溶液、TiO2溶胶、无水乙醇三者的体积比为8:4:1;搅拌时间为20min;搅拌温度为0℃;控制TiO2溶胶的浓度为50g L-1,pH值为3。
2)将尺寸为1cm*1.5cm*1.5cm的HFC浸入步骤1)所得的A-Cu-TiO2溶胶中,25℃下搅拌1h,得到A-Cu-TiO2/HFC;
所述HFC的活化方法为:将泡沫陶瓷浸入20wt%HCl溶液和30wt%H2O2溶液的混合溶液,并保持10h;随后用去离子水洗至中性,再将过滤后得到的陶瓷在100℃下干燥20h,得到HFC;所述HCl溶液和H2O2溶液的体积比为3:1;HFC与A-Cu-TiO2溶胶的体积比为1:4;所述泡沫陶瓷为Al2O3泡沫陶瓷,泡沫陶瓷的线性孔隙数为15ppi;
3)将A-Cu-TiO2/HFC从A-Cu-TiO2溶胶中取出,并静置风干0.5h,再将风干后的A-Cu-TiO2/HFC在100℃的烘箱中干燥4h;
4)将干燥后A-Cu-TiO2/HFC放入N2气氛下的350℃管式炉中焙烧5h,以得到脱水缩合后的A-Cu-TiO2/FC。
5)将步骤4)所得A-Cu-TiO2/FC浸入ZIF-8/APTES溶胶中,并逐滴加入20wt%稀盐 酸,直至混合物的pH为2,再搅拌1h,以得到胺化A-Cu-TiO2/ZIF-8/NFC前驱体;。
所述ZIF-8/APTES溶胶的制备方法为:将ZIF-8与APTES溶胶以5:10重量比混合后搅拌30min;所述APTES溶胶的制备方法:将APTES、无水乙醇、H2O、20wt%盐酸的混合物以体积比为1:35:50:0.2混合,并在25℃下搅拌3h;
6)将步骤5)所得A-Cu-TiO2/ZIF-8/NFC前驱体从ZIF-8/APTES溶胶中取出,并静置风干1h,再在60℃烘箱中干燥20min;
7)将步骤6)干燥后所得A-Cu-TiO2/ZIF-8-NFC前驱体放入N2气氛下180℃的管式炉中保持2h,得到A-Cu-TiO2/ZIF-8/NFC。
测评条件:将A-Cu-TiO2/ZIF-8/NFC用新鲜甲醇连续浸泡三次,每次浸泡24h后滤出得到固体复合材料,再将复合材料在60℃真空干燥6h。在连续流动固定床中进行反应,30℃,常压,反应空速10000h-1,甲醛污染物浓度100ppm,最后用气相色谱检测。测评结果见表1。
表1实施例1中碱金属掺杂复合材料的甲醛脱除性能
对比例1
复合材料制备参照实施例1,将ZIF-8替换为MOF-199和UIO-66-NH2,其余条件相同,制备得到A-Cu-TiO2/ZIF-8/MOF-199复合材料。测评条件同实施例1,测评结果见表2。表2对比例1中碱金属掺杂复合材料的甲醛脱除性能

