CN113310189A - 空调器的控制方法及装置、空调器和计算机可读存储介质 - Google Patents

空调器的控制方法及装置、空调器和计算机可读存储介质 Download PDF

Info

Publication number
CN113310189A
CN113310189A CN202110644462.7A CN202110644462A CN113310189A CN 113310189 A CN113310189 A CN 113310189A CN 202110644462 A CN202110644462 A CN 202110644462A CN 113310189 A CN113310189 A CN 113310189A
Authority
CN
China
Prior art keywords
indoor temperature
air conditioner
target
relative humidity
pmv value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110644462.7A
Other languages
English (en)
Inventor
王军
宁尚斌
刘腾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisense Shandong Air Conditioning Co Ltd
Original Assignee
Hisense Shandong Air Conditioning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisense Shandong Air Conditioning Co Ltd filed Critical Hisense Shandong Air Conditioning Co Ltd
Priority to CN202110644462.7A priority Critical patent/CN113310189A/zh
Publication of CN113310189A publication Critical patent/CN113310189A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/20Feedback from users

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明提出一种空调器的控制方法及装置、空调器和计算机可读存储介质,该方法包括:获取空调器的设定热感觉信息及设定相对湿度;根据设定热感觉信息确定目标PMV值;根据目标PMV值及设定相对湿度确定目标室内温度;根据设定相对湿度和目标室内温度控制所述空调器运行。本发明根据设定热感觉信息确定目标PMV值,根据目标PMV值及设定相对湿度确定目标室内温度,并根据设定相对湿度和目标室内温度控制空调器的运行,实现对室内温度和相对湿度的共同控制,使得空调器能够依据目标PMV值来准确调节室内舒适度,从而,提高室内环境的舒适度,使室内舒适度满足用户需求的热感觉描述,提高用户的舒适性体验。

