CN108218414A - 一种大容量真空感应冶炼用复合氧化钙坩埚的制备方法 - Google Patents

一种大容量真空感应冶炼用复合氧化钙坩埚的制备方法 Download PDF

Info

Publication number
CN108218414A
CN108218414A CN201611190674.8A CN201611190674A CN108218414A CN 108218414 A CN108218414 A CN 108218414A CN 201611190674 A CN201611190674 A CN 201611190674A CN 108218414 A CN108218414 A CN 108218414A
Authority
CN
China
Prior art keywords
crucible
combined oxidation
temperature
calcium
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611190674.8A
Other languages
English (en)
Inventor
杨彦红
崔传勇
谭明晖
孙元
仉凤江
周亦胄
候桂臣
金涛
孙晓峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN201611190674.8A priority Critical patent/CN108218414A/zh
Publication of CN108218414A publication Critical patent/CN108218414A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/057Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on calcium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/10Crucibles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/612Machining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • F27B14/08Details peculiar to crucible or pot furnaces
    • F27B14/10Crucibles
    • F27B2014/102Form of the crucibles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

本发明公开了一种大容量真空感应炉复合氧化钙坩埚的制备方法,属于高温合金冶炼领域。该方法加工出尺寸相应的模具后,将粒度为0.1~2.0mm的莫来石粉或氧化镁粉与硅溶胶混合后注入模具内,在50~100MPa机压成型,1000~1200℃保温1~3.0小时,进行成型坯体的预烧结;然后将粒度为0.1~5.0mm的氧化钙粉与无水乙醇混合,并置于模具内成型坯体内侧,在1400~1700℃条件保温2~4小时。本发明具有制备工艺简单,成本低廉等特点,解决了商业大容量0.5T~3.0T真空感应熔炼氧化钙坩埚制备困难,且成本高等问题,有利于实现大规模批量生产高洁净镍基高温合金。