对比例2
一种用于低浓度甲醛降解的陶瓷基复合材料及其制备方法,其特征在于,以A-Cu-TiO2为活性组份,以FC为载体;其简式为A-Cu-TiO2/FC,式中A代表Na、K、Li中的一种。按重量百分比,复合材料中活性组分的含量是5%,载体为95%,两者之和为100%。其中,活性组份中三种物质的重量百分比A:Cu:TiO2为5:10:85。
一种用于低浓度甲醛降解的陶瓷基复合材料及其制备方法,其特征在于,所述A-Cu-TiO2/FC复合材料的制备包括以下步骤:
1)将0.06mol/L的ANO3溶液和0.08mol/LCu(NO3)2溶液按1:0.9体积比混合得到混合金属盐溶液,再加入无水乙醇,得到A-Cu混合金属醇溶液;再将TiO2溶胶与A-Cu混合金属醇溶液进行混合搅拌,得到A-Cu-TiO2溶胶;
控制混合金属盐溶液、TiO2溶胶、无水乙醇三者的体积比为9:5:1;搅拌时间为30min;搅拌温度为0℃;控制TiO2溶胶的浓度为55g L-1,pH值为3。
2)将尺寸为1cm*1.5cm*1.5cm的HFC浸入步骤1)所得的A-Cu-TiO2溶胶中,30℃下搅拌1h,得到A-Cu-TiO2/HFC;
所述HFC的活化方法为:将泡沫陶瓷浸入20wt%HCl溶液和30wt%H2O2溶液的混合溶液,并保持12h;随后用去离子水洗至中性,再将过滤后得到的陶瓷在100℃下干燥20h,得到HFC;所述HCl溶液和H2O2溶液的体积比为4:1;HFC与A-Cu-TiO2溶胶的体积比为1:5;所述泡沫陶瓷为Al2O3泡沫陶瓷,泡沫陶瓷的线性孔隙数为20ppi;
3)将A-Cu-TiO2/HFC从A-Cu-TiO2溶胶中取出,并静置风干0.5h,再将风干后的A-Cu-TiO2/HFC在120℃的烘箱中干燥4h;
4)将干燥后A-Cu-TiO2/HFC放入N2气氛下的350℃管式炉中焙烧6h,以得到脱水缩合后的A-Cu-TiO2/FC。
测评条件:将A-Cu-TiO2/FC在连续流动固定床中进行反应,30℃,常压,反应空速10000h-1,甲醛污染物浓度100ppm,最后用气相色谱检测。测评结果见表3。
表3对比例2中碱金属掺杂复合材料的甲醛脱除性能
对比例3
一种用于低浓度甲醛降解的陶瓷基复合材料及其制备方法,其特征在于,以T-TiO2为活性组份,以ZIF-8/NFC为载体;其简式为T-TiO2/ZIF-8/NFC,式中T代表Cu、Mn、Co中的一种。按重量百分比,复合材料中活性组分的含量是8%,载体为92%,两者之和为100%。其中,活性组份中两种物质的重量百分比T:TiO2为10:90,载体中两种物质的重量百分比ZIF-8:NFC为5:95。
一种用于低浓度甲醛降解的陶瓷基复合材料及其制备方法,其特征在于,所述T-TiO2/ZIF-8/NFC复合材料的制备包括以下步骤:
1)在0.06mol/L的T(NO3)2溶液中加入无水乙醇,得到T的醇溶液;再将TiO2溶胶与T混合金属醇溶液进行混合搅拌,得到T-TiO2溶胶;
控制混合金属盐溶液、TiO2溶胶、无水乙醇三者的体积比为8:4:1;搅拌时间为20min;搅拌温度为0℃;控制TiO2溶胶的浓度为50g L-1,pH值为3。