Description

空调器的控制方法及装置、空调器和计算机可读存储介质
技术领域
本发明涉及空调技术领域,尤其是涉及一种空调器的控制方法及装置、空调器和计算机可读存储介质。
背景技术
目前的空调器通常单一地以温度作为控制目标,对空调器的运行状态进行控制,从而实现对室内温度的控制,进而满足人体对舒适性的需求。
然而,在实际生活中,相对湿度也是影响人体舒适性的重要因素,例如温度为27℃,相对湿度为80%时,人体会感觉到非常湿热,而在同样的温度下,相对湿度为40%时,人体会感觉到非常舒适。因此仅仅依据环境温度不能真实体现人体的舒适感受,而仅仅通过温度控制空调器的运行状态,也无法准确调节室内的舒适度,从而导致用户舒适度体验较差,不能很好的满足人体对于舒适性的要求。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。
为此,本发明的一个目的在于提出一种空调器的控制方法,该方法根据设定热感觉信息确定目标PMV值,根据目标PMV值及设定相对湿度确定目标室内温度,并根据设定相对湿度和目标室内温度控制空调器的运行,实现对室内温度和相对湿度的共同控制,使得空调器能够依据目标PMV值来准确调节室内舒适度,从而,提高室内环境的舒适度,使室内舒适度满足用户需求的热感觉描述,提高用户的舒适性体验。
为此,本发明的第二个目的在于提出一种空调器的控制装置。
为此,本发明的第三个目的在于提出一种空调器。
为此,本发明的第四个目的在于提出一种计算机可读存储介质。
为了达到上述目的,本发明的第一方面的实施例提出了一种空调器的控制方法,该方法包括:获取空调器的设定热感觉信息及设定相对湿度;根据所述设定热感觉信息确定目标PMV值;根据所述目标PMV值及所述设定相对湿度确定目标室内温度;根据所述设定相对湿度和所述目标室内温度控制所述空调器运行。
根据本发明实施例的空调器的控制方法,通过设定热感觉信息确定目标PMV值,实现设定热感觉信息与目标PMV值之间的转换,便于用户根据舒适度需求输入设定热感觉信息,并根据确定的目标PMV值及设定相对湿度,确定目标室内温度,将设定相对湿度和目标室内温度作为控制参数,来控制空调器的运行,实现对室内温度和相对湿度的共同控制,使得空调器能够依据目标PMV值来准确调节室内舒适度,使室内舒适度满足用户需求的热感觉描述,避免单一地将温度作为控制目标,在室内温度合适时,因相对湿度偏高或者偏低,导致用户真实的舒适度感受较差的问题,从而,提高室内环境的舒适度,提高用户的舒适性体验。
在一些实施例中,所述根据所述设定热感觉信息确定目标PMV值,包括:根据所述设定热感觉信息,查询预设的热感觉信息-PMV值参数对应关系映射表,得到与所述设定热感觉信息对应的所述目标PMV值。
在一些实施例中,在根据所述设定相对湿度和所述目标室内温度控制所述空调器运行之后,还包括:获取用户输入的当前热感觉信息,根据所述当前热感觉信息,确定对应于所述当前热感觉信息的室内温度偏置值;根据所述室内温度偏置值对所述空调器当前运行的目标室内温度进行补偿,以确定新的目标室内温度;根据所述设定相对湿度和所述新的目标室内温度控制所述空调器运行。
在一些实施例中,所述确定对应于所述当前热感觉信息的室内温度偏置值,包括:根据所述当前热感觉信息,查询预设的热感觉信息-室内温度偏置值参数对应关系映射表,得到与所述当前热感觉信息对应的所述室内温度偏置值。
在一些实施例中,所述根据所述目标PMV值和所述设定相对湿度确定目标室内温度,包括:将所述目标PMV值和所述设定相对湿度输入预设的目标PMV值-设定相对湿度-目标室内温度函数关系式中,确定所述目标室内温度。
在一些实施例中,所述根据所述目标PMV值和所述设定相对湿度确定目标室内温度,包括:检测到当前处于夏季时,查询所述第一预设PMV值-相对湿度-室内温度参数对应关系映射表,得到所述目标室内温度;检测到当前处于冬季时,查询所述第二预设PMV值-相对湿度-室内温度参数对应关系映射表,得到所述目标室内温度,其中,所述第一预设PMV值-相对湿度-室内温度参数对应关系映射表和第二预设PMV值-相对湿度-室内温度参数对应关系映射表中均包括多组PMV值-相对湿度-室内温度参数之间的对应关系。
在一些实施例中,通过热感觉信息获取界面获取用户输入的所述设定热感觉信息和所述当前热感觉信息,其中,所述热感觉信息获取界面包括一一对应于多个热感觉信息的多个热感觉信息采集单元。
为实现上述目的,本发明第二方面的实施例提出了一种空调器的控制装置,该装置包括:获取模块,用于获取空调器的设定热感觉信息及设定相对湿度;第一确定取模块,用于根据所述设定热感觉信息确定目标PMV值;第二确定模块,用于根据所述目标PMV值及所述设定相对湿度确定目标室内温度;控制模块,用于根据所述设定相对湿度和所述目标室内温度控制所述空调器运行。
根据本发明实施例的空调器的控制装置,通过设定热感觉信息确定目标PMV值,实现设定热感觉信息与目标PMV值之间的转换,便于用户根据舒适度需求输入设定热感觉信息,并根据确定的目标PMV值及设定相对湿度,确定目标室内温度,将设定相对湿度和目标室内温度作为控制参数,来控制空调器的运行,实现对室内温度和相对湿度的共同控制,使得空调器能够依据目标PMV值来准确调节室内舒适度,使室内舒适度满足用户需求的热感觉描述,避免单一地将温度作为控制目标,在室内温度合适时,因相对湿度偏高或者偏低,导致用户真实的舒适度感受较差的问题,从而,提高室内环境的舒适度,提高用户的舒适性体验。
为实现上述目的,本发明第三方面的实施例提出了一种空调器,该空调器包括:上面实施例所述的空调器的控制装置;或者包括:处理器、存储器和存储在所述存储器上并可在所述处理器上运行的空调器的控制程序,所述空调器的控制程序被所述处理器执行时实现上述实施例所述的空调器的控制方法。
根据本发明实施例的空调器,通过设定热感觉信息确定目标PMV值,实现设定热感觉信息与目标PMV值之间的转换,便于用户根据舒适度需求输入设定热感觉信息,并根据确定的目标PMV值及设定相对湿度,确定目标室内温度,将设定相对湿度和目标室内温度作为控制参数,来控制空调器的运行,实现对室内温度和相对湿度的共同控制,使得空调器能够依据目标PMV值来准确调节室内舒适度,使室内舒适度满足用户需求的热感觉描述,避免单一地将温度作为控制目标,在室内温度合适时,因相对湿度偏高或者偏低,导致用户真实的舒适度感受较差的问题,从而,提高室内环境的舒适度,提高用户的舒适性体验。
为实现上述目的,本发明第四方面的实施例提出了一种计算机可读存储介质,所述计算机可读存储介质上存储有空调器的控制程序,所述空调器的控制程序被处理器执行时实现上述实施例所述的空调器的控制方法。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明一个实施例的空调器的控制方法的流程图;
图2是根据本发明一个具体实施例的设定热感觉信息与目标PMV值之间的对应关系示意图;
图3是根据本发明一个具体实施例的设定热感觉信息显信息采集界面的示意图;
图4是根据本发明一个具体实施例的当前热感觉信息显信息采集界面的示意图;
图5是根据本发明一个实施例的空调器的控制装置的框图。
具体实施方式
下面详细描述本发明的实施例,参考附图描述的实施例是示例性的,下面详细描述本发明的实施例。
本发明的实施例以PMV(Predicted Mean Vote,预测平均热感觉指数)为基础,结合室内温度或相对湿度对空调器进行控制,相对于单一地通过温度反映舒适性,PMV值能更加准确、动态地反映人体真实的舒适性,体现了人体对温、湿、风的真实感受。其中,PMV值在-0.5~0.5之间时,则认为人体在A级舒适区间,中心值为0.0,依据PMV值,实现对室内温度和相对湿度的共同控制,使得空调器能够依据目标PMV值来准确调节室内舒适度,从而,提高室内环境的舒适度,提高用户的舒适性体验。
具体而言,PMV的定义为:以人体热平衡的基本方程式及心理生理学主观热感觉的等级为出发点,考虑了人体热舒适感等有关因素的全面评价指标,PMV指数表明群体对于七个等级,例如(-3~+3)七个等级的热感觉投票的平均指数。一般认为,PMV值在-0.5~0.5之间时,人体处于A级舒适区间。
在本发明实施例中,PMV的计算函数为PMV=f(Ta,Va,Rh,Tτ,M,cIo),由函数可以看出,PMV由4个环境因子和2个人体因子参与计算,其中,4个环境因子,如空气温度Ta、相对湿度Rh、空气风速Va、平均辐射温度Tτ,2个人体因子,如人体代谢率M、服装热阻clo,通过将4个环境因子和2个人体因子带入PMV的计算函数,得到PMV值。由于平均辐射温度Tτ=空调器检测的空气温度Ta,空气温度Ta即室内温度,相对湿度Rh为空调器检测的湿度;设定空气风速为Va=0.1m/s,如空调防直吹功能开启,此时空调器设置为低风,其导风机构控制出风气流沿着天花板,再利用冷空气密度大,沉降的原理,实现天井气流,此时,认为空调器风速为无风或超低的微风气流。由此,将PMV=f(Ta,Va,Rh,Tτ,M,cIo)的复杂函数,简化为已知空气温度Ta、湿度Rh,求解PMV值的简单函数,即PMV=f(Ta,Rh)的函数。从而,将PMV的解析函数转化为三维阵列表,利于工程化应用。