Description

一种大容量真空感应冶炼用复合氧化钙坩埚的制备方法
技术领域:
本发明涉高温合金冶炼技术领域,具体为一种大容量真空感应冶炼用复合氧化钙坩埚的制备方法。
背景技术:
镍基高温合金是制造航空发动机热端部件关键材料,镍基高温合金的性能对航空发动机起到非常关键作用。随着对优质高温合金材料需求的增加,对冶炼用的耐火材料提出了更高的要求,CaO坩埚在熔炼过程中不仅不会污染钢液还能够捕获钢液中的氧化物和S,具有净化钢液的作用。但是自从CaO用于小型坩埚以来,如10kg~25kg成型坩埚,一直应用于高纯Ti合金和高温合金等合金的熔炼,尽管采用小型CaO坩埚可以获得高纯的金属材料,但对于工业化生产则会大幅提高生产成本,而对于大型真空熔炼炉来说一直是一个困难。目前,为解决CaO坩埚在大容量真空感应熔炼炉中的应用,研究者中提出采用CaO砂干湿结合的方法进行CaO坩埚的打制,但该方法会大幅提高生产成本且很难制备大容量坩埚(>0.5T)。而氧化铝坩埚或氧化镁坩埚内施加CaO涂层的方法虽然可以降低生产成本,但是该方法易导致CaO涂层与坩埚结合不牢、易脱落等问题。
发明内容:
本发明的目的在于提供一种大容量真空感应冶炼用复合氧化钙坩埚的制备方法,采用所制备的复合CaO坩埚可以发挥CaO坩埚的净化作用,同时解决目前大容量(0.5T~3.0T)真空熔炼炉坩埚制备困难的问题,还能够显著降低合金生产成本,提高产品的市场竞争力。
为实现上述目的,本发明所采用的技术方案如下:
一种大容量真空感应冶炼用复合氧化钙坩埚的制备方法,
一种大容量真空感应冶炼用复合氧化钙坩埚的制备方法,该方法包括如下步骤:
(1)根据容量0.5T~3.0T真空熔炼炉感应线圈的尺寸,制备出尺寸相应的制备坩埚用的金属模具;
(2)选择粒度为0.1~2.0mm的莫来石粉或氧化镁粉,将其和硅溶胶在混料机中混合均匀,所得混合物料中硅溶胶的重量百分含量为10-30%,将所得混合物料注入加工好的金属模具内,在50~100MPa压力条件下机压成型,并在大气气氛和1000~1200℃条件下进行预烧结,烧结时间为1~3小时;预烧结后获得莫来石或氧化镁坩埚成型坯体;
(3)选择粒度为0.1~0.5mm的氧化钙粉,将其与无水乙醇混合均匀,所得混合物料中无水乙醇的重量百分含量为2-10%,将所得混合物料置入模具中莫来石或氧化镁坩埚成型坯体的内侧,然后在常温条件和50~100MPa压力条件下机压成型,再在80~110℃条件下干燥1~3小时,获得复合坩埚成型坯体;
(4)将步骤(3)所得复合坩埚成型坯体在大气气氛和1400~1600℃条件下保温2~4小时,随后炉冷却至室温,即获得所述复合氧化钙坩埚。
上述步骤(1)中,所述金属模具为钢或铸铁材料,优选为1Cr18Ni9Ti、4Cr13或4Cr9Si2。
上述步骤(2)中,所述莫来石粉中Al2O3的含量大于95wt.%,所述氧化镁粉中MgO的含量大于95wt.%。
上述步骤(2)中,混合物料机压成型后的预烧结过程中,先以10~30℃/分钟的升温速率升温至700℃,保温0.5~1h;再以10~15℃/分钟的升温速率升温至1000~1200℃,保温1~3小时。
上述步骤(3)中,所述氧化钙粉中CaO的含量大于98wt.%,所述无水乙醇中C2H5OH的含量大于99wt.%。
上述步骤(4)中,所述复合坩埚成型坯体先以15~50℃/分钟的升温速率升温至1000℃,保温0.5~1h;再继续以10~30℃/分钟的升温速率升温至1400~1700℃,保温2~4小时。
上述所述复合氧化钙坩埚为两层结构,氧化钙在内层中,莫来石或氧化镁在外层中,莫来石或氧化镁与内层的氧化钙紧密结合,且内层氧化钙厚度可调。
上述步骤(1)中,所制备的金属模具内径可调,通过对金属模具内径的调节实现内层氧化钙厚度的调整。
本发明的优点及有益效果是:
1、本发明工艺设计合理,在传统莫来石坩埚或氧化镁坩埚制备过程中添加CaO粉,利用高温烧结过程中粉末之间的反应而形成高强度结合的复合CaO坩埚,具有操作工艺简单,本低的优点。
2、本发明操作简单,设计合理,可操作性强,可显著降低传统大容量CaO坩埚制备成本。
3、本发明可实现不同规格复合CaO坩埚的制备,且坩埚内壁CaO厚度可任意调节。
总之,本发明解决了商业大容量真空冶炼炉CaO坩埚的制备问题,有利于实现我国大批量高纯镍基高温合金及其他高纯金属材料的生产并且可显著降低冶炼成本,为高温合金的纯净化冶炼提供了有效途径。
附图说明:
图1氧化钙/莫来石复合坩埚示意图;图中:(a)使用前;(b)使用后。
图2氧化钙/氧化镁复合坩埚示意图。
图3氧化钙/莫来石复合坩埚内壁X射线衍射图。
图4氧化钙/莫来石复合坩埚结合区X射线衍射图。