2)将尺寸为1.5cm*2cm*2cm的HFC浸入步骤1)所得的T-TiO2溶胶中,25℃下搅拌1h,得到T-TiO2/HFC;
所述HFC的活化方法为:将泡沫陶瓷浸入20wt%HCl溶液和30wt%H2O2溶液的混合溶液,并保持10h;随后用去离子水洗至中性,再将过滤后得到的陶瓷在100℃下干燥20h,得到HFC;所述HCl溶液和H2O2溶液的体积比为4:1;HFC与T-TiO2溶胶的体积比为1:5;所述泡沫陶瓷为ZrO2泡沫陶瓷,泡沫陶瓷的线性孔隙数为20ppi;
3)将T-TiO2/HFC从A-Cu-TiO2溶胶中取出,并静置风干0.5h,再将风干后的T-TiO2/HFC在100℃的烘箱中干燥4h;
4)将干燥后T-TiO2/HFC放入N2气氛下的380℃管式炉中焙烧6h,以得到脱水缩合 后的T-TiO2/FC。
5)将步骤4)所得T-TiO2/FC浸入ZIF-8/APTES溶胶中,并逐滴加入20wt%稀盐酸,直至混合物的pH为2,再搅拌1h,以得到胺化T-TiO2/ZIF-8/NFC前驱体;。
所述ZIF-8/APTES溶胶的制备方法为:将ZIF-8与APTES溶胶以8:10重量比混合后搅拌40min;所述APTES溶胶的制备方法:将APTES、无水乙醇、H2O、20wt%盐酸的混合物以体积比为1:35:50:0.2混合,并在25℃下搅拌3h;
6)将步骤5)所得T-TiO2/ZIF-8/NFC前驱体从ZIF-8/APTES溶胶中取出,并静置风干1h,再在80℃烘箱中干燥30min;
7)将步骤6)干燥后所得T-TiO2/ZIF-8/NFC前驱体放入N2气氛下180℃的管式炉中保持3h,得到T-TiO2/ZIF-8/NFC。
测评条件:将T-TiO2/ZIF-8/NFC用新鲜甲醇连续浸泡三次,每次浸泡24h后滤出得到固体复合材料,再将复合材料在60℃真空干燥6h。在连续流动固定床中进行反应,30℃,常压,反应空速10000h-1,甲醛污染物浓度100ppm,最后用气相色谱检测。测评结果见表4。
表4对比例3中碱金属掺杂复合材料的甲醛脱除性能
实施例2
一种用于低浓度甲醛降解的陶瓷基复合材料及其制备方法,其特征在于,以K-T-TiO2为活性组份,以MOF-199/NFC为载体;其简式为K-T-TiO2/MOF-199/NFC,式中T代表Cu、Mn、Co中的一种。按重量百分比,复合材料中活性组分的含量是8%,载体为92%,两者之和为100%。其中,活性组份中三种物质的重量百分比K:T:TiO2为5:10:85,载体中两种物质的重量百分比MOF-199:NFC为5:95。
一种用于低浓度甲醛降解的陶瓷基复合材料及其制备方法,其特征在于,所述 K-T-TiO2/MOF-199/NFC复合材料的制备包括以下步骤:
1)将0.06mol/L的KNO3溶液和0.06mol/L的T(NO3)2溶液按1:1体积比混合得到混合金属盐溶液,再加入无水乙醇,得到K-T混合金属醇溶液;再将TiO2溶胶与K-T混合金属醇溶液进行混合搅拌,得到K-T-TiO2溶胶;