可以看出,PMV考虑到温度、湿度、风速等因素,可以反映群体对热感觉等级的平均指数,相对于单一地以温度反映舒适性,其更接近人体真实的舒适感受,是人体对温度、相对湿度及风速的真实感受。例如,在实际生活中,设定空气风速为0.1m/s,室内温度Ta为27℃、相对湿度Rh为80%时,通过函数计算得到PMV为0.72,已经超过A级舒适区间;而室内温度Ta相同的情况下,相对湿度为40%时,对应的PMV为0.41,PMV处于A级舒适区,且当PMV在A级舒适区间时更接近人体真实的舒适感受,因此,空气中的相对湿度较低时,即使温度相对较高,人体也会感觉到比较干爽。由此,通过引入PMV,对室内温度和相对湿度进行控制,可以准确调节室内舒适度,从而,提高室内环境的舒适度,提高用户的舒适性体验。
在实际应用中,若直接使用PMV值作为控制目标,例如,直接将PMV值为0.0作为控制目标,大多数用户不能理解其含义和实际意义。因此,需要将PMV值和热感觉信息进行转化,便于用户对空调器运行进行控制。
以下对本发明实施例的空调器的控制方法进行说明。
下面参考图1描述根据本发明实施例的空调器的控制方法,如图1所述,本发明实施例的空调器的控制方法至少包括步骤S1-步骤S4。
步骤S1,获取空调器的设定热感觉信息及设定相对湿度。
具体而言,热感觉信息即对应于热感觉描述,其代表了用户对所处环境舒适度真实的热感觉,一般分为但不限于热、暖、稍暖、适中、稍凉、凉、冷等多个热感觉描述,即对应于多个热感觉信息。
在实施例中,设定热感觉信息即用户根据自身舒适度需求确定的目标热感觉信息,即用户期望室内舒适度达到该目标热感觉信息,如适中,则用户可向空调器输入该设定热感觉信息,如输入对应于适中的热感觉信息。具体地,用户可以通过但不限于与空调器关联的APP(Application,应用程序)或空调器自身具有的控制面板等,输入设定热感觉信息,例如,用户在休息时,用户期望所处环境的舒适度为适中,则对应输入的设定热感觉信息为适中,若用户不对设定热感觉信息进行设置,则默认设定热感觉信息为适中。又例如,用户进行瑜伽运动时,由于运动会产生热量,导致体感较热,因而用户期望环境舒适度为凉,则用户对应输入设定热感觉信息为凉。也即是说,用户可根据自身的舒适度需求,来输入所期望的目标热感觉信息,即空调器的设定热感觉信息。
另一方面,用户可根据对相对湿度的实际需求及敏感程度,来输入设定相对湿度,例如记为Rhs,可以理解的是,输入设定相对湿度Rhs时,还可考虑当前的季节或空调器的运行模式,因为在不同季节空调器选取的运行模式也不相同。
例如,夏季时,空调器一般运行制冷模式,可将设定相对湿度设为50%,即Rhs=50%。若用户不对相对湿度进行设定,则空调器默认的设定相对湿度Rhs=50%。冬季时,空调器一般运行制热模式,可将设定相对湿度设为40%,即Rhs=40%。若用户不对相对湿度Rh进行设定,则空调器默认的设定相对湿度Rhs=40%。从而,通过确定设定热感觉信息和设定相对湿度Rhs,并将设定热感觉信息和设定相对湿度Rhs作为后续空调器控制过程的控制参数。
步骤S2,根据设定热感觉信息确定目标PMV值。
在实施例中,设定热感觉信息与目标PMV值之间具有一一对应关系,确定设定热感觉信息后,根据设定热感觉信息,通过查表可以得到目标PMV值,例如记为PMV_s。
具体而言,如图2所示,为本发明一个具体实施例的设定热感觉信息与目标PMV值之间的对应关系示意图。由图2可知,设定热感觉信息、目标PMV值及室内温度Ta和相对湿度Rh之间具有一定的对应关系,相互之间可进行转换运算。例如,根据热感觉信息确定目标PMV值后,目标PMV值与室内温度Ta和相对湿度Rh具有一定的关系,通过控制目标PMV值,能够实现对室内温度Ta和相对湿度Rh的控制。可以理解的是,目标PMV值是函数运算值,不是空调器直接检测得到的,通过目标PMV值对空调器进行控制更能真实准确地反映用户对舒适性的需求,进而利于准确调节室内舒适度。
步骤S3,根据目标PMV值及设定相对湿度确定目标室内温度。
在实施例中,目标室内温度例如记为Ts,可以理解的是,目标室内温度Ts与目标PMV值和设定相对湿度Rhs有关,具体而言,确定目标PMV值和设定相对湿度Rhs后,通过查表或者函数计算,即可确定目标室内温度Ts。
可以理解的是,根据目标PMV值和设定相对湿度Rhs确定目标室内温度Ts时,还可考虑当前的季节或空调器的运行模式,因为在不同季节空调器选取的运行模式也不相同。例如,夏季时,空调器一般运行于制冷模式,冬季时,空调器一般运行于制热模式。
举例而言,在夏季时,人体代谢率M=1.2、服装热阻clo=0.5,此时,空调器制冷,PMV_s=0.0及设定相对湿度Rhs=50%时,通过查表或者函数计算的方法确定目标室内温度Ts为25.5℃,即Ts=25.5℃。
又例如,在冬季时,人体代谢率M=1.2、服装热阻clo=1.0,此时,空调器制热,PMV_s=0.0及设定相对湿度Rhs=40%,通过查表或者函数计算的方法确定目标室内温度Ts为23℃,即Ts=23℃。
步骤S4,根据设定相对湿度和目标室内温度控制空调器运行。
在实施例中,设定相对湿度Rhs和目标室内温度Ts的确定都与目标PMV值有关,在确定设定相对湿度Rhs和目标室内温度Ts后,基于设定相对湿度Rhs和目标室内温度Ts对空调器进行控制,实现对温度和湿度的共同控制,使得空调器能够依据目标PMV值运行,使室内实际的PMV值能够达到目标PMV值,使得室内实际的舒适度能够满足用户真实的舒适度需求,即满足用户期望的热感觉描述,从而提高用户舒适度体验。可以理解的是,基于设定相对湿度Rhs和目标室内温度Ts对空调器的运行进行控制,同时考虑到了温度和湿度对室内环境的影响,相比单一的温度控制,可以准确调节室内舒适度,从而提高室内环境的舒适性,满足人体对舒适性的要求。
根据本发明实施例的空调器的控制方法,通过设定热感觉信息确定目标PMV值,实现设定热感觉信息与目标PMV值之间的转换,便于用户根据舒适度需求输入设定热感觉信息,并根据确定的目标PMV值及设定相对湿度Rhs,确定目标室内温度Ts,将设定相对湿度Rhs和目标室内温度Ts作为控制参数,来控制空调器的运行,实现对室内温度Ta和相对湿度Rh的共同控制,使得空调器能够依据目标PMV值来准确调节室内舒适度,使室内舒适度满足用户需求的热感觉描述,避免单一地将温度Ta作为控制目标,在室内温度Ta合适时,因相对湿度Rh偏高或者偏低,导致用户真实的舒适度感受较差的问题,从而,提高室内环境的舒适度,提高用户的舒适性体验。
在一些实施例中,根据设定热感觉信息确定目标PMV值,包括:根据设定热感觉信息,查询预设的热感觉信息-PMV值参数对应关系映射表,得到与设定热感觉信息对应的所述目标PMV值。可以理解的是,设定热感觉信息和目标PMV值之间存在一一对应关系,确定设定热感觉信息时,通过查表可以确定目标PMV值。具体而言,如表1所示,为本发明一个实施例的设定热感觉信息-目标PMV值参数之间的对应关系映射表。
表1设定热感觉信息-目标PMV值
量表 +3 +2 +1 0 -1 -2 -3
设定热感觉信息 稍暖 适中 稍凉
目标PMV值 0.75 0.5 0.25 0 -0.25 -0.5 -0.75
由表1可知,设定热感觉信息可以为热、暖、稍暖、适中、稍凉、凉以及冷等,每个设定热感觉信息对应一个目标PMV值,例如,确定设定热感觉信息为暖时,通过查表可以确定与之对应的目标PMV值为0.75;又例如,确定设定热感觉信息为适中时,通过查表可以确定与之对应的目标PMV值为0。通过设定热感觉信息确定目标PMV值,实现设定热感觉信息和目标PMV值之间的转换,便于根据目标PMV值对室内温度Ta和相对湿度Rh进行控制。
在一些实施例中,在根据设定相对湿度Rhs和目标室内温度Ts控制空调器运行之后,还包括:获取用户输入的当前热感觉信息,根据当前热感觉信息,确定对应于当前热感觉信息的室内温度偏置值;根据室内温度偏置值对空调器当前运行的目标室内温度Ts进行补偿,以确定新的目标室内温度Ts;根据设定相对湿度Rhs和新的目标室内温度Ts控制空调器运行。可以理解的是,空调器按照设定相对湿度Rhs和目标室内温度Ts运行一段时间后,室内的环境舒适度会随之发生变化,对应于用户当前实际的热感觉也会发生变化,可能已不满足用户输入的设定热感觉信息对应的室内环境舒适度。此时,用户可根据当前实际的热感觉,输入相应的当前热感觉信息,据此对当前的室内温度进行调整,以满足设定热感觉信息对应的室内环境舒适度,从而满足用户的舒适度需求。例如在夏季,空调器制冷时,用户输入的设定热感觉信息为适中,对应的目标PMV为0,空调器的设定相对湿度为50%,由此确定目标室内温度Ts=25.5℃,即空调器按照目标室内温度Ts=25.5℃及设定相对湿度Rhs=50%运行,在运行一段时间后,随着室内温度的下降,用户可能会感觉冷,即用户实际的热感觉为冷,则用户可向空调器输入当前热感觉信息为冷,空调器根据当前热感觉信息,通过查表的方式确定与之对应的室内温度偏置值,例如确定与冷对应的室内温度偏置值为+2℃。又例如,在冬季,空调器制热时,用户输入的设定热感觉信息为适中,对应的目标PMV为0,空调器的设定相对湿度为40%,由此确定目标室内温度Ts=23℃,即空调器按照目标室内温度Ts=23℃及设定相对湿度Rhs=40%运行,在运行一段时间后,随着室内温度的升高,用户可能会感觉暖,即用户实际的热感觉为暖,则用户可向空调器输入当前热感觉信息为暖,空调器根据该热感觉信息,通过查表的方式确定与之对应的室内温度偏置值,例如-1℃。