具体实施方式:
以下通过实施例对本发明进一步详细说明。以下实施例中制备金属模具的材料为钢或铸铁材料,可以为1Cr18Ni9Ti、4Cr13或4Cr9Si2等。所制备的金属模具包括内层和外层,两层之间模腔的尺寸可调。
实施例1
本实施例根据0.5T真空熔炼炉感应线圈的尺寸,制备尺寸出相应的钢模。将粒度为0.1mm的莫来石粉,其中Al2O3的含量为96wt.%,将莫来石粉和硅溶胶在混料机中进行混合(混合物料中硅溶胶占10wt.%),混合后注入加工好的钢模具内,在50MPa压力下机压成型,并在大气气氛下,将莫来石坩埚成型坯体以10℃/分钟升温至700℃,保温0.5h,继续以10℃/分钟升温至1000℃,进行成型坯体的预烧结,保温1小时。将粒度为0.1mm的氧化钙粉与无水乙醇均匀混合(混合物料中无水乙醇占2wt.%),混合后置于模具中莫来石坩埚成型坯体的内侧,在常温条件下在50MPa压力下机压成型得复合成型坯体,再将复合成型坯体在80℃条件下干燥1小时;最后将复合成型坯体以15℃/分钟升温至1000℃,保温0.5h,继续以10℃/分钟升温至1400℃保温2小时。随后炉冷却至室温,即可获得氧化钙与莫来石紧密结合且内层氧化钙厚度为5mm的复合氧化钙坩埚,如图1所示。莫来石/氧化钙复合坩埚内壁X射线衍射图如图3所示。氧化钙/莫来石复合坩埚结合区X射线衍射图如图4。
实施例2
本实施例根据0.5T真空熔炼炉感应线圈的尺寸,制备尺寸出相应的钢模。将粒度为1.0mm的莫来石粉,其中Al2O3的含量为95wt.%,将莫来石粉和硅溶胶按照重量百分比20%的比例在混料机中进行混合,混合后注入加工好的钢模具内,在100MPa压力下机压成型,并在大气气氛下,将莫来石坩埚成型坯体以15℃/分钟升温至700℃,保温1h,继续以15℃/分钟升温至1200℃,进行成型坯体的预烧结,保温2小时。将粒度为0.1mm的氧化钙粉与无水乙醇混合按照重量百分比计5%的无水乙醇和氧化钙粉均匀混合。混合后置于模具内,并放入中预烧结的莫来石坩埚成型坯体,在常温条件下在100MPa压力下机压成型,再将成型后的坯体在110℃条件下干燥2小时,氧化钙成型坯体以25℃/分钟升温至1000℃,保温1h,继续以20℃/分钟升温至1600℃保温2小时。随后炉冷却至室温,即可获得氧化钙与莫来石紧密结合且内层氧化钙厚度为10mm的复合氧化钙坩埚。
实施例3
本实施例根据1T真空熔炼炉感应线圈的尺寸,制备尺寸出相应的铸铁模。将粒度为2.0mm的氧化镁粉,其中MgO的含量大于为97wt.%,将氧化镁粉和硅溶胶按照重量百分比30%的比例在混料机中进行混合,混合后注入加工好的铸铁模具内,在60MPa压力下机压成型,并在大气气氛下,将氧化镁坩埚成型坯体以25℃/分钟升温至700℃,保温1h,继续以15℃/分钟升温至1200℃,进行成型坯体的预烧结,保温2.5小时。将粒度为0.3mm的氧化钙粉与无水乙醇混合,按照重量百分比计8%的无水乙醇和氧化钙粉均匀混合。混合后置于模具内,并放入中预烧结的莫来石或氧化镁坩埚成型坯体,在常温条件下在70MPa压力下机压成型,再将成型后的坯体在110℃条件下干燥2小时,氧化钙成型坯体以50℃/分钟升温至1000℃,保温1h,继续以25℃/分钟升温至1700℃保温4小时。随后炉冷却至室温,即可获得氧化钙与氧化镁紧密结合且内层氧化钙厚度为10mm的复合氧化钙坩埚,如图2所示。
实施例4
本实施例根据3T真空熔炼炉感应线圈的尺寸,制备尺寸出相应的铸铁模具。将粒度为2.0mm的莫来石粉,其中Al2O3的含量为96wt.%和硅溶胶按照重量百分比30%的比例在混料机中进行混合,混合后注入加工好的铸铁模具内,在80MPa压力下机压成型,并在大气气氛下莫来石或氧化镁坩埚成型坯体以30℃/分钟升温至700℃,保温1h,继续以15℃/分钟升温至1200℃,进行成型坯体的预烧结,保温3小时。将粒度为0.5mm的氧化钙粉与无水乙醇混合,按照重量百分比计10%的无水乙醇和氧化钙粉均匀混合。混合后置于模具内,并放入中预烧结的莫来石成型坯体,在常温条件下在100MPa压力下机压成型,再将成型后的坯体在110℃条件下干燥3小时,氧化钙成型坯体以50℃/分钟升温至1000℃,保温1h,继续以30℃/分钟升温至1700℃保温4小时。随后炉冷却至室温,即可获得氧化钙与莫来石紧密结合且内层氧化钙厚度为15mm的复合氧化钙坩埚。
本发明工作过程及结果如下:
本发明通过氧化钙与莫来石,氧化钙与氧化镁制备出大型感应真空熔炼炉用坩埚,利用氧化钙坩埚脱氧、脱氮和脱硫的机制,可实现0.5T~3T感应真空熔炼炉的深度脱除氧、氮和硫等杂质,提高产品内在质量与产品合格率,有利于提升我国航空发动机热端部件的制造水平。