控制混合金属盐溶液、TiO2溶胶、无水乙醇三者的体积比为8:4:1;搅拌时间为20min;搅拌温度为0℃;控制TiO2溶胶的浓度为50g L-1,pH值为3。
2)将尺寸为1.5cm*2cm*2cm的HFC浸入步骤1)所得的K-T-TiO2溶胶中,25℃下搅拌1h,得到K-T-TiO2/HFC;
所述HFC的活化方法为:将泡沫陶瓷浸入20wt%HCl溶液和30wt%H2O2溶液的混合溶液,并保持10h;随后用去离子水洗至中性,再将过滤后得到的陶瓷在120℃下干燥24h,得到HFC;所述HCl溶液和H2O2溶液的体积比为5:1;HFC与K-T-TiO2溶胶的体积比为1:6;所述泡沫陶瓷为Al2O3泡沫陶瓷,泡沫陶瓷的线性孔隙数为20ppi;
3)将K-T-TiO2/HFC从K-T-TiO2溶胶中取出,并静置风干0.5h,再将风干后的K-T-TiO2/HFC在100℃的烘箱中干燥4h;
4)将干燥后K-T-TiO2/HFC放入N2气氛下的380℃管式炉中焙烧5h,以得到脱水缩合后的K-T-TiO2/FC。
5)将步骤4)所得K-T-TiO2/FC浸入MOF-199/APTES溶胶中,并逐滴加入20wt%稀盐酸,直至混合物的pH为2,再搅拌1h,以得到胺化K-T-TiO2/MOF-199/NFC前驱体;。
所述MOF-199/APTES溶胶的制备方法为:将MOF-199与APTES溶胶以5:15重量比混合后搅拌30min;所述APTES溶胶的制备方法:将APTES、无水乙醇、H2O、20wt%盐酸的混合物以体积比为1:40:50:0.4混合,并在25℃下搅拌3h;
6)将步骤5)所得K-T-TiO2/MOF-199/NFC前驱体从MOF-199/APTES溶胶中取出,并静置风干1h,再在60℃烘箱中干燥20min;
7)将步骤6)干燥后所得K-T-TiO2/MOF-199/NFC前驱体放入N2气氛下180℃的管式炉中保持2h,得到K-T-TiO2/MOF-199/NFC。
测评条件:将K-T-TiO2/MOF-199/NFC用新鲜甲醇连续浸泡三次,每次浸泡24h后滤出得到固体复合材料,再将复合材料在60℃真空干燥6h。在连续流动固定床中进行反应, 30℃,常压,反应空速10000h-1,甲醛污染物浓度100ppm,最后用气相色谱检测。测评结果见表5。
表5实施例2中碱金属掺杂复合材料的甲醛脱除性能
实施例3
一种用于低浓度甲醛降解的陶瓷基复合材料及其制备方法,其特征在于,以K-Cu-TiO2为活性组份,以MOF-199/NFC为载体,其简式为K-Cu-TiO2/MOF-199/NFC。按重量百分比,复合材料中活性组分的含量是10%,载体为90%,两者之和为100%。其中,活性组份中三种物质的重量百分比K:Cu:TiO2为5:10:85,载体中两种物质的重量百分比ZIF-8:NFC为6:94。
一种用于低浓度甲醛降解的陶瓷基复合材料及其制备方法,其特征在于,所述K-Cu-TiO2/ZIF-8/NFC复合材料的制备包括以下步骤:
1)将0.06mol/L的KNO3溶液和0.06mol/LCu(NO3)2溶液按1:1体积比混合得到混合金属盐溶液,再加入无水乙醇,得到K-Cu混合金属醇溶液;再将TiO2溶胶与K-Cu混合金属醇溶液进行混合搅拌,得到K-Cu-TiO2溶胶;
控制混合金属盐溶液、TiO2溶胶、无水乙醇三者的体积比为10:6:1;搅拌时间为30min;搅拌温度为2℃;控制TiO2溶胶的浓度为55g L-1,pH值为4。
2)将尺寸为1cm*1.5cm*1.5cm的HFC浸入步骤1)所得的A-Cu-TiO2溶胶中,25℃下搅拌1h,得到K-Cu-TiO2/HFC;
所述HFC的活化方法为:将泡沫陶瓷浸入20wt%HCl溶液和30wt%H2O2溶液的混合溶液,并保持10h;随后用去离子水洗至中性,再将过滤后得到的陶瓷在100℃下干燥20h,得到HFC;所述HCl溶液和H2O2溶液的体积比为5:1;HFC与K-Cu-TiO2溶胶的体积比为1:4;所述泡沫陶瓷为ZrO2泡沫陶瓷,泡沫陶瓷的线性孔隙数为20ppi;
3)将K-Cu-TiO2/HFC从K-Cu-TiO2溶胶中取出,并静置风干0.5h,再将风干后的K-Cu-TiO2/HFC在100℃的烘箱中干燥4h;
4)将干燥后K-Cu-TiO2/HFC放入N2气氛下的400℃管式炉中焙烧6h,以得到脱水缩合后的A-Cu-TiO2/FC。
5)将步骤4)所得K-Cu-TiO2/FC浸入MOF-199/胺基硅烷溶胶中,并逐滴加入20wt%稀盐酸,直至混合物的pH为2,再搅拌1h,以得到胺化K-Cu-TiO2/MOF-199/NFC前驱体;。
所述MOF-199/胺基硅烷溶胶的制备方法为:将MOF-199与胺基硅烷溶胶以10:15重量比混合后搅拌30min;所述胺基硅烷溶胶的制备方法:将胺基硅烷、无水乙醇、H2O、20wt%盐酸的混合物以体积比为2:40:60:0.5混合,并在30℃下搅拌3h;所述胺基硅烷包括APTES、APTMS、TBAMS。
6)将步骤5)所得K-Cu-TiO2/MOF-199/NFC前驱体从MOF-199/胺基硅烷溶胶中取出,并静置风干1h,再在60℃烘箱中干燥20min;
7)将步骤6)干燥后所得K-Cu-TiO2/MOF-199/NFC前驱体放入N2气氛下200℃的管式炉中保持3h,得到K-Cu-TiO2/MOF-199/NFC。
测评条件:将K-Cu-TiO2/MOF-199/NFC用新鲜甲醇连续浸泡三次,每次浸泡24h后滤出得到固体复合材料,再将复合材料在60℃真空干燥6h。在连续流动固定床中进行反应,30℃,常压,反应空速10000h-1,甲醛污染物浓度100ppm,最后用气相色谱检测。测评结果见表6。
表6实施例3中碱金属掺杂复合材料的甲醛脱除性能
综上,本发明针对空气或室内低浓度甲醛富集难、过渡金属-TiO2催化剂对甲醛光催化效果差等问题,通过引入负载MOF的胺化泡沫陶瓷载体以及在活性组份中掺杂碱金属,明显提升了复合材料对甲醛的吸附降解性能。实施例表明MOF-199的负载以及APTES对 陶瓷的改性利于甲醛脱除。此外,实施例与对比例之间的对比结果表明,碱金属掺杂对A-T-TiO2/MOF-199/NFC复合材料在室温下的甲醛降解性能有良好的促进作用,其顺序为K>Na>Li。