进一步地,确定室内温度偏置值后,根据室内温度偏置值对目标室内温度Ts进行补偿。例如夏季时,目标室内温度Ts=25.5℃,确定的室内温度偏置值为+2℃,此时,对目标室内温度Ts进行补偿,确定新的目标室内温度Ts(2)=25.5℃+2℃=27.5℃,并根据设定相对湿度Rhs和新的目标室内目标温度Ts(2)=27.5℃控制空调器运行。若用户再次根据自身的舒适度需求,输入当前的热感觉信息,例如,再次输入当前热感觉信息为稍暖时,则通过查表的方式确定与之对应的室内温度偏置值,例如-0.5℃,此时,新的目标室内温度Ts(3)=Ts(2)+(-0.5℃)=27.5℃+(-0.5℃)=27℃,此时,空调器按照设定相对湿度Rhs和新的目标室内温度Ts(3)来控制空调器运行。也即是说,随着空调器的持续运行,用户可以多次输入当前热感觉信息,确定当前热感觉信息的室内温度偏置值,并根据室内温度偏置值对空调器当前运行的目标室内温度进行补偿,从而确定新的目标室内温度,即Ts(n+1)=Ts(n)+Ts偏置。换言之,即可根据用户输入的当前热感觉信息,确定相应的室内温度偏置值,根据室内温度偏置值对前次确定的目标室内温度进行补偿,得到新的目标室内温度,进而根据设定相对湿度Rhs和新的目标室内温度Ts控制空调器运行,从而使空调器始终依据目标PMV运行,使室内舒适度始终保持在对应于用户期望的设定热感觉信息的舒适度,从而满足用户的舒适度需求,提高舒适度体验。
又例如,冬季时,目标室内温度Ts=23℃,室内温度偏置值为-1℃,此时,对目标室内温度Ts进行补偿,确定新的目标室内温度Ts(2)=23℃+(-1℃)=22℃,此时,根据设定相对湿度Rhs和新的目标室内目标温度Ts(2)=22℃控制空调器运行。若用户再次根据自身的舒适度需求,输入当前热感觉信息为稍暖,则通过查表的方式确定与之对应的室内温度偏置值,例如-0.5℃,此时,新的目标室内温度Ts(3)=Ts(2)+(-0.5℃)=22℃+(-0.5℃)=21.5℃,从而,空调器按照设定相对湿度Rhs和新的目标室内温度Ts(3)控制空调器运行。也即是说,随着空调器的持续运行,用户可以多次输入当前热感觉信息,确定当前热感觉信息的室内温度偏置值,并根据室内温度偏置值对空调器当前运行的目标室内温度进行补偿,从而确定新的目标室内温度,即Ts(n+1)=Ts(n)+Ts偏置。换言之,即可根据用户输入的当前热感觉信息,确定相应的室内温度偏置值,根据室内温度偏置值对前次确定的目标室内温度进行补偿,得到新的目标室内温度,进而根据设定相对湿度和新的目标室内温度控制空调器运行,从而使空调器始终依据目标PMV运行,使室内舒适度始终保持在对应于用户期望的设定热感觉信息的舒适度,从而满足用户的舒适度需求,提高舒适度体验。
在本发明的一个实施例中,该方法还包括:确定新的目标室内温度Ts后,接收用户输入的保存指令,以对应于新的目标室内温度的当前热感觉信息进行保存,以便下次开机时,直接调用保存的该当前热感觉信息,并据此对空调器进行控制。
进一步地,若用户未进行保存操作,则在空调器关机前自动保存设定相对湿度Rhs和目标室内温度Ts,以便在空调器下次开机时,按照之前保存的的目标室内温度Ts和设定相对湿度Rhs控制空调器运行。
换言之,即空调器对当前的热感觉具有记忆功能,用户可以选择“保存”当前的“适中”的热感觉评价,则下次直接调用保存的参数作为目标设定温度,也可以选择“不保存”当前热感觉评价,若选择“不保存”,则在关机时自动保存关机前对应的热感觉信息相关参数,则下次开机时,将关机前对应的热感觉信息对应的参数作为默认参数,并据此控制空调器运行。
在另一些实施例中,例如,冬季时用户要进行瑜伽运动时,用户根据自身舒适度需求,输入设定热感觉信息为凉及设定相对湿度Rhs=40%,此时,根据设定热感觉信息确定目标PMV值为-0.5℃,并根据目标PMV值和设定相对湿度Rhs确定目标室内温度Ts=20.5℃,使得空调器按照设定相对湿度Rhs=40%及目标室内温度Ts=20.5℃运行。空调器运行一段时间后,室内环境舒适度可能会发生变化,由于空调器持续制热,室内温度升高,用户当前可能感觉热,则用户可输入当前热感觉信息,以便调整室内舒适度。若用户输入的当前热感觉信息为稍暖,根据当前热感觉信息确定室内温度偏置值为-0.5℃,从而,根据室内温度偏置值确定新的目标室内温度Ts,此时,新的目标室内温度Ts=20.5℃+(-0.5℃)=20℃,则空调器继续按照新的目标室内温度Ts=20℃继续运行,以降低室内温度。当用户瑜伽运动结束后休息时,由于汗液蒸发及体内热量的排出等原因,此时用户可能会感觉冷,则再次获取用户输入的当前热感觉信息,例如获取当前热感觉信息为冷,根据当前热感觉信息确定室内温度偏置值为+2℃,从而根据室内温度偏置值确定新的目标室内温度Ts,此时,新的目标室内温度Ts=20℃+2℃=22℃。需要说明的是,确定新的目标室内温度Ts后,用户可对当前热感觉信息进行保存,以便下次开机时直接调用。或者,在用户未保存时,空调器在关机前自动保存设定相对湿度Rhs和目标室内温度Ts,以便空调器下次开机时,按照之前默认的目标室内温度Ts和设定相对湿度Rhs控制空调器运行。
在一些实施例中,确定对应于当前热感觉信息的室内温度偏置值,包括:根据当前热感觉信息,查询预设的热感觉信息-室内温度偏置值参数对应关系映射表,得到与当前热感觉信息对应的室内温度偏置值。室内温度偏置值与当前热感觉信息有关,确定当前热感觉信息时,通过查表的方式可以确定与之对应的室内温度偏置值。
具体而言,如表2所示,为本发明一个实施例的预设的热感觉信息-室内温度偏置值参数对应关系映射表。
表2预设的热感觉信息-室内温度偏置值参数对应关系映射表
热感觉信息 稍暖 适中 稍凉
室内温度偏置值 -2℃ -1℃ -0.5℃ 0 +0.5℃ +1℃ +2℃
由表2可知,每个热感觉信息对应一个室内温度偏置值,当前热感觉信息为热时,对应的室内温度偏置值为-2℃;当前热感觉信息为凉时,对应的室内温度偏置值为+1℃,可以理解的是,通过确定当前热感觉信息,确定与之对应的室内温度偏置值,便于提高获取目标室内温度Ts的准确性。
在一些实施例中,根据目标PMV值和设定相对湿度Rhs确定目标室内温度Ts,包括:将目标PMV值和设定相对湿度Rhs输入预设的目标PMV值-设定相对湿度-目标室内温度函数关系式中,确定目标室内温度Ts。具体而言,目标PMV值、设定相对湿度Rhs及目标室内温度Ts三者之间存在函数对应关系,例如PMV=f(Ts,Rhs),可以看出,将目标PMV值和设定相对湿度Rhs带入上述函数关系式中,通过计算可以得到目标室内温度Ts。例如,夏季,服装热阻clo=0.5,人体代谢率M=1.2,此时,空调器制冷时,将目标PMV值=0及设定相对湿度Rhs=50%带入上述函数计算公式,通过计算得到目标室内温度Ts为25.5℃,即Ts=25.5℃。
在一些实施例中,根据目标PMV值和设定相对湿度Rhs确定目标室内温度Ts,包括:检测到当前处于夏季时,查询第一预设PMV值-相对湿度-室内温度参数对应关系映射表,得到目标室内温度;检测到当前处于冬季时,查询第二预设PMV值-相对湿度-室内温度参数对应关系映射表,得到目标室内温度;其中,第一预设PMV值-相对湿度-室内温度参数对应关系映射表和第二预设PMV值-相对湿度-室内温度参数对应关系映射表中均包括多组PMV值-相对湿度-室内温度参数之间的对应关系。可以理解的是,不同季节对应服装热阻不同,如夏季时,对应的服装热阻clo=0.5,冬季时,对应的服装热阻clo=1.0,服装热阻是影响PMV的值,进而影响相应的目标室内温度。由此,对应于冬季和夏季的PMV值-相对湿度-室内温度参数对应关系映射表也不同,因此,在本发明的实施例中,在夏季时,查询第一预设PMV值-相对湿度-室内温度参数对应关系映射表,得到目标室内温度;在冬季时,查询第二预设PMV值-相对湿度-室内温度参数对应关系映射表,得到目标室内温度。
目标PMV值、设定相对湿度Rhs及目标室内温度Ts三者存在对应关系,确定其中任意两个参数,通过查表,可以得到另一个参数。当然,在具体实施例中,在确定两个参数时,也可以通过PMV=f(Ta,Rh)的函数来进行运算得到另一个参数。其中,预设的PMV值-相对湿度-室内温度对应关系映射表例如根据大量的测试数据标定得到,例如,根据PMV=f(Ta,Rh)的函数解耦得到大量的关于PMV值-相对湿度-室内温度之间的对应关系数据,进而标定得到预设的PMV值-相对湿度-室内温度对应关系映射表。
