CN113402271B - 一种提高钽掺杂石榴石型固态电解质致密度及电导率的方法 - Google Patents
一种提高钽掺杂石榴石型固态电解质致密度及电导率的方法 Download PDFInfo
- Publication number
- CN113402271B CN113402271B CN202110625808.9A CN202110625808A CN113402271B CN 113402271 B CN113402271 B CN 113402271B CN 202110625808 A CN202110625808 A CN 202110625808A CN 113402271 B CN113402271 B CN 113402271B
- Authority
- CN
- China
- Prior art keywords
- sintering
- tantalum
- solid electrolyte
- powder
- conductivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/50—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
- C04B2235/3203—Lithium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3227—Lanthanum oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
- C04B2235/3248—Zirconates or hafnates, e.g. zircon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3251—Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
- C04B2235/3255—Niobates or tantalates, e.g. silver niobate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5454—Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Conductive Materials (AREA)
- Secondary Cells (AREA)
Abstract
一种提高钽掺杂石榴石型固态电解质致密度及电导率的方法,属于电化学储能领域。本发明要解决现有掺杂钽石榴石型固态电解质存在电导率及致密度未得到充分提升的技术问题。本发明方法:混粉,湿法球磨,烘干,预烧结,湿法球磨,烘干,研磨过筛,混胶压片,脱胶,埋粉烧结。本发明通过掺杂La2O3纳米颗粒来调节钽掺杂石榴石型固态电解质LLTZO中La位与Zr(Ta)位的元素比例,进而介导中间相LaTaO4的生成,有效抑制LLTZO异常晶粒长大,并改善钽掺杂石榴石型固态电解质烧结的均质性,同时减少或消除孔洞缺陷来提高致密度,进而达到提高离子电导率,提升固态电池循环稳定性。本发明方法简单,烧结成本低,易实现工业化量产。
Description
技术领域
本发明属于电化学储能领域;尤其涉及一种提高钽掺杂石榴石型固态电解质致密度及电导率的方法。
背景技术
随着锂离子电池的高速发展,对电池的安全性提出了更高的要求,固态电解质的发现可以满足这一要求。石榴石型固态电解质(Li7La3Zr2O12)是最具发展潜力的电解质之一,然而较低的电导率和致密度是目前急需解决的问题。
目前,通过元素掺杂的方式可以提供更多的锂离子空位,稳定立方相,降低烧结温度并液相的流动性,从而提升致密度和电导率,其中,钽元素的掺杂可以有效提升石榴石型固态电解质的电导率,如下述文献:
文献1:T.Thompson,J.Wolfenstine,J.L.Allen,M.Johannes,A.Huq,I.N.David,J.Sakamoto,Tetragonal vs.cubic phase stability in Al-free Ta doped Li7La3Zr2O12(LLZO),J.Mater.Chem.A.2(2014)13431–13436.https://doi.org/10.1039/c4ta02099e.
文献2:T.Zhang,T.D.Christopher,S.Huang,Y.Liu,W.Gao,T.P.Cao,Pressureless sintering ofAl-free Ta-doped lithium garnets Li7-xLa3Zr2-xTaxO12andthe degradation mechanism in humid air,Ceram.Int.45(2019)20954–20960.https://doi.org/10.1016/j.ceramint.2019.07.085.
文献3:R.Inada,A.Takeda,Y.Yamazaki,S.Miyake,Y.Sakurai,V.Thangadurai,Effect of Postannealing on the Properties ofa Ta-Doped Li7La3Zr2O12SolidElectrolyte Degradedby Li Dendrite Penetration,ACS Appl.Energy Mater.3(2020)12517–12524.https://doi.org/10.1021/acsaem.0c02474.