Claims (3)

  1. 一种用于低浓度甲醛降解的陶瓷基复合材料,其特征在于,以碱金属-过渡金属-TiO2即A-T-TiO2为活性组份,以金属有机框架/胺化泡沫陶瓷即MOF/NFC为载体,其简式为A-T-TiO2/MOF/NFC,式中A代表Na、K、Li中的一种,T代表Cu、Mn、Co中的一种,MOF代表ZIF-8、MOF-199、UIO-66-NH2中的一种,NFC代表胺化泡沫陶瓷,且泡沫陶瓷为Al2O3陶瓷或ZrO2陶瓷中的一种;按重量百分比,复合材料中活性组分的含量是3~10%,载体为90~97%,两者之和为100%;其中,活性组份中三种物质的重量百分比A:T:TiO2为(5-10):(10-20):(70-85),载体中两种物质的重量百分比MOF:NFC为(4-6):(94-96)。
  2. 制备如权利要求1所述一种用于低浓度甲醛降解的陶瓷基复合材料的方法,其特征在于,A-T-TiO2/MOF/NFC复合材料的制备包括制备A-T-TiO2/FC和A-T-TiO2/MOF/NFC;其中A-T-TiO2/FC的制备包括以下步骤:
    1)将碱金属硝酸盐和过渡金属硝酸盐溶液按比例超声混合得到混合金属盐溶液,再加入无水乙醇,得到A-T混合金属醇溶液;再将TiO2溶胶与A-T混合金属醇溶液进行混合搅拌,得到A-T-TiO2溶胶;
    步骤1)中碱金属硝酸盐溶液和过渡金属硝酸盐溶液的体积比为1:(0.9-1.1);控制碱金属硝酸盐与过渡金属硝酸盐溶液的浓度为0.06-0.08mol/L;控制混合金属盐溶液、TiO2溶胶、无水乙醇三者的体积比为(8-10):(4-6):1;搅拌时间为20-30min;搅拌温度为0-2℃;控制TiO2溶胶的浓度为50-55g L-1,pH值为3-4;
    2)将尺寸为(1-1.5cm)*(1.5-2cm)*(1.5-2cm)的活化陶瓷HFC浸入步骤1)所得的A-T-TiO2溶胶中,25-30℃下搅拌1-2h,得到A-T-TiO2/HFC;
    HFC的活化方法为:将泡沫陶瓷浸入20wt%HCl溶液和30wt%H2O2溶液的混合溶液,并保持10-15h;而后用去离子水洗涤至中性,再将洗涤后陶瓷在100-120℃下干燥20-24h,得到HFC;所述HCl溶液和H2O2溶液的体积比是(3-5):1;HFC与A-T-TiO2溶胶的体积比是1:(4-6);
    泡沫陶瓷为Al2O3陶瓷或ZrO2陶瓷中的一种;泡沫陶瓷的线性孔隙数为15-20ppi;
    3)将A-T-TiO2/HFC从A-T-TiO2溶胶中取出,静置风干0.5-1h,再将风干后的A-T-TiO2/HFC在100-120℃的烘箱中干燥4-5h;
    4)将干燥后A-T-TiO2/HFC放入N2气氛下的350-400℃管式炉中焙烧5-7h,以得到脱水缩合后的A-T-TiO2/FC;
    所述A-T-TiO2/MOF/NFC的制备方法包括以下步骤:
    5)所得A-T-TiO2/FC浸入MOF-胺基硅烷溶胶中,并逐滴加入20wt%盐酸,直至混合 物的pH为2-3,再搅拌1-2h,以得到胺化A-T-TiO2/MOF/NFC前驱体;
    所述MOF-胺基硅烷溶胶的制备方法为:将MOF与胺基硅烷溶胶以(5-10):(10-15)重量比混合后搅拌30-40min;所述胺基硅烷溶胶的制备方法:将胺基硅烷、无水乙醇、H2O、20wt%盐酸的混合物以体积比为(1-2):(35-40):(50-60):(0.2-0.5)混合,并在25-30℃下搅拌3-4h;
    6)将步骤1)所得A-T-TiO2/MOF/NFC前驱体从MOF-胺基硅烷溶胶中取出,并静置风干1-2h,再在60-80℃烘箱中干燥20-40min;
    7)将步骤6)干燥后所得A-T-TiO2/MOF/NFC前驱体放入N2气氛下180-200℃的管式炉中保持2-3h,得到A-T-TiO2/MOF/NFC。
  3. 根据权利2所述的方法,其特征在于,所述胺基硅烷为3-氨丙基三乙氧基硅烷、3-氨丙基三甲氧基硅烷或三丁氨基甲基硅烷。
PCT/CN2023/134194 2022-11-29 2023-11-27 一种用于低浓度甲醛降解的陶瓷基复合材料及其制备方法 WO2024114551A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/757,361 US20240342653A1 (en) 2022-11-29 2024-06-27 Ceramic-based composite material used for low-concentration formaldehyde degradation and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211505110.4 2022-11-29
CN202211505110.4A CN115870006B (zh) 2022-11-29 2022-11-29 一种用于低浓度甲醛降解的陶瓷基复合材料及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/757,361 Continuation US20240342653A1 (en) 2022-11-29 2024-06-27 Ceramic-based composite material used for low-concentration formaldehyde degradation and preparation method therefor