在具体实施例中,检测当前所处季节的方式可以包括:根据当前的环境参数确定当前所处季节;和/或根据智能终端显示的季节信息同步确定当前所处季节。
具体而言,检测到当前处于夏季,空调器制冷时,查询第一预设PMV值-相对湿度-室内温度参数对应关系映射表,得到目标室内温度Ts;空调器制热时,查询第二预设PMV值-相对湿度-室内温度参数对应关系映射表,得到目标室内温度Ts。
以下对在确定目标PMV值和设定相对湿度Rhs时,对目标室内温度Ts的确定过程进行举例说明。
具体而言,如夏季,空调器制冷时,如表3所示,为本发明一个具体实施例的第一预设PMV值-目标室内温度-设定相对湿度对应关系映射表的示例。其中,人体代谢率M、服装热阻clo分别为1.2、0.5。
表3第一预设PMV值-目标室内温度-设定相对湿度对应关系映射表
30% 35% 40% 45% 50% 55% 60% 65% 70% 80% 90%
30 1.3 1.4 1.4 1.4 1.5 1.5 1.6 1.6 1.7 1.8 1.9
29.5 1.1 1.2 1.2 1.3 1.3 1.4 1.4 1.5 1.5 1.6 1.7
29 1.0 1.0 1.1 1.1 1.2 1.2 1.2 1.3 1.3 1.4 1.5
28.5 0.8 0.9 0.9 0.9 1.0 1.0 1.1 1.1 1.2 1.2 1.3
28 0.65 0.69 0.74 0.78 0.82 0.86 0.90 0.95 0.99 1.07 1.16
27.5 0.49 0.53 0.57 0.61 0.65 0.69 0.74 0.78 0.82 0.90 0.98
27 0.33 0.37 0.41 0.45 0.49 0.53 0.57 0.61 0.65 0.72 0.80
26.5 0.17 0.20 0.24 0.28 0.32 0.36 0.40 0.44 0.47 0.55 0.63
26 0.00 0.02 0.04 0.06 0.15 0.19 0.23 0.27 0.30 0.38 0.45
25.5 -0.16 -0.12 -0.08 -0.09 -0.01 0.03 0.08 0.10 0.13 0.21 0.28
25 -0.32 -0.28 -0.25 -0.21 -0.18 -0.14 -0.02 -0.03 -0.05 0.07 0.11
24.5 -0.48 -0.44 -0.41 -0.37 -0.34 -0.30 -0.27 -0.24 -0.20 -0.13 -0.07
24 -0.64 -0.60 -0.57 -0.54 -0.50 -0.47 -0.44 -0.40 -0.37 -0.30 -0.24
23.5 -0.79 -0.76 -0.73 -0.70 -0.67 -0.63 -0.60 -0.57 -0.54 -0.47 -0.41
23 -0.95 -0.92 -0.89 -0.86 -0.83 -0.80 -0.77 -0.73 -0.70 -0.64 -0.58
22.5 -1.1 -1.1 -1.1 -1.0 -1.0 -1.0 -0.9 -0.9 -0.9 -0.8 -0.7
22 -1.3 -1.2 -1.2 -1.2 -1.2 -1.1 -1.1 -1.1 -1.0 -1.0 -0.9
其中,表3中的首行为设定相对湿度Rhs,最左边一列为目标室内温度Ts,表3中的值为目标PMV值,当设定相对湿度Rhs为80%、目标室内温度Ts为27℃,通过查表得到对应的目标PMV值为0.72;当设定相对湿度Rhs为40%、目标室内温度Ts为27℃时,通过查表得到对应的目标PMV值为0.41;当设定相对湿度Rhs为50%、目标室内温度Ts为25.5℃时,通过查表得到对应的目标PMV值为-0.01。
相应的一种逆运算为Ta=f(Rh,PMV),由此,可转换为:Ts=f(Rhs,PMV_s),从而在已知设定相对湿度Rhs及目标PMV值时,即可求解对应的目标室内温度Ts。当然,也可通过查表得到对应的目标室内温度Ts,例如表4所示,为本发明一个具体实施例中,确定目标PMV值,根据设定相对湿度Rhs查询目标室内温度Ts的映射表示例。其中,人体代谢率M、服装热阻clo分别为1.2、0.5。
表4第一预设PMV值-目标室内温度-设定相对湿度对应关系映射表
Figure BDA0003108563050000131
由表4可知,已知目标PMV值及设定相对湿度Rhs,根据查表或者函数计算,可得到目标室内温度Ts,例如目标PMV值=0.0及设定相对湿度Rhs=50%,通过查询表4确定目标室内温度Ts=25.5℃。
如冬季,空调器制热时,如表5所示,为本发明一个具体实施例的第二预设PMV值-目标室内温度-设定相对湿度对应关系映射表的示例。其中,人体代谢率M、服装热阻clo分别为1.2、1.0。
表5第二预设PMV值-目标室内温度-设定相对湿度对应关系映射表
Figure BDA0003108563050000132
Figure BDA0003108563050000141
其中,表5中的首行为设定相对湿度Rhs,最左边一列为目标室内温度Ts,表5中的值为目标PMV值,当设定相对湿度Rhs为40%、目标室内温度Ts为26℃,通过查表得到对应的目标PMV值为0.80;当设定相对湿度Rhs为50%、目标室内温度Ts为22℃时,通过查表得到对应的目标PMV值为-0.07,;当设定相对湿度Rhs为70%、目标室内温度Ts为19℃时,通过查表得到对应的目标PMV值为-0.67。
相应的一种逆运算为Ta=f(Rh,PMV),由此,可转换为:Ts=f(Rhs,PMV_s),从而在已知设定相对湿度Rhs及目标PMV值时,即可求解对应的目标室内温度Ts。当然,也可通过查表得到对应的目标室内温度Ts,例如表6所示,为本发明一个具体实施例中,确定目标PMV值时,根据设定相对湿度Rhs查询目标室内温度Ts的映射表示例。其中,人体代谢率M、服装热阻clo分别为1.2、1.0。
表6第二预设PMV值-目标室内温度-设定相对湿度对应关系映射表
Figure BDA0003108563050000142
由表6可知,已知目标PMV值及设定相对湿度Rhs,根据查表或者函数计算,可得到目标室内温度Ts,例如目标PMV值=0.0及设定相对湿度Rhs=40%,通过查询表6确定目标室内温度Ts=23℃。
在本发明另一些实施例中,以空调器制冷为例,如表7所示,为本发明一个具体实施例的目标PMV值下,设定相对湿度和目标室内温度的对应关系映射表。
表7设定相对湿度和目标室内温度的对应关系映射表
序号 设定相对湿度(%) 目标室内温度(℃)
1 30% 27.6℃
2 30%+A% 27.6-m*B℃
3 30%+2*A% ……
4 30%+3*A% ……
…… …… ……
…… 30%+n*A% ……
…… 70% 26.0℃
可以理解的是,人体舒适的相对湿度区间一般为35%-65%,因此,空调器一般将相对湿度控制到35%-65%区间,以35%为首位数据,65%为末位数据,设定相对湿度Rhs,例如按照A%递增,其中,A可以为1、2、5、10等,具体由湿度传感器的精度及计算数据量等确定。目标室内温度的精度例如为B℃,例如0.1℃、0.2℃、0.5℃、1℃,具体由温度传感器的精度及计算数据量等确定。输入目标PMV值,如0.3,自动生成如表7的数据,表中的一组数据就为设定相对湿度Rhs和目标室内温度Ts。表7中n为1,2,…,m为0,1,2…。由于B的取值精度问题,实际上可能出现多个设定相对湿度值共同对应1个目标室内温度值。举例说明,目标PMV值为0.3,当B的精度为0.5℃时,A按照5%递增时,相对湿度Rh为50%时,对应的室内温度Ta为26.8℃;相对湿度Rh为55%时,对应的室内温度Ta为27℃;相对湿度Rh为60%时,对应的室内温度Ta为27.2℃,由于温度传感器的精度为0.5℃,取0.5的整数倍后,实际显示的目标室内温度为27℃。
在一些实施例中,通过热感觉信息获取界面获取用户输入的设定热感觉信息和当前热感觉信息,其中,热感觉信息获取界面包括一一对应于多个热感觉信息的多个热感觉信息采集单元。在另一些实施例中,热感觉信息获取界面也可以包括两个子界面,用于根据用户操作对应输入设定热感觉信息和当前热感觉信息。
在本发明的一个实施例中,还可通过设置在空调器上的显示界面来显示用户输入的设定热感觉信息和当前热感觉信息,具体地,用户可通过显示界面上的切换按钮来切换显示的设定热感觉信息和当前热感觉信息,以便于进行查看。
具体而言,如图3所示,为本发明一个具体实施例的设定热感觉信息采集界面的示意图。由图3可知,设定热感觉信息采集单元被配置为多个,分别一一对应于热、暖、稍暖、适中、稍凉、凉及冷等热感觉信息,多个热感觉采集单元可以为设置在空调器上的多个触控选项或者物理按键,用户通过操作相应的物理按键或触控选项,可以输入相应的设定热感觉信息。例如用户触发对应于适中的物理按键或触控选项,则对应输入设定热感觉信息为适中,若用户触发对应于热的物理按键或触控选项,则对应输入设定热感觉信息为热。也即是说,用户可根据自身需求,在设定热感觉信息采集界面上操作相应的设定热感觉信息采集单元来输入对应的设定热感觉信息,空调器据此获取到该设定热感觉信息,为减少冗余,此处不再一一列举赘述。