但是由于钽元素掺杂进入锆位,使得晶格畸变程度变大,导致钽元素聚集在晶界位置,该部位不能形成有效掺杂,并形成孔洞缺陷,降低致密度与电导率,另一方面,钽元素的掺杂不能有效避免异常晶粒长大,使得电导率未得到充分提升。
发明内容
本发明要解决现有掺杂钽的石榴石型固态电解质存在电导率及致密度未得到充分提升的技术问题;而提供了一种提高钽掺杂石榴石型固态电解质致密度及电导率的方法。
本发明通过La2O3纳米颗粒的掺杂来介导促进晶界处中间相的合成,使得聚集在晶界位置的钽元素转变为LaTaO4中间相,从而进一步与高温下气化的氧化锂反应生成LLTZO固态电解质。同时La2O3纳米颗粒也作为第二相,抑制异常晶粒长大,使晶粒分布更加均匀,剩余的La2O3颗粒可以填补反应后存在于晶界的孔洞缺陷,提高致密度与电导率,并提升固态电池循环性能。
为实现上述目的,本发明中一种提高钽掺杂石榴石型固态电解质致密度及电导率的方法是通过下述步骤完成的:
步骤一、按照Li7-xLa3Zr2-xTaxO12(0<x<1)称取锂源、镧源、ZrO2以及Ta2O5粉末后混合均匀,锂源过量5wt.%~35wt.%,湿法球磨后烘干;
步骤二、然后预烧结,再湿法球磨,尔后烘干,然后研磨过筛,得到粉末A;
步骤三、将粉末A混胶后压片,然后脱胶得到素胚;
步骤四、对步骤三获得的素胚进行埋粉烧结,即完成;
其中,镧源过量1wt.%~40wt.%,所述的锂源Li2CO3、LiNO3、LiOH中的一种或者其中几种按任意比的组合,La2O3、La(OH)3、La(NO3)3中的一种或者其中几种按任意比的组合。
步骤二所述粉末A的颗粒尺寸为0.05μm~3.50μm。
进一步地,步骤一和二所述湿法球磨均是异丙醇作为溶剂,异丙醇体积与混合粉体质量比为(50ml~1000ml):(10g~300g),转速50rpm~3500rpm,球磨时间1h~20h,球磨球为直径为1mm~10mm的ZrO2球、钢球及玛瑙球中一种或其中几种按任意比的混合,球磨球与混合粉体质量比为1:1。
进一步地,步骤一和二所述烘干过程均使用油浴锅烘干,烘干时间2h~15h,烘干温度95℃~150℃,烘干过程在空气、氧气、二氧化碳、氮气、氩气、氦气中一种或者其中几种按任意比的混合气体气氛下进行。
进一步地,步骤二所述的预烧结采用MgO或Al2O3坩埚,使用马弗炉烧结,烧结温度800℃~950℃,烧结时间5h~30h,烧结气氛为空气、氧气、二氧化碳、氮气、氩气或氦气。
进一步地,步骤二中所述的使用玛瑙研钵研磨。
进一步地,步骤二中采用200目筛网进行过筛。
进一步地,步骤三所述的混胶是取粉末A,与用质量浓度为3%~8%的PVA溶液混合均匀,PVA溶液用量是所取粉末质量的10%~25%。
进一步地,步骤三采用冷压成型方法进行压片,压力200MPa~600MPa,压片时间2min~15min。
进一步地,步骤三所述的脱胶过程为,使用马弗炉烧结脱胶,烧结温度600℃~700℃,烧结时间1h~3h,脱胶气氛为空气、氧气、二氧化碳、氮气、氩气或氦气。
进一步地,步骤四所述的埋粉烧结是按下述操作进行的:用粉末A均匀包裹素胚,置于MgO或Al2O3坩埚,盖住坩埚盖,使用马弗炉烧结,烧结温度1050℃~1300℃,烧结时间5h~50h,烧结气氛为空气、氧气、二氧化碳、氮气、氩气或氦气;其中,粉末A用量是素胚质量的80%~120%。
本发明通过掺杂La2O3纳米颗粒来调节钽掺杂石榴石型固态电解质(Li7-xLa3Zr2- xTaxO12,LLTZO)中La位与Zr(Ta)位的元素比例,进而介导中间相La2Zr2O7(LaTaO4)的生成,最终提升钽掺杂石榴石型固态电解质致密度及电导率,并有效提升固态电池的循环性能。根据本发明的方法,可以有效抑制LLTZO异常晶粒长大,并改善钽掺杂石榴石型固态电解质烧结的均质性,同时减少或消除孔洞缺陷来提高致密度,进而达到提高离子电导率,提升固态电池循环稳定性的目的。其烧结方法简单,烧结成本低,易实现工业化量产。
附图说明
图1为掺杂0%,10%,20%和30%的XRD图;
图2为未掺杂La2O3纳米颗粒的透射图;
图3为未掺杂与掺杂10%La2O3纳米颗粒的透射图;
图4为掺杂0%,10%,20%和30%的断口图;
图5为掺杂0%,10%,20%和30%的电导率及致密度图;