Publications (1)

Publication Number Publication Date
WO2024114551A1 true WO2024114551A1 (zh) 2024-06-06

Family

ID=85764410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/134194 WO2024114551A1 (zh) 2022-11-29 2023-11-27 一种用于低浓度甲醛降解的陶瓷基复合材料及其制备方法

Country Status (3)

Country Link
US (1) US20240342653A1 (zh)
CN (1) CN115870006B (zh)
WO (1) WO2024114551A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115870006B (zh) * 2022-11-29 2024-05-31 北京工业大学 一种用于低浓度甲醛降解的陶瓷基复合材料及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104492381A (zh) * 2014-11-28 2015-04-08 上海工程技术大学 非均相TiO2/Co金属有机骨架材料及其制备方法和应用
CN105833919A (zh) * 2016-04-25 2016-08-10 张哲夫 一种复合可见光响应催化剂Ag2CO3/TiO2/ M-ZIF-8及其应用
CN108579741A (zh) * 2018-05-21 2018-09-28 西安凯立新材料股份有限公司 一种利用溶胶凝胶-浸渍法制备的甲醛室温氧化复合载体催化剂
CN109482241A (zh) * 2018-12-07 2019-03-19 怀化学院 TiO2/MOF-5光催化剂及其制备方法
US20190168173A1 (en) * 2017-10-27 2019-06-06 Regents Of The University Of Minnesota Nanocomposite membranes and methods of forming the same
CN111804144A (zh) * 2020-07-10 2020-10-23 中触媒新材料股份有限公司 一种双单元uv光催化氧化反应装置
CN112808312A (zh) * 2019-11-15 2021-05-18 四川大学 一种制备纳米金属-有机骨架材料(MOFs)催化膜的方法
CN113499801A (zh) * 2021-08-18 2021-10-15 齐鲁工业大学 一种ZIF-8/TiO2复合材料及其制备方法和废水处理方法
US20210379559A1 (en) * 2020-03-31 2021-12-09 Numat Technologies Inc. Modified Metal-Organic Framework (MOF) Compositions, Process of Making and Process of Use Thereof
CN115318097A (zh) * 2022-08-05 2022-11-11 北京工业大学 一种voc废气的处理方法和处理装置
CN115870006A (zh) * 2022-11-29 2023-03-31 北京工业大学 一种用于低浓度甲醛降解的陶瓷基复合材料及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1676625A1 (en) * 2004-12-28 2006-07-05 Mitsubishi Denki Kabushiki Kaisha Method and catalyst for the oxidative decomposition of formaldehyde gas
KR101322050B1 (ko) * 2009-02-25 2013-10-25 포항공과대학교 산학협력단 촉매체 및 상기를 사용한 포름알데히드의 제거 방법
CN105289298B (zh) * 2015-10-27 2017-12-15 展宗城 一种室温下消除甲醛的催化模块及其制备方法
CN108325549A (zh) * 2018-01-09 2018-07-27 中山大学 一种用于甲醛净化的过渡金属和氮共掺杂碳复合材料及其制备方法
CN111249918B (zh) * 2018-11-30 2022-01-28 中国科学院大连化学物理研究所 一种mof膜的原位可控合成方法
CN112871214A (zh) * 2020-12-06 2021-06-01 理工清科(北京)科技有限公司 一种制备基于金属有机骨架材料的可常温降解甲醛过滤膜的方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104492381A (zh) * 2014-11-28 2015-04-08 上海工程技术大学 非均相TiO2/Co金属有机骨架材料及其制备方法和应用
CN105833919A (zh) * 2016-04-25 2016-08-10 张哲夫 一种复合可见光响应催化剂Ag2CO3/TiO2/ M-ZIF-8及其应用
US20190168173A1 (en) * 2017-10-27 2019-06-06 Regents Of The University Of Minnesota Nanocomposite membranes and methods of forming the same
CN108579741A (zh) * 2018-05-21 2018-09-28 西安凯立新材料股份有限公司 一种利用溶胶凝胶-浸渍法制备的甲醛室温氧化复合载体催化剂
CN109482241A (zh) * 2018-12-07 2019-03-19 怀化学院 TiO2/MOF-5光催化剂及其制备方法
CN112808312A (zh) * 2019-11-15 2021-05-18 四川大学 一种制备纳米金属-有机骨架材料(MOFs)催化膜的方法
US20210379559A1 (en) * 2020-03-31 2021-12-09 Numat Technologies Inc. Modified Metal-Organic Framework (MOF) Compositions, Process of Making and Process of Use Thereof
CN111804144A (zh) * 2020-07-10 2020-10-23 中触媒新材料股份有限公司 一种双单元uv光催化氧化反应装置
CN113499801A (zh) * 2021-08-18 2021-10-15 齐鲁工业大学 一种ZIF-8/TiO2复合材料及其制备方法和废水处理方法
CN115318097A (zh) * 2022-08-05 2022-11-11 北京工业大学 一种voc废气的处理方法和处理装置
CN115870006A (zh) * 2022-11-29 2023-03-31 北京工业大学 一种用于低浓度甲醛降解的陶瓷基复合材料及其制备方法