如图4所示,为本发明另一个具体实施例的当前热感觉信息采集界面的示意图。由图4可知,当前热感觉信息采集单元为多个,分别一一对应于热、暖、稍暖、适中、稍凉、凉及冷等热感觉信息,热感觉采集单元可以为设置在空调器上的多个触控选项或者物理按键,用户通过操作相应的物理按键或触控选项,可以输入相应的当前热感觉信息。例如,用户触发对应于适中的物理按键或触控选项,则对应输入当前热感觉信息为适中,若用户触发对应于热的物理按键或触控选项,则对应输入当前热感觉信息为热。也即是说,用户可根据自身需求,在当前热感觉信息采集界面上操作相应的当前热感觉信息采集单元来输入对应的当前热感觉信息,空调器据此获取到该当前热感觉信息,为减少冗余,此处不再一一列举赘述。
根据本发明实施例的空调器的控制方法,通过设定热感觉信息确定目标PMV值,实现设定热感觉信息与目标PMV值之间的转换,便于用户根据舒适度需求输入设定热感觉信息,并根据确定的目标PMV值及设定相对湿度Rhs,确定目标室内温度Ts,将设定相对湿度Rhs和目标室内温度Ts作为控制参数,来控制空调器的运行,实现对室内温度Ta和相对湿度Rh的共同控制,使得空调器能够依据目标PMV值来准确调节室内舒适度,使室内舒适度满足用户需求的热感觉描述,避免单一地将温度Ta作为控制目标,在室内温度Ta合适时,因相对湿度Rh偏高或者偏低,导致用户真实的舒适度感受较差的问题,从而,提高室内环境的舒适度,提高用户的舒适性体验。
下面参考图5描述本发明第二方面实施例的空调器的控制装置。
图5是根据本发明一个实施例的空调器的控制装置的框图。如图5所示,本发明实施例的空调器的控制装置2包括:获取模块20、第一确定模块21、第二确定模块22和控制模块23。其中,获取模块20用于获取空调器的设定热感觉信息及设定相对湿度;第一确定模块21用于根据设定热感觉信息确定目标PMV值;第二确定模块22用于根据目标PMV值及设定相对湿度确定目标室内温度;控制模块23用于根据设定相对湿度和目标室内温度控制空调器运行。
根据本发明实施例的空调器的控制装置2,通过设定热感觉信息确定目标PMV值,实现设定热感觉信息与目标PMV值之间的转换,便于用户根据舒适度需求输入设定热感觉信息,并根据确定的目标PMV值及设定相对湿度Rhs,确定目标室内温度Ts,将设定相对湿度Rhs和目标室内温度Ts作为控制参数,来控制空调器的运行,实现对室内温度Ta和相对湿度Rh的共同控制,使得空调器能够依据目标PMV值来准确调节室内舒适度,使室内舒适度满足用户需求的热感觉描述,避免单一地将温度Ta作为控制目标,在室内温度Ta合适时,因相对湿度Rh偏高或者偏低,导致用户真实的舒适度感受较差的问题,从而,提高室内环境的舒适度,提高用户的舒适性体验。
在一些实施例中,第一确定模块21,具体用于,根据设定热感觉信息,查询预设的热感觉信息-PMV值参数对应关系映射表,得到与设定热感觉信息对应的目标PMV值。可以理解的是,设定热感觉信息和目标PMV值之间存在一一对应关系,确定设定热感觉信息时,通过查表可以确定目标PMV值。
在一些实施例中,控制模块23,还用于,获取用户输入的当前热感觉信息,根据当前热感觉信息,确定对应于当前热感觉信息的室内温度偏置值;根据室内温度偏置值对空调器当前运行的目标室内温度进行补偿,以确定新的目标室内温度;根据设定相对湿度和新的目标室内温度控制空调器运行。
在一些实施例中,控制模块23,还用于,根据当前热感觉信息,查询预设的热感觉信息-室内温度偏置值参数对应关系映射表,得到与当前热感觉信息对应的室内温度偏置值。
在一些实施例中,第二确定模块22,具体用于,将目标PMV值和设定相对湿度Rhs输入预设的目标PMV值-设定相对湿度-目标室内温度函数关系式中,确定目标室内温度Ts。具体而言,目标PMV值、设定相对湿度Rhs及目标室内温度Ts三者之间存在函数对应关系,例如PMV=f(Ts,Rhs),可以看出,将目标PMV值和设定相对湿度Rhs带入上述函数关系式中,通过计算可以得到目标室内温度Ts。例如,夏季,服装热阻clo=0.5,人体代谢率M=1.2,此时,空调器制冷时,将目标PMV值=0及设定相对湿度Rhs=50%带入上述函数计算公式,通过计算得到目标室内温度Ts为25.5℃,即Ts=25.5℃。
在一些实施例中,第二确定模块22,具体用于,检测到当前处于夏季时,查询第一预设PMV值-相对湿度-室内温度参数对应关系映射表,得到目标室内温度;检测到当前处于冬季时,查询第二预设PMV值-相对湿度-室内温度参数对应关系映射表,得到目标室内温度;其中,第一预设PMV值-相对湿度-室内温度参数对应关系映射表和第二预设PMV值-相对湿度-室内温度参数对应关系映射表中均包括多组PMV值-相对湿度-室内温度参数之间的对应关系。可以理解的是,不同季节对应服装热阻不同,如夏季时,对应的服装热阻clo=0.5,冬季时,对应的服装热阻clo=1.0,服装热阻是影响PMV的值,进而影响相应的目标室内温度。由此,对应于冬季和夏季的PMV值-相对湿度-室内温度参数对应关系映射表也不同,因此,在本发明的实施例中,在夏季时,查询第一预设PMV值-相对湿度-室内温度参数对应关系映射表,得到目标室内温度;在冬季时,查询第二预设PMV值-相对湿度-室内温度参数对应关系映射表,得到目标室内温度。
目标PMV值、设定相对湿度Rhs及目标室内温度Ts三者存在对应关系,确定其中任意两个参数,通过查表,可以得到另一个参数。当然,在具体实施例中,在确定两个参数时,也可以通过PMV=f(Ta,Rh)的函数来进行运算得到另一个参数。其中,预设的PMV值-相对湿度-室内温度对应关系映射表例如根据大量的测试数据标定得到,例如,根据PMV=f(Ta,Rh)的函数解耦得到大量的关于PMV值-相对湿度-室内温度之间的对应关系数据,进而标定得到预设的PMV值-相对湿度-室内温度对应关系映射表。
在具体实施例中,检测当前所处季节的方式可以包括:根据当前的环境参数确定当前所处季节;和/或根据智能终端显示的季节信息同步确定当前所处季节。
在一些实施例中,通过热感觉信息获取界面获取用户输入的所述设定热感觉信息和当前热感觉信息,其中,热感觉信息获取界面包括一一对应于多个热感觉信息的多个热感觉信息采集单元。
需要说明的是,本发明实施例的空调器的控制装置2的具体实现方式与本发明上述任意实施例的空调器的控制方法的具体实现方式类似,具体请参见关于方法部分的描述,为了减少冗余,此处不再赘述。
根据本发明实施例的空调器的控制装置2,通过设定热感觉信息确定目标PMV值,实现设定热感觉信息与目标PMV值之间的转换,便于用户根据舒适度需求输入设定热感觉信息,并根据确定的目标PMV值及设定相对湿度Rhs,确定目标室内温度Ts,将设定相对湿度Rhs和目标室内温度Ts作为控制参数,来控制空调器的运行,实现对室内温度Ta和相对湿度Rh的共同控制,使得空调器能够依据目标PMV值来准确调节室内舒适度,使室内舒适度满足用户需求的热感觉描述,避免单一地将温度Ta作为控制目标,在室内温度Ta合适时,因相对湿度Rh偏高或者偏低,导致用户真实的舒适度感受较差的问题,从而,提高室内环境的舒适度,提高用户的舒适性体验。
下面描述本发明第三方面实施例的空调器,该空调器包括:上述任意一个实施例的空调器的控制装置2;或者,处理器、存储器和存储在存储器上并可在处理器上运行的空调器的控制程序,空调器的控制程序被处理器执行时实现上述任意一个实施例的空调器的控制方法。
在该实施例中,该空调器在进行温度和湿度控制时,其具体实现方式与本发明上述任意实施例的空调器的控制装置2的具体实现方式类似,具体请参见关于空调器的控制装置2部分的描述,为了减少冗余,此处不再赘述。
根据本发明实施例的空调器,通过设定热感觉信息确定目标PMV值,实现设定热感觉信息与目标PMV值之间的转换,便于用户根据舒适度需求输入设定热感觉信息,并根据确定的目标PMV值及设定相对湿度Rhs,确定目标室内温度Ts,将设定相对湿度Rhs和目标室内温度Ts作为控制参数,来控制空调器的运行,实现对室内温度Ta和相对湿度Rh的共同控制,使得空调器能够依据目标PMV值来准确调节室内舒适度,使室内舒适度满足用户需求的热感觉描述,避免单一地将温度Ta作为控制目标,在室内温度Ta合适时,因相对湿度Rh偏高或者偏低,导致用户真实的舒适度感受较差的问题,从而,提高室内环境的舒适度,提高用户的舒适性体验。
下面描述本发明第四方面实施例的计算机可读存储介质,计算机可读存储介质上存储有空调器的控制程序,空调器的控制程序被处理器执行时实现如上述任意一个实施例的空调器的控制方法。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (10)

