CN113443923A - 一种真空感应熔炼Ti合金的CaO坩埚的制备方法 - Google Patents

一种真空感应熔炼Ti合金的CaO坩埚的制备方法 Download PDF

Info

Publication number
CN113443923A
CN113443923A CN202010211139.6A CN202010211139A CN113443923A CN 113443923 A CN113443923 A CN 113443923A CN 202010211139 A CN202010211139 A CN 202010211139A CN 113443923 A CN113443923 A CN 113443923A
Authority
CN
China
Prior art keywords
cao
crucible
vacuum induction
alloy
induction melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010211139.6A
Other languages
English (en)
Inventor
陈波
潜坤
宋庆忠
查向东
刘奎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN202010211139.6A priority Critical patent/CN113443923A/zh
Publication of CN113443923A publication Critical patent/CN113443923A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/057Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on calcium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9676Resistance against chemicals, e.g. against molten glass or molten salts against molten metals such as steel or aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

本发明公开了一种真空感应熔炼Ti合金的CaO坩埚的制备方法,属于高温耐火材料制备技术领域。本发明所用CaO坩埚原料为高纯CaO,其中CaO含量≥98wt.%,且SiO2含量≤0.2wt.%,采用无水乙醇或乙醚作为粘结剂。在高纯CaO混中加入占氧化钙总重量0‑0.5%粘结剂,配料混合均匀后,采用冷等静压成型坩埚毛坯。将坩埚毛坯件缓慢加热至1650~1750℃温度下烧结,缓慢冷却后得到CaO坩埚。本方法制得的CaO坩埚具有热力学稳定性好的特点,熔炼实验测试表明,该CaO坩埚可以用于真空感应熔炼Ti合金。