Also Published As

Publication number Publication date
US20240342653A1 (en) 2024-10-17
CN115870006A (zh) 2023-03-31
CN115870006B (zh) 2024-05-31

Similar Documents

Publication Publication Date Title
TWI826408B (zh) 用於催化甲醛氧化的催化劑及其製備與用途
US11224866B2 (en) Tricobalt tetraoxide dodecahedron/carbon nitride nanosheet composite and application thereof in exhaust gas treatment
WO2024114551A1 (zh) 一种用于低浓度甲醛降解的陶瓷基复合材料及其制备方法
CN108620113B (zh) 一种氮掺杂的碳-铈复合纳米片的制备方法
CN108554398B (zh) 一种宽温度窗口脱硝催化剂的制备方法及其应用
CN115676896B (zh) 一种非晶态锰氧化物复合材料及其制备方法和应用
CN110586065A (zh) 一种新型金属有机骨架衍生的金属氧化物催化剂合成方法、应用
CN112844404A (zh) 一种以TiO2纳米管为载体的低温脱硝催化剂及其制备和应用
CN110252317B (zh) 一种低温﹑高效脱除氮氧化物的Ce-Fe基催化剂
CN112958061A (zh) 一种氧空位促进直接Z机制介孔Cu2O/TiO2光催化剂及其制备方法
RU2490062C1 (ru) Катализатор для очистки отходящих газов, содержащих летучие органические соединения, способ его получения и способ очистки отходящих газов, содержащих летучие органические соединения
CN113083324B (zh) 一种用于室温甲醛氧化催化剂及其制备方法
CN110813381A (zh) 复合光催化材料UiO-66@BiOIO3及其制备方法与应用
JP5164821B2 (ja) 窒素酸化物選択的接触還元用触媒
JP2006043683A (ja) 触媒担体及びその製造方法、並びに排ガス浄化触媒
CN115845907A (zh) 一种低温scr催化剂及其制备方法和应用
CN114433060B (zh) 一种含溴石化有机废气处理催化剂及其制备方法和应用
CN111545199B (zh) 一种用于对二甲苯高效氧化净化的负载型铂锡双金属催化剂
JP5427443B2 (ja) 排ガス浄化触媒用複合酸化物および排ガス浄化触媒用塗料とディーゼル排ガス浄化用フィルタ
CN108993544B (zh) 一种去除低温高硫尾气中NOx和VOCs的催化剂及其制备和应用
CN113797961A (zh) 一种RuCe/ZSM-5分子筛催化剂及其制备方法和应用
CN112569961A (zh) 一种mof衍生中空钴氧化物负载氧化锰催化剂的制备方法及其产品和应用
CN115155580B (zh) 一种用于有机废气催化燃烧的高抗氯性及抗热老化性催化剂及其制备方法
JPH10137597A (ja) 窒素酸化物浄化用触媒
CN115999642B (zh) 一种TiO2/CuS/MIL-125-NH2异质结光催化剂及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23896702

Country of ref document: EP

Kind code of ref document: A1