图6为未掺杂与掺杂5%La2O3纳米颗粒,烧结时间2h~15h的XRD图;
图7为未掺杂La2O3纳米颗粒,烧结时间2~15h的断口图;
图8为掺杂5%La2O3纳米颗粒,烧结时间2h~15h的断口及能谱图;
图9为未掺杂与掺杂5%La2O3纳米颗粒,烧结时间2h~15h的电导率及致密度图;
图10为未掺杂与掺杂5%La2O3纳米颗粒,烧结时间10h后的固态电解质,并组装为固态电池循环性能图。
具体实施方式
实施例1:
本实施例的一种提高钽掺杂石榴石型固态电解质致密度及电导率的方法,采用钽掺杂石榴石型固态电解质为Li2CO3,La2O3,ZrO2以及Ta2O5混合粉末固相烧结而成,所述的烧结过程通过添加La2O3纳米颗粒来介导中间相La2Zr2O7(LaTaO4)的生成,进而促进晶界处LLZTO的生成。具体是通过下述步骤完成的:
步骤一、按照Li6.5La3Zr1.5Ta0.5O12称取Li2CO3、La2O3,ZrO2以及Ta2O5粉末后混合均匀,Li2CO3过量10wt.%,使用异丙醇作为溶剂进行湿法球磨,异丙醇的体积与混合粉末质量比为70ml:20g,磨球为直径为4mm和6mm的ZrO2球,两种磨球质量比为1:1,混合粉末与磨球质量比为1:1,转速200rpm,球磨时间10h,然后使用油浴锅在空气、100℃下烘干,烘干时间10h;
步骤二、然后置于MgO坩埚内,再放入马弗炉中,在空气、850℃下进行预烧结20h,再用异丙醇作为溶剂,进行湿法球磨异丙醇的体积与混合粉末质量比为70ml:20g,磨球为直径为4mm和6mm的ZrO2球,两种磨球质量比为1:1,混合粉末与磨球质量比为1:1,转速200rpm,球磨时间10h,尔后用油浴锅在空气、100℃下烘干,烘干时间10h,然后用玛瑙研钵研磨,过200目筛,得到平均尺寸为0.864μm的粉末A;
步骤三、取部分粉末A后用质量浓度为4.5%的PVA溶液混匀,PVA溶液用量是所取粉末质量的15%,然后采用冷压成型方法进行压片,称量混胶粉末2.35g,压片模具直径16mm,压力450MPa,压片时间5min,然后用马弗炉烧结脱胶,烧结温度650℃,烧结时间2h,脱胶气氛为空气,得到素胚;
步骤四、称取素胚质量的100%的粉末A,均匀包裹素胚,置于MgO坩埚,盖住坩埚盖,使用马弗炉烧结,烧结温度1150℃,烧结时间10h,烧结气氛为空气,即完成;
其中,步骤一中La2O3过量分别为10wt.%,20wt.%和30wt.%。
所述的烧结后XRD数据如图1所示,掺杂10wt.%La2O3纳米颗粒后得到的复合固态电解质为纯立方相。未掺杂La2O3纳米颗粒烧结后的固态电解质透射图如图2所示,可以看出钽元素明显聚集于晶界处,对比图2和图3a,掺杂10wt.%La2O3纳米颗粒后晶界处透射图可以明显看出聚集的钽元素已消失,证明掺杂La2O3纳米颗粒后,会介导中间相La2Zr2O7(LaTaO4)的生成,进而促进晶界处LLZTO的生成,同时,晶界处的孔洞被未反应的La2O3纳米颗粒填满,致密度得到明显提升。除此之外,掺杂10wt.%La2O3纳米颗粒后的复合固态电解质晶粒分布也更加均匀,证明La2O3纳米颗粒作为第二相有效抑制了异常晶粒长大如图4所示。对比未掺杂La2O3纳米颗粒得到的固态电解质的电导率与致密度,掺杂10wt.%La2O3纳米颗粒后的电解质的致密度及电导率均得到明显提升,如图5所示。
实施例2:
本实施例的一种提高钽掺杂石榴石型固态电解质致密度及电导率的方法,采用钽掺杂石榴石型固态电解质为Li2CO3,La2O3,ZrO2以及Ta2O5混合粉末固相烧结而成,所述的烧结过程通过添加La2O3纳米颗粒来介导中间相La2Zr2O7(LaTaO4)的生成,进而促进晶界处LLZTO的生成。具体是通过下述步骤完成的:
步骤一、按照Li6.5La3Zr1.5Ta0.5O12称取Li2CO3、La2O3,ZrO2以及Ta2O5粉末后混合均匀,Li2CO3过量10wt.%,La2O3过量5wt.%,使用异丙醇作为溶剂进行湿法球磨,异丙醇的体积与混合粉末质量比为70ml:20g,磨球为直径为4mm和6mm的ZrO2球,两种磨球质量比为1:1,混合粉末与磨球质量比为1:1,转速200rpm,球磨时间10h;然后使用油浴锅在空气、100℃下烘干,烘干时间10h;