Claims (9)

1.一种大容量真空感应冶炼用复合氧化钙坩埚的制备方法,其特征在于:该方法包括如下步骤:
(1)根据容量0.5T~3.0T真空熔炼炉感应线圈的尺寸,制备出尺寸相应的制备坩埚用的金属模具;
(2)选择粒度为0.1~2.0mm的莫来石粉或氧化镁粉,将其和硅溶胶在混料机中混合均匀,所得混合物料中硅溶胶的重量百分含量为10-30%,将所得混合物料注入加工好的金属模具内,在50~100MPa压力条件下机压成型,并在大气气氛和1000~1200℃条件下进行预烧结,烧结时间为1~3小时;预烧结后获得莫来石或氧化镁坩埚成型坯体;
(3)选择粒度为0.1~0.5mm的氧化钙粉,将其与无水乙醇混合均匀,所得混合物料中无水乙醇的重量百分含量为2-10%,将所得混合物料置入模具中莫来石或氧化镁坩埚成型坯体的内侧,然后在常温条件和50~100MPa压力条件下机压成型,再在80~110℃条件下干燥1~3小时,获得复合坩埚成型坯体;
(4)将步骤(3)所得复合坩埚成型坯体在大气气氛和1400~1600℃条件下保温2~4小时,随后炉冷却至室温,即获得所述复合氧化钙坩埚。
2.按照权利要求1所述的大容量真空感应冶炼用复合氧化钙坩埚的制备方法,其特征在于:步骤(1)中,所述金属模具为钢或铸铁材料。
3.按照权利要求1所述的大容量真空感应冶炼用复合氧化钙坩埚的制备方法,其特征在于:步骤(1)中,所述金属模具的材质为1Cr18Ni9Ti、4Cr13或4Cr9Si2。
4.按照权利要求1所述的大容量真空感应冶炼用复合氧化钙坩埚的制备方法,其特征在于:步骤(2)中,所述莫来石粉中Al2O3的含量大于95wt.%,所述氧化镁粉中MgO的含量大于95wt.%。
5.按照权利要求1所述的大容量真空感应冶炼用复合氧化钙坩埚的制备方法,其特征在于:步骤(2)中,混合物料机压成型后的预烧结过程中,先以10~30℃/分钟的升温速率升温至700℃,保温0.5~1h;再以10~15℃/分钟的升温速率升温至1000~1200℃,保温1~3小时。
6.按照权利要求1所述的大容量真空感应冶炼用复合氧化钙坩埚的制备方法,其特征在于:步骤(3)中,所述氧化钙粉中CaO的含量大于98wt.%,所述无水乙醇中C2H5OH的含量大于99wt.%。
7.按照权利要求1所述的大容量真空感应冶炼用复合氧化钙坩埚的制备方法,其特征在于:步骤(4)中,所述复合坩埚成型坯体先以15~50℃/分钟的升温速率升温至1000℃,保温0.5~1h;再继续以10~30℃/分钟的升温速率升温至1400~1700℃,保温2~4小时。
8.按照权利要求1所述的大容量真空感应冶炼用复合氧化钙坩埚的制备方法,其特征在于:所述复合氧化钙坩埚为两层结构,氧化钙在内层中,莫来石或氧化镁在外层中,莫来石或氧化镁与内层的氧化钙紧密结合,且内层氧化钙厚度可调。
9.按照权利要求1或9所述的大容量真空感应冶炼用复合氧化钙坩埚的制备方法,其特征在于:步骤(1)中,所制备的金属模具内径可调,通过对金属模具内径的调节实现内层氧化钙厚度的调整。
CN201611190674.8A 2016-12-21 2016-12-21 一种大容量真空感应冶炼用复合氧化钙坩埚的制备方法 Pending CN108218414A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611190674.8A CN108218414A (zh) 2016-12-21 2016-12-21 一种大容量真空感应冶炼用复合氧化钙坩埚的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611190674.8A CN108218414A (zh) 2016-12-21 2016-12-21 一种大容量真空感应冶炼用复合氧化钙坩埚的制备方法