1.一种空调器的控制方法,其特征在于,包括以下步骤:
获取空调器的设定热感觉信息及设定相对湿度;
根据所述设定热感觉信息确定目标PMV值;
根据所述目标PMV值及所述设定相对湿度确定目标室内温度;
根据所述设定相对湿度和所述目标室内温度控制所述空调器运行。
2.根据权利要求1所述的空调器的控制方法,其特征在于,所述根据所述设定热感觉信息确定目标PMV值,包括:
根据所述设定热感觉信息,查询预设的热感觉信息-PMV值参数对应关系映射表,得到与所述设定热感觉信息对应的所述目标PMV值。
3.根据权利要求1所述的空调器的控制方法,其特征在于,在根据所述设定相对湿度和所述目标室内温度控制所述空调器运行之后,还包括:
获取用户输入的当前热感觉信息,根据所述当前热感觉信息,确定对应于所述当前热感觉信息的室内温度偏置值;
根据所述室内温度偏置值对所述空调器当前运行的目标室内温度进行补偿,以确定新的目标室内温度;
根据所述设定相对湿度和所述新的目标室内温度控制所述空调器运行。
4.根据权利要求3所述的空调器的控制方法,其特征在于,所述确定对应于所述当前热感觉信息的室内温度偏置值,包括:
根据所述当前热感觉信息,查询预设的热感觉信息-室内温度偏置值参数对应关系映射表,得到与所述当前热感觉信息对应的所述室内温度偏置值。
5.根据权利要求1所述的空调器的控制方法,其特征在于,所述根据所述目标PMV值和所述设定相对湿度确定目标室内温度,包括:
将所述目标PMV值和所述设定相对湿度输入预设的目标PMV值-设定相对湿度-目标室内温度函数关系式中,确定所述目标室内温度。
6.根据权利要求1所述的空调器的控制方法,其特征在于,所述根据所述目标PMV值和所述设定相对湿度确定目标室内温度,包括:
检测到当前处于夏季时,查询所述第一预设PMV值-相对湿度-室内温度参数对应关系映射表,得到所述目标室内温度;
检测到当前处于冬季时,查询所述第二预设PMV值-相对湿度-室内温度参数对应关系映射表,得到所述目标室内温度;
其中,所述第一预设PMV值-相对湿度-室内温度参数对应关系映射表和第二预设PMV值-相对湿度-室内温度参数对应关系映射表中均包括多组PMV值-相对湿度-室内温度参数之间的对应关系。
7.根据权利要求3所述的空调器的控制方法,其特征在于,通过热感觉信息获取界面获取用户输入的所述设定热感觉信息和所述当前热感觉信息,其中,所述热感觉信息获取界面包括一一对应于多个热感觉信息的多个热感觉信息采集单元。
8.一种空调器的控制装置,其特征在于,包括:
获取模块,用于获取空调器的设定热感觉信息及设定相对湿度;
第一确定模块,用于根据所述设定热感觉信息确定目标PMV值;
第二确定模块,用于根据所述目标PMV值及所述设定相对湿度确定目标室内温度;
控制模块,用于根据所述设定相对湿度和所述目标室内温度控制所述空调器运行。
9.一种空调器,其特征在于,包括:
如权利要求8所述的空调器的控制装置;或者
处理器、存储器和存储在所述存储器上并可在所述处理器上运行的空调器的控制程序,所述空调器的控制程序被所述处理器执行时实现如权利要求1-7任一项所述的空调器的控制方法。
10.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有空调器的控制程序,所述空调器的控制程序被处理器执行时实现如权利要求1-7任一项所述的空调器的控制方法。
CN202110644462.7A 2021-06-09 2021-06-09 空调器的控制方法及装置、空调器和计算机可读存储介质 Pending CN113310189A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110644462.7A CN113310189A (zh) 2021-06-09 2021-06-09 空调器的控制方法及装置、空调器和计算机可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110644462.7A CN113310189A (zh) 2021-06-09 2021-06-09 空调器的控制方法及装置、空调器和计算机可读存储介质

Publications (1)

Publication Number Publication Date
CN113310189A true CN113310189A (zh) 2021-08-27

Family

ID=77378351

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110644462.7A Pending CN113310189A (zh) 2021-06-09 2021-06-09 空调器的控制方法及装置、空调器和计算机可读存储介质

Country Status (1)

Country Link
CN (1) CN113310189A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023040579A1 (zh) * 2021-09-17 2023-03-23 海尔(深圳)研发有限责任公司 用于调节室内环境的方法及装置、空调器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111147A (ja) * 1987-10-22 1989-04-27 Sharp Corp 空気調和機
KR20070102407A (ko) * 2006-04-14 2007-10-18 가부시끼가이샤 도시바 공기 조절 제어 장치
CN102042653A (zh) * 2009-10-15 2011-05-04 珠海格力电器股份有限公司 空调及空调控制方法
TWI670451B (zh) * 2018-08-31 2019-09-01 國立臺北科技大學 中大型空間中空調裝置之節能控制方法及系統
CN112443954A (zh) * 2020-11-27 2021-03-05 广东美的制冷设备有限公司 空调器的控制方法、空调器及计算机可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111147A (ja) * 1987-10-22 1989-04-27 Sharp Corp 空気調和機
KR20070102407A (ko) * 2006-04-14 2007-10-18 가부시끼가이샤 도시바 공기 조절 제어 장치
CN102042653A (zh) * 2009-10-15 2011-05-04 珠海格力电器股份有限公司 空调及空调控制方法
TWI670451B (zh) * 2018-08-31 2019-09-01 國立臺北科技大學 中大型空間中空調裝置之節能控制方法及系統
CN112443954A (zh) * 2020-11-27 2021-03-05 广东美的制冷设备有限公司 空调器的控制方法、空调器及计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈丽萍编著: "《计算流体力学 有限体积法基础及其应用》", 30 September 2016, 苏州大学出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023040579A1 (zh) * 2021-09-17 2023-03-23 海尔(深圳)研发有限责任公司 用于调节室内环境的方法及装置、空调器

Similar Documents

Publication Publication Date Title
CN107166637B (zh) 空调的温度补偿控制方法、装置和系统
CN113237201A (zh) 空调器的控制方法及装置、空调器和计算机可读存储介质
CN110715415B (zh) 空气调节设备的控制方法、装置和空气调节设备
US10364996B2 (en) Group dynamic environment control
JP2013526696A (ja) 建物占有者の熱的快適性のカスタマイズ制御
CN113108434B (zh) 空调器及其控制方法和计算机可读存储介质
CN113446711A (zh) 空调器的控制方法及装置、空调器和计算机可读存储介质
WO2020134125A1 (zh) 空气调节设备的控制方法、装置和空气调节设备
JP2023166622A (ja) 空気調和制御装置
CN103851744B (zh) 空调的控制方法及装置
CN105717960A (zh) 环境舒适度控制系统及其控制方法
CN102042653A (zh) 空调及空调控制方法
CN109668266B (zh) 空气调节设备的控制方法、装置和空气调节设备
CN106765962A (zh) 空调器的控制方法、装置及空调器
CN110726209B (zh) 空调控制方法、装置、存储介质以及处理器
CN110207336A (zh) 多联机的控制方法、控制装置及可读存储介质
CN112413851A (zh) 一种空调加湿方法、装置、电子设备和计算机可读介质
CN113310189A (zh) 空调器的控制方法及装置、空调器和计算机可读存储介质
WO2020000839A1 (zh) 空气调节设备及其控制方法和装置
CN114251792A (zh) 空调器的控制方法、装置及空调器
CN113446712A (zh) 空调器的控制方法及装置、空调器和计算机可读存储介质
CN109668267A (zh) 空气调节设备的控制方法、装置和空气调节设备
CN113310193A (zh) 空调器的控制方法及装置、空调器和计算机可读存储介质
CN106016588A (zh) 空调及其风速调节方法和装置
CN113310192A (zh) 空调器的控制方法及装置、空调器和计算机可读存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 266100 No. 151, Zhuzhou Road, Laoshan District, Shandong, Qingdao

Applicant after: Hisense Air Conditioning Co.,Ltd.

Address before: 266100 No. 151, Zhuzhou Road, Laoshan District, Shandong, Qingdao

Applicant before: HISENSE (SHANDONG) AIR-CONDITIONING Co.,Ltd.

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210827