步骤二、然后置于MgO坩埚内,再放入马弗炉中,在空气、850℃下进行预烧结20h,再用异丙醇作为溶剂进行湿法球磨,异丙醇的体积与混合粉末质量比为70ml:20g,磨球为直径为4mm和6mm的ZrO2球,两种磨球质量比为1:1,混合粉末与磨球质量比为1:1,转速200rpm,球磨时间10h,尔后用油浴锅在空气、100℃下烘干,烘干时间10h,然后用玛瑙研钵研磨,过200目筛,得到平均尺寸为0.852μm·的粉末A;
步骤三、取部分粉末A后用质量浓度为4.5%的PVA溶液混匀,PVA溶液用量是所取粉末质量的15%,然后采用冷压成型方法进行压片,称量混胶粉末2.35g,压片模具直径16mm,压力450MPa,压片时间5min,然后用马弗炉烧结脱胶,烧结温度650℃,烧结时间2h,脱胶气氛为空气,得到素胚;
步骤四、称取素胚质量的100%的粉末A,均匀包裹素胚,置于MgO坩埚,盖住坩埚盖,使用马弗炉烧结,烧结温度1150℃,烧结时间分别为2h、5h、10h和15h,烧结气氛为空气,即完成。
所述的烧结后XRD数据如图6所示,掺杂5wt.%La2O3纳米颗粒,烧结时间10h后得到的复合固态电解质为纯立方相。对于未掺杂的固态电解质,其烧结2h,5h,10h和15h后的断口形貌如图7所示,可以发现,烧结时间为10h后烧结形貌最好,但仍然存在异常晶粒长大现象。对比未掺杂样品,掺杂5wt.%La2O3纳米颗粒后固态电解质的断口形貌如图8所示,晶粒分布也更加均匀,其最优断口形貌同样在烧结时间为10h,证明La2O3纳米颗粒作为第二相有效抑制了异常晶粒长大。对比未掺杂La2O3纳米颗粒得到的固态电解质的电导率与致密度,掺杂5wt.%La2O3纳米颗粒后的电解质的致密度及电导率均得到明显提升,电导率突破10- 3S·cm-1,如图9所示。为探究掺杂La2O3纳米颗粒后的电解质的稳定性,使用磷酸铁锂作为负极组装了固态电池,倍率采用0.5C,使用未掺杂La2O3纳米颗粒的固态电解质,其循环200周后容量剩余114.7mA·h·g-1,作为对照,使用掺杂5wt.%La2O3纳米颗粒的固态电解质,其循环600周后容量剩余128.8mA·h·g-1,循环性能大大提升,如图10所示。
Claims (10)
1.一种提高钽掺杂石榴石型固态电解质致密度及电导率的方法,其特征在于所述方法是通过下述步骤完成的:
步骤一、按照Li7-xLa3Zr2-xTaxO12称取锂源、镧源、ZrO2以及Ta2O5粉末后混合均匀,锂源过量5wt.%~35wt.%,湿法球磨后烘干;
步骤二、然后预烧结,再湿法球磨,而后烘干,然后研磨过筛,得到粉末A;
步骤三、将粉末A混胶后压片,然后脱胶得到素胚;
步骤四、对步骤三获得的素胚进行埋粉烧结,即完成;
其中,镧源过量1wt.%~40wt.%,所述的锂源为Li2CO3、LiNO3、LiOH中的一种或者其中的几种的组合,镧源为La2O3纳米颗粒;0<x<1。
2.根据权利要求1所述的一种提高钽掺杂石榴石型固态电解质致密度及电导率的方法,其特征在于,步骤二过筛得到粉末A的颗粒尺寸为0.05μm~3.50μm。
3.根据权利要求1所述的一种提高钽掺杂石榴石型固态电解质致密度及电导率的方法,其特征在于,步骤一和二所述烘干过程均使用油浴锅烘干,烘干时间2h~15h,烘干温度95℃~150℃;步骤一和二所述湿法球磨均是异丙醇作为溶剂,异丙醇体积与混合粉体质量比为(50ml~1000ml):(10g~300g),转速50rpm~3500rpm,球磨时间1h~20h,烘干过程在空气、氧气、二氧化碳、氮气、氩气、氦气、中一种或者其中几种的混合气体气氛下进行,球磨球为直径为1mm~10mm的ZrO2球、钢球及玛瑙球中一种或其中几种的混合。
4.根据权利要求1所述的一种提高钽掺杂石榴石型固态电解质致密度及电导率的方法,其特征在于,步骤二所述的预烧结采用MgO或Al2O3坩埚,使用马弗炉烧结,烧结温度800℃~950℃,烧结时间5h~30h,烧结气氛为空气、氧气、二氧化碳、氮气、氩气或氦气。
5.根据权利要求1所述的一种提高钽掺杂石榴石型固态电解质致密度及电导率的方法,其特征在于,步骤二中使用玛瑙研钵研磨。