Description

一种真空感应熔炼Ti合金的CaO坩埚的制备方法
技术领域
本发明涉及高温耐火材料制备技术领域,具体涉及一种真空感应熔炼Ti合金的CaO坩埚的制备方法,所制备的CaO坩埚用于熔炼化学活性强的Ti合金。
背景技术
Ti合金具有化学活性强、熔点高的特点,现有的熔炼方式通常为自耗电弧熔炼或者水冷坩埚感应熔炼,但自耗电弧熔炼存在合金化学成分不均匀的问题,水冷坩埚感应熔炼则存在熔体过热度较低的问题,同时这两种熔炼方法的成本较高。因此,要获得好而性能稳定的Ti合金,对合金的熔炼技术提出了很高要求。CaO材料具有低的蒸汽压和良好的热力学稳定性,在需要高的过热度的活性合金熔炼中发挥了重要的作用。目前,使用具有较好抗水化能力的CaO坩埚耐火材料(发明专利号:97103854.6),成功的实现了TiAl基合金的熔炼。本发明拟制备高纯CaO坩埚,用于真空感应熔炼Ti合金时能够获得更强化学活性的Ti合金。
发明内容
本发明的目的在于提供一种真空感应熔炼Ti合金的CaO坩埚材料及其制备方法,所制备的CaO坩埚具有热力学稳定性好的特点,熔炼实验测试表明,该CaO坩埚可以用于真空感应熔炼Ti合金。
为实现上述目的,本发明所采用的技术方案如下:
一种真空感应熔炼Ti合金的CaO坩埚的制备方法,包括如下步骤:
(1)原料准备:采用高纯度CaO耐火材料、抗水剂和粘结剂为坩埚制备原料,粘结剂的重量为所述高纯度CaO耐火材料总重量的0~0.5%;所述抗水剂的重量为所述高纯度CaO耐火材料总重量的0~0.5%;
(2)将所述高纯度CaO耐火材料、抗水剂与粘结剂混合均匀后,采用冷等静压在模具中压制成坩埚毛坯,冷等静压成型压力为100-300MPa,保压时间1-5分钟;
(3)将步骤(2)所得坩埚毛坯进行加热烧结,再随炉冷却后即获得所述真空感应熔炼Ti合金的CaO坩埚。
上述步骤(1)中,所述高纯度CaO耐火材料成分包括CaO和SiO2,其中CaO含量≥98wt.%,SiO2含量≤0.2wt.%。
上述步骤(1)中,所述抗水剂的重量为所述高纯度CaO耐火材料总重量的0.5~2%,所述抗水剂为ZrO2粉末(加入少量ZrO2的目的是提高CaO坩埚的抗水化性能,加入量偏多会影响CaO热力学稳定性)。
上述步骤(1)中,所述粘结剂为无水乙醇或乙醚。
所述高纯度CaO耐火材料的粒度为200目。
上述步骤(3)中,所述加热烧结的过程为:将坩埚毛坯缓慢加热至900-1300℃并预烧30分钟,再缓慢加热至1650~1750℃并烧结20~180分钟,随炉冷却后得到CaO坩埚;所述缓慢加热过程中加热速度不高于10℃/min。
所制备的CaO坩埚用于真空感应熔炼Ti合金。
本发明设计原理及有益效果如下:
现有Ti合金熔炼通常采用水冷坩埚熔炼,不能采用真空感应熔炼的最大障碍就是没有合适的氧化物坩埚。本发明设计了热力学稳定的氧化钙坩埚,能够熔炼强化学活性的Ti合金。现有CaO坩埚耐火材料专利(发明专利号:97103854.6)主要关注提升坩埚的抗水化能力,采用此专利利(发明专利号:97103854.6)制备的坩埚熔炼Ti合金,坩埚会出现侵蚀裂纹。本发明改变坩埚成分配比和制备工艺,提升坩埚的稳定性,最终能够熔炼Ti合金。本发明有望将CaO坩埚真空感应熔炼引入Ti合金熔炼中,降低熔炼成本和铸锭的成分均匀性。
附图说明
图1为实施例1熔炼Ti后的CaO坩埚和坩埚内的Ti-Cu合金。
图2为实施例2熔炼后坩埚的XRD图谱。
图3为实施例3添加0.5wt.%ZrO2的CaO坩埚显微组织。
具体实施方式
为了进一步理解本发明,以下结合实例对本发明进行描述,但实例仅为对本发明的特点和优点做进一步阐述,而不是对本发明权利要求的限制。
实施例1:
采用表1中的高纯度CaO耐火材料作为真空感应熔炼Ti合金的坩埚材料,CaO材料为200目的粉状原料。
表1高纯度CaO耐火材料组成(wt.%)
CaO MgO Al<sub>2</sub>O<sub>3</sub> SiO<sub>2</sub> Fe<sub>2</sub>O<sub>3</sub> TiO<sub>2</sub>
98.34% 0.43% 0.20% <0.05% <0.01% 0.029%
将所述高纯度CaO耐火材料(不添加粘结剂和抗水剂)添加到模具中,采用采用冷等静压压制成坩埚毛坯,冷等静压成型压力为280MPa,保压时间2min,保压后以140MPa/min速率缓慢泄压。
将所得CaO坩埚毛坯加热烧结,烧结制度为:室温至100℃加热速率10℃/min,在100℃保温1h,然后以2.6℃/min升温至1680℃保温20分钟,随后以4℃/min冷却速率冷却至室温。
将烧结后的CaO坩埚作为真空感应熔炼Ti合金坩埚,将电子束精炼后的金属Ti和高纯Cu作为原料加入CaO坩埚中,金属Ti和高纯Cu具体成分比例为Ti-5wt.%Cu。
在高纯氩气环境,感应加热金属Ti和高纯Cu,原料全部熔化后在1680℃保温10min,停止加热,熔体凝固于CaO坩埚中。
经检测,熔炼后的CaO坩埚内外表面完好(图1),未与Ti合金发生反应,保证了钛合金的纯净化和化学成分的均匀性(表2)。
表2熔炼后Ti-5wt.%Cu合金化学成分(wt.%)
Cu O N
5.11% 0.29% 0.0035%
实施例2:
本实施例与实施例1的区别在于,所用原材料为表1中的高纯度CaO耐火材料和无水乙醇粘结剂,无水乙醇的添加量为CaO原料重量的0.1wt.%。
采用与实施例1相同的CaO坩埚的压制、烧结工艺。烧结之后坩埚经X射线衍射仪(XRD)分析,XRD图谱表明:坩埚相组成主要为CaO(图2),极少量的Ca(OH)2可能为CaO样品制备过程中吸收少量水气后的反应产物。
采用与实施例1相同的真空感应熔炼工艺熔化Ti-5wt.%Cu合金,熔炼后的CaO坩埚内外表面完好,未与Ti合金发生反应,保证了钛合金的纯净化和化学成分的均匀性。
实施例3:
本实施例与实施例1所用原材料不同之处在于:在表1中CaO原料中添加了ZrO2粉末,不添加任何粘结剂;ZrO2粉末添加量为CaO原料重量的0.5wt.%。
采用与实施例1相同的CaO坩埚的压制、烧结工艺。烧结之后坩埚经电子扫面电镜观察(SEM)观察(图3),发现坩埚由CaO晶粒组成,CaO晶粒之间存在极少量ZrO2颗粒。
采用与上述实施例1相同真空感应熔炼工艺熔化Ti-5wt.%Cu合金,熔炼后的CaO坩埚内外表明完好,未与Ti合金发生反应,保证了钛合金的纯净化和化学成分的均匀性。