Publications (1)

Publication Number Publication Date
CN108218414A true CN108218414A (zh) 2018-06-29

Family

ID=62650782

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611190674.8A Pending CN108218414A (zh) 2016-12-21 2016-12-21 一种大容量真空感应冶炼用复合氧化钙坩埚的制备方法

Country Status (1)

Country Link
CN (1) CN108218414A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109824370A (zh) * 2019-03-21 2019-05-31 中国工程物理研究院材料研究所 一种铍铝合金感应熔炼用复合多层坩埚及其制备方法
CN111848134A (zh) * 2020-08-04 2020-10-30 江苏隆达超合金航材有限公司 一种真空感应炉用坩埚一体成型制造工艺
CN114410994A (zh) * 2021-12-30 2022-04-29 北京科技大学 基于CaO-MgO-Al2O3耐火材料熔炼镍基高温合金的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01172535A (ja) * 1987-12-26 1989-07-07 Agency Of Ind Science & Technol Ni基超合金溶解用の高純度ムライトるつぼ
CN1310325A (zh) * 2000-02-25 2001-08-29 中国科学院金属研究所 一种带有氧化钙涂层的氧化镁坩埚及制备方法
CN101644534A (zh) * 2008-08-08 2010-02-10 中国科学院金属研究所 一种大容量真空感应炉用钙质坩埚的制备方法
CN101666580A (zh) * 2009-09-24 2010-03-10 山西太钢不锈钢股份有限公司 一种真空感应熔炼用坩埚及其制造方法
CN102786313A (zh) * 2012-08-22 2012-11-21 武汉钢铁(集团)公司 真空感应炉自烧结氧化镁质坩埚的干式制作方法
CN103172390A (zh) * 2011-12-22 2013-06-26 沈阳鑫劲粉体工程有限责任公司 一种抗水化高纯氧化钙坩埚的制备方法
CN204438768U (zh) * 2014-12-02 2015-07-01 广州齐达材料科技有限公司 一种非晶制带用复合坩埚
CN105779912A (zh) * 2014-12-26 2016-07-20 比亚迪股份有限公司 一种提高非晶合金冶炼坩埚寿命的方法以及非晶合金的冶炼方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01172535A (ja) * 1987-12-26 1989-07-07 Agency Of Ind Science & Technol Ni基超合金溶解用の高純度ムライトるつぼ
CN1310325A (zh) * 2000-02-25 2001-08-29 中国科学院金属研究所 一种带有氧化钙涂层的氧化镁坩埚及制备方法
CN101644534A (zh) * 2008-08-08 2010-02-10 中国科学院金属研究所 一种大容量真空感应炉用钙质坩埚的制备方法
CN101666580A (zh) * 2009-09-24 2010-03-10 山西太钢不锈钢股份有限公司 一种真空感应熔炼用坩埚及其制造方法
CN103172390A (zh) * 2011-12-22 2013-06-26 沈阳鑫劲粉体工程有限责任公司 一种抗水化高纯氧化钙坩埚的制备方法
CN102786313A (zh) * 2012-08-22 2012-11-21 武汉钢铁(集团)公司 真空感应炉自烧结氧化镁质坩埚的干式制作方法
CN204438768U (zh) * 2014-12-02 2015-07-01 广州齐达材料科技有限公司 一种非晶制带用复合坩埚
CN105779912A (zh) * 2014-12-26 2016-07-20 比亚迪股份有限公司 一种提高非晶合金冶炼坩埚寿命的方法以及非晶合金的冶炼方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杜西灵: "《钢铁耐磨铸件铸造技术》", 31 August 2006, 广东科技出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109824370A (zh) * 2019-03-21 2019-05-31 中国工程物理研究院材料研究所 一种铍铝合金感应熔炼用复合多层坩埚及其制备方法
CN111848134A (zh) * 2020-08-04 2020-10-30 江苏隆达超合金航材有限公司 一种真空感应炉用坩埚一体成型制造工艺
CN111848134B (zh) * 2020-08-04 2021-06-08 江苏隆达超合金航材有限公司 一种真空感应炉用坩埚一体成型制造工艺
CN114410994A (zh) * 2021-12-30 2022-04-29 北京科技大学 基于CaO-MgO-Al2O3耐火材料熔炼镍基高温合金的方法

Similar Documents

Publication Publication Date Title
CN107760897A (zh) 以氢化海绵钛为原材料制造钛与钛合金及其零部件的方法
CN108103381A (zh) 一种高强度FeCoNiCrMn高熵合金及其制备方法
CN101225502A (zh) 纤维增强金属间化合物复合材料及其制备成型的方法
CN110607464A (zh) 一种Ti2AlNb合金粉末的热等静压工艺
CN101979690B (zh) 一种TiAl基合金板材的制备方法
CN106312071B (zh) 钨钛管靶的制造方法
CN106756148B (zh) 一种低氧含量的母合金法制备mim418合金的方法
CN103626498A (zh) 氮化硼基陶瓷喷嘴及其制备方法
CN108218414A (zh) 一种大容量真空感应冶炼用复合氧化钙坩埚的制备方法
CN108838404A (zh) 钛合金低成本近净成形方法
CN110238401A (zh) 一种粉末轧制制备高致密度细晶钛合金的方法
CN108655403A (zh) 一种电子材料用高纯钽靶材的制备方法
CN101397613B (zh) 一种钼-硅-硼合金的制备方法
CN101590511A (zh) 一种生产锆及锆合金泵、阀精密铸件的工艺方法
CN113337786B (zh) 一种纳米氧化锆/非晶合金复合材料及其制备方法
CN106475566A (zh) 钼钛靶坯的制造方法
CN102251162A (zh) 一种高性能纳米氧化镧掺杂钼-硅-硼合金的制备方法
CN106475567A (zh) 铬钼靶坯的制造方法
CN113443923A (zh) 一种真空感应熔炼Ti合金的CaO坩埚的制备方法
CN111621659A (zh) 一种粉末冶金法制备Ti2AlNb合金的方法
CN1566021A (zh) 一种黑色氧化锆陶瓷的制造方法
CN108220636A (zh) 一种铍硅合金的制备方法
CN208791740U (zh) 难熔稀有金属环形靶材的制备装置
CN101376206B (zh) 高密度铱熔铸及制品制备方法
CN106001426B (zh) 一种联板铸造工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180629