6.根据权利要求1所述的一种提高钽掺杂石榴石型固态电解质致密度及电导率的方法,其特征在于,步骤二中采用200目筛网进行过筛。
7.根据权利要求2所述的一种提高钽掺杂石榴石型固态电解质致密度及电导率的方法,其特征在于,步骤三所述的混胶是取粉末A,与用质量浓度为3%~8%的PVA溶液混合均匀,PVA溶液用量是所取粉末质量的10%~25%。
8.根据权利要求2所述的一种提高钽掺杂石榴石型固态电解质致密度及电导率的方法,其特征在于,步骤三采用冷压成型方法进行压片,压力200MPa~600MPa,压片时间2min~15min。
9.根据权利要求1所述的一种提高钽掺杂石榴石型固态电解质致密度及电导率的方法,其特征在于,步骤三所述的脱胶过程为,使用马弗炉烧结脱胶,烧结温度600℃~700℃,烧结时间1h~3h,脱胶气氛为空气、氧气、二氧化碳、氮气、氩气或氦气。
10.根据权利要求1所述的一种提高钽掺杂石榴石型固态电解质致密度及电导率的方法,其特征在于,步骤四所述的埋粉烧结是按下述操作进行的:用粉末A均匀包裹素胚,置于MgO或Al2O3坩埚,盖住坩埚盖,使用马弗炉烧结,烧结温度1050℃~1300℃,烧结时间5h~50h,烧结气氛为空气、氧气、二氧化碳、氮气、氩气或氦气;其中,粉末A用量是素胚质量的80%~120%。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110625808.9A CN113402271B (zh) | 2021-06-04 | 2021-06-04 | 一种提高钽掺杂石榴石型固态电解质致密度及电导率的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110625808.9A CN113402271B (zh) | 2021-06-04 | 2021-06-04 | 一种提高钽掺杂石榴石型固态电解质致密度及电导率的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113402271A CN113402271A (zh) | 2021-09-17 |
CN113402271B true CN113402271B (zh) | 2022-04-29 |
Family
ID=77676455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110625808.9A Active CN113402271B (zh) | 2021-06-04 | 2021-06-04 | 一种提高钽掺杂石榴石型固态电解质致密度及电导率的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113402271B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114447420B (zh) * | 2021-12-09 | 2024-04-09 | 电子科技大学长三角研究院(湖州) | 一种抑制锂枝晶生长的铈掺杂石榴石型llzo固态电解质及其制备方法 |
CN115425314B (zh) * | 2022-07-27 | 2023-04-18 | 哈尔滨工业大学 | 一种旋压法回收再利用石榴石型固态电解质的方法 |
CN115403381B (zh) * | 2022-09-29 | 2023-11-14 | 华中科技大学 | 一种陶瓷固体电解质及其制备方法以及锂离子电池 |
CN117352828B (zh) * | 2023-10-19 | 2024-07-16 | 合源锂创(苏州)新能源科技有限公司 | 一种解决纳米固态电解质高水分问题的处理方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000505593A (ja) * | 1996-02-29 | 2000-05-09 | ウェスチングハウス・エレクトリック・コーポレイション | 高温固体酸化物電解質電気化学的電池用の低コストで安定な空気電極 |
CN108155413A (zh) * | 2018-01-12 | 2018-06-12 | 北京科技大学 | 二价碱土金属和钽共掺杂的Li7La3Zr2O12固体电解质材料及制备方法 |