Claims (7)

1.一种真空感应熔炼Ti合金的CaO坩埚的制备方法,其特征在于:该方法包括如下步骤:
(1)原料准备:采用高纯度CaO耐火材料、抗水剂和粘结剂为坩埚制备原料,粘结剂的重量为所述高纯度CaO耐火材料总重量的0~0.5%;所述抗水剂的重量为所述高纯度CaO耐火材料总重量的0~0.5%;
(2)将所述高纯度CaO耐火材料、抗水剂与粘结剂混合均匀后,采用冷等静压在模具中压制成坩埚毛坯,冷等静压成型压力为100-300MPa,保压时间1-5分钟;
(3)将步骤(2)所得坩埚毛坯进行加热烧结,烧结后坩埚随炉冷却,即获得所述真空感应熔炼Ti合金的CaO坩埚。
2.根据权利要求1所述的真空感应熔炼Ti合金的CaO坩埚的制备方法,其特征在于:步骤(1)中,所述高纯度CaO耐火材料成分包括CaO和SiO2,其中CaO含量≥98wt.%,SiO2含量≤0.2wt.%。
3.根据权利要求1所述的真空感应熔炼Ti合金的CaO坩埚的制备方法,其特征在于:步骤(1)中,所述抗水剂的重量为所述高纯度CaO耐火材料总重量的0.5~2%,所述抗水剂为ZrO2粉末。
4.根据权利要求1所述的真空感应熔炼Ti合金的CaO坩埚的制备方法,其特征在于:步骤(1)中,所述粘结剂为无水乙醇或乙醚。
5.根据权利要求1所述的真空感应熔炼Ti合金的CaO坩埚的制备方法,其特征在于:所述高纯度CaO耐火材料的粒度为200目。
6.根据权利要求1所述的真空感应熔炼Ti合金的CaO坩埚的制备方法,其特征在于:步骤(3)中,所述加热烧结的过程为:将坩埚毛坯缓慢加热至900-1300℃并预烧30分钟,再缓慢加热至1650~1750℃并烧结20~180分钟,随炉冷却后得到CaO坩埚;所述缓慢加热过程中加热速度不高于10℃/min。
7.根据权利要求1所述的真空感应熔炼Ti合金的CaO坩埚的制备方法,其特征在于:所述CaO坩埚用于真空感应熔炼Ti合金。
CN202010211139.6A 2020-03-24 2020-03-24 一种真空感应熔炼Ti合金的CaO坩埚的制备方法 Pending CN113443923A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010211139.6A CN113443923A (zh) 2020-03-24 2020-03-24 一种真空感应熔炼Ti合金的CaO坩埚的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010211139.6A CN113443923A (zh) 2020-03-24 2020-03-24 一种真空感应熔炼Ti合金的CaO坩埚的制备方法

Publications (1)

Publication Number Publication Date
CN113443923A true CN113443923A (zh) 2021-09-28

Family

ID=77806345

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010211139.6A Pending CN113443923A (zh) 2020-03-24 2020-03-24 一种真空感应熔炼Ti合金的CaO坩埚的制备方法

Country Status (1)

Country Link
CN (1) CN113443923A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115583830A (zh) * 2022-10-24 2023-01-10 中国科学院金属研究所 一种用于制备超低硫高温合金的碱性成型坩埚的方法
CN116003108A (zh) * 2022-11-22 2023-04-25 中国科学院金属研究所 一种同时具备脱硫及添加稀土元素的成型坩埚制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4710481A (en) * 1985-09-13 1987-12-01 Mitsui Engineering & Shipbuilding Co., Ltd. Method for melting Ti or a high-Ti alloy in CaO refractories
CN101121967A (zh) * 2006-08-09 2008-02-13 中国科学院金属研究所 一种真空感应熔炼TiAl基合金的方法
CN101830715A (zh) * 2010-05-06 2010-09-15 上海大学 用于钛合金熔炼的CaO耐火材料及坩埚的制备方法
CN103172390A (zh) * 2011-12-22 2013-06-26 沈阳鑫劲粉体工程有限责任公司 一种抗水化高纯氧化钙坩埚的制备方法
CN105859305A (zh) * 2016-03-28 2016-08-17 西安石油大学 一种抗水化、抗热震的干法氧化钙坩埚制备方法
CN105906356A (zh) * 2016-04-25 2016-08-31 中国工程物理研究院材料研究所 一种高纯抗水化氧化钙坩埚的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4710481A (en) * 1985-09-13 1987-12-01 Mitsui Engineering & Shipbuilding Co., Ltd. Method for melting Ti or a high-Ti alloy in CaO refractories
CN101121967A (zh) * 2006-08-09 2008-02-13 中国科学院金属研究所 一种真空感应熔炼TiAl基合金的方法
CN101830715A (zh) * 2010-05-06 2010-09-15 上海大学 用于钛合金熔炼的CaO耐火材料及坩埚的制备方法
CN103172390A (zh) * 2011-12-22 2013-06-26 沈阳鑫劲粉体工程有限责任公司 一种抗水化高纯氧化钙坩埚的制备方法
CN105859305A (zh) * 2016-03-28 2016-08-17 西安石油大学 一种抗水化、抗热震的干法氧化钙坩埚制备方法
CN105906356A (zh) * 2016-04-25 2016-08-31 中国工程物理研究院材料研究所 一种高纯抗水化氧化钙坩埚的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115583830A (zh) * 2022-10-24 2023-01-10 中国科学院金属研究所 一种用于制备超低硫高温合金的碱性成型坩埚的方法
CN115583830B (zh) * 2022-10-24 2023-11-10 中国科学院金属研究所 一种用于制备超低硫高温合金的碱性成型坩埚的方法
CN116003108A (zh) * 2022-11-22 2023-04-25 中国科学院金属研究所 一种同时具备脱硫及添加稀土元素的成型坩埚制备方法
CN116003108B (zh) * 2022-11-22 2024-03-22 中国科学院金属研究所 一种同时具备脱硫及添加稀土元素的成型坩埚制备方法

Similar Documents

Publication Publication Date Title
CN112941351B (zh) 一种超高疲劳强度的粉末冶金钛及钛合金的制备方法
JP6886046B2 (ja) 多段・高度還元による高融点金属粉末の製造方法
CN113443923A (zh) 一种真空感应熔炼Ti合金的CaO坩埚的制备方法
CN112063869B (zh) 一种氢辅粉末冶金钛基复合材料的制备方法
CN106567048B (zh) 一种大型高纯钼合金旋转靶材的制造方法
CN115044794A (zh) 一种具有优异性能的Cu-(Y2O3-HfO2)合金及其制备方法
CN1164782C (zh) 真空感应熔炼Ti-Ni及Ti-Ni-Nb形状记忆合金的工艺
CN112094125B (zh) 一种低导热低热膨胀镁基原料及其制备方法
CN106967895B (zh) 一种钒铝合金的制备方法
CN102978340A (zh) 一种炼钢脱氧剂及其制备方法
CN108251670B (zh) 耐高温金属间化合物合金的制备方法
CN111101043B (zh) 一种激光增材制造的CrMoVNbAl高熵合金及其成形工艺
CN111621659A (zh) 一种粉末冶金法制备Ti2AlNb合金的方法
CN107434404A (zh) 一种锆复合高性能电熔镁钙锆砖及其制造方法
CN1081242C (zh) 由元素粉末直接制备TiNi基形状记忆合金的方法
CN108218414A (zh) 一种大容量真空感应冶炼用复合氧化钙坩埚的制备方法
CN113913669A (zh) 一种含p高强不锈钢制品的制备方法
CN111636025A (zh) 一种含有Ti和C的高熵合金及其制备方法
KR20200088142A (ko) 금속 분말 또는 합금 분말의 제조 방법
CN115338374B (zh) 一种半导体靶材用超高纯铜锰铸锭的制备方法
CN114990403B (zh) 一种钨钽铌合金材料及其制备方法
CN115502399B (zh) 一种低温热等静压制备的钛基复合材料及其方法
CN110819827B (zh) 一种铌条的制备工艺
CN114635049B (zh) 一种高纯镍铌中间合金的生产方法
CN115094286A (zh) 一种稀土微合金化的Mo-Ti-Si-B-Y超高温材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210928