CN108511797A (zh) * | 2018-05-09 | 2018-09-07 | 哈尔滨工业大学(威海) | 一种Li7La3Zr2O12固体电解质制备方法 |
CN109037759A (zh) * | 2017-06-09 | 2018-12-18 | 中国科学院上海硅酸盐研究所 | 制备致密石榴石型锂离子固体电解质的烧结方法 |
CN109830740A (zh) * | 2019-02-14 | 2019-05-31 | 北京工业大学 | 一种固态电解质及全固态电池 |
CN110137567A (zh) * | 2019-06-03 | 2019-08-16 | 哈尔滨工业大学 | 一种低温下高致密度石榴石型全固态电解质的制备方法及其应用 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104591231B (zh) * | 2013-10-31 | 2019-04-16 | 中国科学院上海硅酸盐研究所 | 含氟石榴石结构锂离子氧化物陶瓷 |
CN107316965A (zh) * | 2017-06-09 | 2017-11-03 | 北京科技大学 | 锂镧锆氧纳米纤维、复合薄膜制备方法及固态电池应用 |
CN111477949B (zh) * | 2017-08-30 | 2021-11-23 | 清陶(昆山)能源发展有限公司 | 一种具有超结构的锂离子固态电解质 |
TWI642218B (zh) * | 2017-12-28 | 2018-11-21 | 財團法人工業技術研究院 | 電解質、電解質用組合物及包含其之鋰電池 |
KR102131890B1 (ko) * | 2018-10-30 | 2020-07-08 | 한국생산기술연구원 | 전고체 리튬이차전지용 갈륨 도핑 llzo 고체전해질의 제조방법 및 갈륨 도핑 llzo 고체전해질 |
CN109935901A (zh) * | 2019-03-25 | 2019-06-25 | 武汉理工大学 | 一种Nb、Ta共掺石榴石型LLZO固体电解质及其制备方法 |
-
2021
- 2021-06-04 CN CN202110625808.9A patent/CN113402271B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000505593A (ja) * | 1996-02-29 | 2000-05-09 | ウェスチングハウス・エレクトリック・コーポレイション | 高温固体酸化物電解質電気化学的電池用の低コストで安定な空気電極 |
CN109037759A (zh) * | 2017-06-09 | 2018-12-18 | 中国科学院上海硅酸盐研究所 | 制备致密石榴石型锂离子固体电解质的烧结方法 |
CN108155413A (zh) * | 2018-01-12 | 2018-06-12 | 北京科技大学 | 二价碱土金属和钽共掺杂的Li7La3Zr2O12固体电解质材料及制备方法 |
CN108511797A (zh) * | 2018-05-09 | 2018-09-07 | 哈尔滨工业大学(威海) | 一种Li7La3Zr2O12固体电解质制备方法 |
CN109830740A (zh) * | 2019-02-14 | 2019-05-31 | 北京工业大学 | 一种固态电解质及全固态电池 |
CN110137567A (zh) * | 2019-06-03 | 2019-08-16 | 哈尔滨工业大学 | 一种低温下高致密度石榴石型全固态电解质的制备方法及其应用 |
Non-Patent Citations (2)
Title |
---|
Oriented Attachment Strategy Toward Enhancing Ionic Conductivity;Zhiwei Qin;《ACS APPLIED MATERIALS & INTERFACES》;20210720;第34385-34396页 * |
全固态锂电池固态电解质烧结工艺研究;于金营;《研究与设计电源技术》;20200630;第799-803页 * |
Also Published As
Publication number | Publication date |
---|---|
CN113402271A (zh) | 2021-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113402271B (zh) | 一种提高钽掺杂石榴石型固态电解质致密度及电导率的方法 | |
US11799170B2 (en) | Method for fabricating gallium-doped lithium lanthanum zirconate, and all-solid-state battery including the same | |
EP2302723B1 (en) | Ceramic material and use thereof | |
EP2778130B1 (en) | Nano-silicon/carbon composite material and preparation method therefor | |
CN108793987B (zh) | 一种锂离子传导氧化物固体电解质及其制备方法 | |
WO2013161765A1 (ja) | リチウムランタンチタン酸化物焼結体、前記酸化物を含む固体電解質、及び前記固体電解質を備えたリチウム空気電池及び全固体リチウム電池 | |
CN107634259A (zh) | 一种锂二次电池用杂交电解质和锂二次电池 | |
KR20200135422A (ko) | 이온 전도체 및 축전 디바이스 | |
CN110885246A (zh) | 一种溶胶凝胶法制备的高电导固体电解质 | |
CN112939601A (zh) | 一种电解质材料、其制备方法和应用 | |
CN112573574A (zh) | 一种通过调控锂空位含量制备石榴石型固态电解质的方法 | |
CN114789993A (zh) | 一种改性硫银锗矿型化物固态电解质及其制备方法和应用 | |
CN114447420B (zh) | 一种抑制锂枝晶生长的铈掺杂石榴石型llzo固态电解质及其制备方法 | |
CN111786014A (zh) | 一种超细粒度的石榴石型固体电解质粉体及其制备方法 | |
CN114229918A (zh) | 钠离子电池正极材料中相比例的调控方法、及钠离子电池正极材料、其制备和用途 | |
US20210363065A1 (en) | Lithium-garnet composite ceramic electrolyte | |
US11858854B2 (en) | Garnet-lithium titanate composite electrolyte | |
CN114230342B (zh) | 一种稀土氧化物掺杂改性Ga-LLZO固体电解质及其制备方法 | |
KR20200086081A (ko) | 전고체 리튬이차전지용 갈륨-가돌리늄이 도핑된 고체전해질 및 그의 제조방법 | |
KR101537067B1 (ko) | 리튬 이차 전지용 고체 전해질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 | |
CN111056839A (zh) | 一种掺杂硼化合物的锂镧锆氧固体电解质及其制备方法 | |
WO2014017322A1 (ja) | リチウムランタンチタン酸化物焼結体、前記酸化物を含む固体電解質、及び前記固体電解質を備えたリチウム空気電池及び全固体リチウム電池及びリチウムランタンチタン酸化物焼結体の製造方法 | |
CN115332619A (zh) | 一种用于固态电池的高熵氧化物固态电解质材料及其制备方法与应用 | |
CN1622378A (zh) | 固体氧化物电解质用材料和固体氧化物电解质的制造方法 | |
CN112537958A (zh) | 一种锆酸镧锂固态电解质及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |