CN113289571A - 一种富集锂颗粒材料的制备方法 - Google Patents

一种富集锂颗粒材料的制备方法 Download PDF

Info

Publication number
CN113289571A
CN113289571A CN202110487210.8A CN202110487210A CN113289571A CN 113289571 A CN113289571 A CN 113289571A CN 202110487210 A CN202110487210 A CN 202110487210A CN 113289571 A CN113289571 A CN 113289571A
Authority
CN
China
Prior art keywords
lithium
licl
powder
polyvinyl chloride
particle material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110487210.8A
Other languages
English (en)
Inventor
列勃采夫·亚历山大
季塔连科·瓦列里
库拉科夫·亚历山大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Integrated Technology Development Co.,Ltd.
Original Assignee
Shenzhen Juneng Tianji Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Juneng Tianji Technology Co ltd filed Critical Shenzhen Juneng Tianji Technology Co ltd
Priority to CN202110487210.8A priority Critical patent/CN113289571A/zh
Publication of CN113289571A publication Critical patent/CN113289571A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/04Halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/46Purification of aluminium oxide, aluminium hydroxide or aluminates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Geology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明属于锂提取领域,公开了一种富集锂颗粒材料的制备方法。富集锂颗粒材料通过将LiCl.2Al(OH)3 .nH2O浆料冷冻为薄层,粉碎后进行热空气气流粉碎,之后与有机粘合剂混合造粒,干燥得到。本发明的一些实例,可以更为高效地制备得到粒径更细的LiCl.2Al(OH)3 .nH2O粉末,具有更好的吸附能力。通过添加适量亲水改性聚氯乙烯,更有利于含锂卤水进入颗粒材料内部,因而可以在基本不影响锂吸附能力的情况下增加富集锂颗粒材料尺寸,减少材料的溶出,使得其可以再生使用多次,延长其使用寿命。

Description

一种富集锂颗粒材料的制备方法
技术领域
本发明涉及锂提取领域,具体涉及一种用于从含锂卤水中富集锂的颗粒材料的制备方法。
背景技术
锂是一种应用广泛的金属,随着锂电池的普及,锂的需求量越来越大。
锂矿的主要来源有固体矿(锂辉石、锂云母、透锂长石等)和和液体矿(含锂的盐湖卤水)。固体矿一般通过煅烧等处理后,进一步转化为液体矿进行处理。吸附法是从含锂卤水中富集锂的常用方法。
为了选择性地提取锂, US6280693B1已经提出了一种基于水合复合材料的无机锂离子富集材料,其成分为LiCl/Al(OH)3,能够从盐水中选择性地提取锂。这种锂离子富集材料的生产是通过有水存在,液固比W:T = 0.69的条件下,以三羟铝石,三水铝石或三水铝石形式的商品晶体Al(OH)3(晶体尺寸不少于140μm)与氢氧化锂相互作用,从而制得复合材料LiOH/Al(OH)3。将所得复合材料进一步用20%盐酸溶液处理,以将其转化为LiOH/Al(OH)3的吸附形式。从母液中分离出锂离子富集材料的固相后,使其与水接触,以从结构中除去所需量的LiCl。随着这种锂离子富集材料与含锂的氯化卤水的接触,在其结构上除去的LiCl的量被恢复。 然后,用水将卤水中吸附的锂解吸。在这种情况下,锂的吸附和解吸在80℃的温度下进行。该方法的缺点是锂离子富集材料合成过程的两个阶段和持续时间,需要使用强盐酸溶液和氯化锂的吸附和解吸过程的高操作温度(80℃)。然而,这种锂离子富集材料的最大缺点是在操作过程中其晶体的机械破坏,这使其无法实际应用。
CN106622103A公开了一种制取从含锂卤水中提取锂所使用的颗粒吸附剂的方法,在制备得到LiCl·3Al(OH)3·nH2O活性成分粉末,然后与有机化合物混合,挤压造粒,得到直径为2mm左右颗粒。造粒的有机化合物可以是聚氯乙烯或者氯化聚乙烯等可以溶解于甲基氯的含氯有机聚合物,或者多种含氯有机聚合物的混合物。颗粒的尺寸增大时卤水中锂离子的提取率降低。实验结果显示粉末中LiCl·3Al(OH)3·nH2O的粒径≤0.2mm才具有最佳的吸附量。然而刚制备得到的LiCl·3Al(OH)3·nH2O是凝胶状的,这导致其难以脱水,也难以进一步被经济地破碎为微小颗粒。这导致其成本难以降低。
US20200129955A1公开了一种用于提取锂的颗粒材料的制备方法,通过控制具体的反应条件,同时回收其中的有机溶剂,试图降低锂吸附颗粒的制造成本。
同时为了获得较好的锂吸附效果,一般需要将锂离子吸附材料制备成为较小的颗粒,而粒径过滤小,导致颗粒难以回收处理,部分细小的颗粒会散失进入卤水中,甚至流入外部水体,不利于保护生态。
开发出一种锂吸附能力较好,同时成本较低的富集锂颗粒材料,对于降低锂的提取成本,具有非常重要的意义。
发明内容
本发明的目的在于克服现有技术的至少一个不足,提供一种富集锂颗粒材料的制备方法。
本发明所采取的技术方案是:
一种富集锂颗粒材料的制备方法,包括如下步骤:
S1)制备得到LiCl.2Al(OH)3 .nH2O浆料,将浆料平铺为厚度不超过5mm的薄层,将薄层冷却得到薄冰层;
S2)在冷冻温度下将所述薄冰层破碎,破碎得到的粉末喷入热空气中进行干燥并气流粉碎,收集得到LiCl.2Al(OH)3 .nH2O粉末;
S3)将LiCl.2Al(OH)3 .nH2O粉末与有机粘合剂的有机溶液混合,制成糊状料,将糊状料挤出造粒,得湿颗粒;
S4)脱除并回收所述湿颗粒中有机溶剂,得到富集锂颗粒材料。
在一些实例中,制冷过程释放的热被热泵回收并用于加热空气,进一步减少了能耗。
在一些实例中,造粒为滚圆造粒。通过进行滚圆造粒,有助于提高富集锂颗粒材料的机械强度。同时,使用过程中颗粒与卤水接触的外比表面积更小,溶损更低,有利于提高颗粒材料的使用寿命,进一步降低其使用成本。
在一些实例中,所述冷冻温度为-18℃以下。
在一些实例中,所述热空气的温度不超过120℃。
在一些实例中,所述热空气的温度不低于60℃。
在一些实例中,所述有机粘合剂为疏水聚氯乙烯和亲水改性聚氯乙烯混合物。
在一些实例中,所述疏水聚氯乙烯和亲水改性聚氯乙烯的质量混合比为9:(1~2)。
在一些实例中,溶解有机粘合剂的有机溶液选自二氯甲烷。
在一些实例中,所述LiCl.2Al(OH)3 .nH2O粉末的颗粒不大于0.1 mm。
在一些实例中,有机粘合剂与LiCl.2Al(OH)3 .nH2O粉末的质量比为(5~8):100。
在一些实例中,将LiCl.2Al(OH)3 .nH2O粉末与有机粘合剂的有机溶液混合时,还添加有不超过颗粒总质量1%的纤维。
在一些实例中,纤维可以是天然纤维或人工纤维,优选为木质纤维和PVC纤维。PVC纤维可以更好的与有机粘合剂融合,带来更高的机械强度,是更佳的选择。
本发明的有益效果是:
本发明的一些实例,可以更为高效地制备得到粒径更细的LiCl.2Al(OH)3 .nH2O粉末,具有更好的吸附能力。
本发明的一些实例,避免了对LiCl.2Al(OH)3 .nH2O浆料分段干燥,流程更为简单。
本发明的一些实例,通过添加适量的亲水改性聚氯乙烯,更有利于含锂卤水进入颗粒材料内部,因而可以在基本不影响锂吸附能力的情况下增加富集锂颗粒材料尺寸。颗粒材料尺寸的增加,极大地方便了颗粒材料的回收,避免了颗粒材料流失,大幅减少了颗粒材料对环境污染的可能性。
本发明的一些实例,通过添加适量纤维,进一步提高了颗粒材料的强度,有利于得到更大的颗粒。同时其使用过程中不易散落,进一步减少了颗粒材料流失的可能。更大的颗粒,意味着其外比表面积也越小,有利于减少颗粒材料的溶失,使得其可以再生使用多次,延长其使用寿命。
具体实施方式
下面结合实例,进一步说明本发明的技术方案。
LiCl.2Al(OH)3 .nH2O浆料可以按现有方法制备得到,如CN106622103A、US20200129955A1等公开的方法制备得到。
方便比较起见,下述实施例中,冷冻温度为-18℃。
实施例1:
一种富集锂颗粒材料的制备方法,包括如下步骤:
S1)制备得到LiCl.2Al(OH)3 .nH2O浆料,将浆料平铺为厚度不超过5mm的薄层,将薄层冷却得到薄冰层;
S2)在冷冻温度下将所述薄冰层破碎,破碎得到的粉末喷入60℃热空气中进行干燥并气流粉碎,收集得到LiCl.2Al(OH)3 .nH2O粉末(粒径小于0.1mm);
S3)将LiCl.2Al(OH)3 .nH2O粉末与有机粘合剂的二氯甲烷溶液混合,制成糊状料,将糊状料挤出造粒,得湿颗粒;其LiCl.2Al(OH)3 .nH2O粉末与有机粘合剂的质量比为100:8,有机粘合剂由质量混合比为9:1疏水聚氯乙烯和亲水改性聚氯乙烯组成;
脱除并回收所述湿颗粒中有机溶剂,得到富集锂颗粒材料。
实施例2:
一种富集锂颗粒材料的制备方法,包括如下步骤:
S1)制备得到LiCl.2Al(OH)3 .nH2O浆料,将浆料平铺为厚度不超过5mm的薄层,将薄层冷却得到薄冰层;
S2)在冷冻温度下将所述薄冰层破碎,破碎得到的粉末喷入90℃热空气中进行干燥并气流粉碎,收集得到LiCl.2Al(OH)3 .nH2O粉末(粒径小于0.1mm);
S3)将LiCl.2Al(OH)3 .nH2O粉末与有机粘合剂的二氯甲烷溶液混合,制成糊状料,将糊状料挤出造粒,得湿颗粒;其LiCl.2Al(OH)3 .nH2O粉末与有机粘合剂的质量比为100:6,有机粘合剂由质量混合比为9:1疏水聚氯乙烯和亲水改性聚氯乙烯组成;
S4)脱除并回收所述湿颗粒中有机溶剂,得到富集锂颗粒材料。
实施例3:
一种富集锂颗粒材料的制备方法,包括如下步骤:
S1)制备得到LiCl.2Al(OH)3 .nH2O浆料,将浆料平铺为厚度不超过5mm的薄层,将薄层冷却得到薄冰层;
S2)在冷冻温度下将所述薄冰层破碎,破碎得到的粉末喷入120℃热空气中进行干燥并气流粉碎,收集得到LiCl.2Al(OH)3 .nH2O粉末(粒径小于0.1mm);
S3)将LiCl.2Al(OH)3 .nH2O粉末与有机粘合剂的二氯甲烷溶液混合,制成糊状料,将糊状料挤出造粒,得湿颗粒;其LiCl.2Al(OH)3 .nH2O粉末与有机粘合剂的质量比为100:5,有机粘合剂由质量混合比为9:1疏水聚氯乙烯和亲水改性聚氯乙烯组成;
S4)脱除并回收所述湿颗粒中有机溶剂,得到富集锂颗粒材料。
实施例4:
一种富集锂颗粒材料的制备方法,包括如下步骤:
S1)制备得到LiCl.2Al(OH)3 .nH2O浆料,将浆料平铺为厚度不超过5mm的薄层,将薄层冷却得到薄冰层;
S2)在冷冻温度下将所述薄冰层破碎,破碎得到的粉末喷入100℃热空气中进行干燥并气流粉碎,收集得到LiCl.2Al(OH)3 .nH2O粉末(粒径小于0.1mm);
S3)将LiCl.2Al(OH)3 .nH2O粉末与有机粘合剂的二氯甲烷溶液混合,制成糊状料,将糊状料挤出造粒,得湿颗粒;其LiCl.2Al(OH)3 .nH2O粉末与有机粘合剂的质量比为100:7,有机粘合剂由质量混合比为9:2疏水聚氯乙烯和亲水改性聚氯乙烯组成;
S4)脱除并回收所述湿颗粒中有机溶剂,得到富集锂颗粒材料。
实施例5:
一种富集锂颗粒材料的制备方法,包括如下步骤:
S1)制备得到LiCl.2Al(OH)3 .nH2O浆料,将浆料平铺为厚度不超过5mm的薄层,将薄层冷却得到薄冰层;
S2)在冷冻温度下将所述薄冰层破碎,破碎得到的粉末喷入100℃热空气中进行干燥并气流粉碎,收集得到LiCl.2Al(OH)3 .nH2O粉末(粒径小于0.1mm);
S3)将1wt%的木质纤维丝、LiCl.2Al(OH)3 .nH2O粉末与有机粘合剂的二氯甲烷溶液混合,制成糊状料,将糊状料挤出造粒,得湿颗粒;其LiCl.2Al(OH)3 .nH2O粉末与有机粘合剂的质量比为100:8,有机粘合剂由质量混合比为9:1.5疏水聚氯乙烯和亲水改性聚氯乙烯组成;
S4)脱除并回收所述湿颗粒中有机溶剂,得到富集锂颗粒材料。
实施例6:
一种富集锂颗粒材料的制备方法,包括如下步骤:
S1)制备得到LiCl.2Al(OH)3 .nH2O浆料,将浆料平铺为厚度不超过5mm的薄层,将薄层冷却得到薄冰层;
S2)在冷冻温度下将所述薄冰层破碎,破碎得到的粉末喷入60℃热空气中进行干燥并气流粉碎,收集得到LiCl.2Al(OH)3 .nH2O粉末(粒径小于0.1mm);
S3)将0.5wt%的木质纤维丝、LiCl.2Al(OH)3 .nH2O粉末与有机粘合剂的二氯甲烷溶液混合,制成糊状料,将糊状料挤出造粒,得湿颗粒;其LiCl.2Al(OH)3 .nH2O粉末与有机粘合剂的质量比为100:8,有机粘合剂由质量混合比为9:1疏水聚氯乙烯和亲水改性聚氯乙烯组成;
S4)脱除并回收所述湿颗粒中有机溶剂,得到富集锂颗粒材料。
实施例7:
一种富集锂颗粒材料的制备方法,包括如下步骤:
S1)制备得到LiCl.2Al(OH)3 .nH2O浆料,将浆料平铺为厚度不超过5mm的薄层,将薄层冷却得到薄冰层;
S2)在冷冻温度下将所述薄冰层破碎,破碎得到的粉末喷入80℃热空气中进行干燥并气流粉碎,收集得到LiCl.2Al(OH)3 .nH2O粉末(粒径小于0.1mm);
S3)将0.5wt%的PVC纤维丝、LiCl.2Al(OH)3 .nH2O粉末与有机粘合剂的二氯甲烷溶液混合,制成糊状料,将糊状料挤出造粒,得湿颗粒;其LiCl.2Al(OH)3 .nH2O粉末与有机粘合剂的质量比为100:8,有机粘合剂由质量混合比为9:1疏水聚氯乙烯和亲水改性聚氯乙烯组成;
S4)脱除并回收所述湿颗粒中有机溶剂,得到富集锂颗粒材料。
实施例8:
一种富集锂颗粒材料的制备方法,包括如下步骤:
S1)制备得到LiCl.2Al(OH)3 .nH2O浆料,将浆料平铺为厚度不超过5mm的薄层,将薄层冷却得到薄冰层;
S2)在冷冻温度下将所述薄冰层破碎,破碎得到的粉末喷入110℃热空气中进行干燥并气流粉碎,收集得到LiCl.2Al(OH)3 .nH2O粉末(粒径小于0.1mm);
S3)将LiCl.2Al(OH)3 .nH2O粉末与有机粘合剂的二氯甲烷溶液混合,制成糊状料,将糊状料挤出造粒,得湿颗粒;其LiCl.2Al(OH)3 .nH2O粉末与有机粘合剂的质量比为100:6,有机粘合剂由质量混合比为9:1疏水聚氯乙烯和亲水改性聚氯乙烯组成;
S4)脱除并回收所述湿颗粒中有机溶剂,得到富集锂颗粒材料。
对比例1:
同实施例1,不同之处在于其中的亲水改性聚氯乙烯由等质量的疏水聚氯乙烯替代。
对比例2:
同实施例2,不同之处在于在采用US20200129955A1公开的干燥方法对LiCl.2Al(OH)3 .nH2O浆料进行干燥、粉碎处理。
对比例3:
同实施例7,不同之处在于其中的亲水改性聚氯乙烯由等质量的疏水聚氯乙烯替代。
性能检测比较:
对制备得到的富集锂颗粒材料的性能进行检测,其中锂的吸附能力按CN106622103A公开的方法进行,结果如下。
Figure 200497DEST_PATH_IMAGE001
颗粒机械强度对比:
以实施例1 5mm粒径的颗粒机械强度为100%,测量其他颗粒的机械强度。结果如表2所示:
Figure DEST_PATH_IMAGE002
从检测结果可知,实施例1~8均具有良好的锂吸附能力。
实施例1~4、实施例8、对比例1和对比例2,未添加纤维丝,制备得到的颗粒机械强度相对较弱,表明其难以进一步制备为较大的颗粒;而添加有纤维丝的颗粒,具有良好的机构强度,同时几乎不影响锂的吸附。
以上是对本发明所作的进一步详细说明,不可视为对本发明的具体实施的局限。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的简单推演或替换,都在本发明的保护范围之内。

Claims (10)

1.一种富集锂颗粒材料的制备方法,包括如下步骤:
S1)制备得到LiCl.2Al(OH)3 .nH2O浆料,将浆料平铺为厚度不超过5mm的薄层,将薄层冷却得到薄冰层;
S2)在冷冻温度下将所述薄冰层破碎,破碎得到的粉末喷入热空气中进行干燥并气流粉碎,收集得到LiCl.2Al(OH)3 .nH2O粉末;
S3)将LiCl.2Al(OH)3 .nH2O粉末与有机粘合剂的有机溶液混合,制成糊状料,将糊状料挤出造粒,得湿颗粒;
S4)脱除并回收所述湿颗粒中有机溶剂,得到富集锂颗粒材料。
2.根据权利要求1所述的制备方法,其特征在于:所述冷冻温度为-18℃以下。
3.根据权利要求1所述的制备方法,其特征在于:所述热空气的温度不超过120℃。
4.根据权利要求1或3所述的制备方法,其特征在于:所述热空气的温度不低于60℃。
5.根据权利要求1所述的制备方法,其特征在于:所述有机粘合剂为疏水聚氯乙烯和亲水改性聚氯乙烯混合物。
6.根据权利要求5所述的制备方法,其特征在于:所述疏水聚氯乙烯和亲水改性聚氯乙烯的质量混合比为9:(1~2)。
7.根据权利要求1、5或6所述的制备方法,其特征在于:溶解有机粘合剂的有机溶液选自二氯甲烷。
8.根据权利要求1、5或6所述的制备方法,其特征在于:所述LiCl.2Al(OH)3 .nH2O粉末的颗粒不大于0.1 mm。
9.根据权利要求1、5或6所述的制备方法,其特征在于:有机粘合剂与LiCl.2Al(OH)3 .nH2O粉末的质量比为(5~8):100。
10.根据权利要求1、5或6所述的制备方法,其特征在于:将LiCl.2Al(OH)3 .nH2O粉末与有机粘合剂的有机溶液混合时,还添加有不超过颗粒总质量1%的纤维。
CN202110487210.8A 2021-05-05 2021-05-05 一种富集锂颗粒材料的制备方法 Pending CN113289571A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110487210.8A CN113289571A (zh) 2021-05-05 2021-05-05 一种富集锂颗粒材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110487210.8A CN113289571A (zh) 2021-05-05 2021-05-05 一种富集锂颗粒材料的制备方法

Publications (1)

Publication Number Publication Date
CN113289571A true CN113289571A (zh) 2021-08-24

Family

ID=77321702

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110487210.8A Pending CN113289571A (zh) 2021-05-05 2021-05-05 一种富集锂颗粒材料的制备方法

Country Status (1)

Country Link
CN (1) CN113289571A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114011386A (zh) * 2021-12-04 2022-02-08 深圳市聚能永拓科技开发有限公司 一种锂吸附颗粒的制备方法
CN115155510A (zh) * 2022-08-04 2022-10-11 成都开飞高能化学工业有限公司 一种铝盐提锂功能材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010025093A1 (en) * 2000-02-29 2001-09-27 Kunihiko Ishizaki Water-absorbent resin powder and production process therefor
US20160013472A1 (en) * 2013-03-04 2016-01-14 Mitsubishi Mining & Smelting Co., Ltd. Lithium Metal Composite Oxide Powder
CN109225124A (zh) * 2018-11-09 2019-01-18 华东理工大学 一种颗粒锂吸附剂的制备方法
CN110102273A (zh) * 2018-02-01 2019-08-09 比亚迪股份有限公司 一种锂吸附剂及其制备方法和应用以及一种从含锂溶液中提取锂的方法
CN111905700A (zh) * 2020-08-24 2020-11-10 中蓝长化工程科技有限公司 一种树脂基无机纳米粒子复合提锂颗粒

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010025093A1 (en) * 2000-02-29 2001-09-27 Kunihiko Ishizaki Water-absorbent resin powder and production process therefor
US20160013472A1 (en) * 2013-03-04 2016-01-14 Mitsubishi Mining & Smelting Co., Ltd. Lithium Metal Composite Oxide Powder
CN110102273A (zh) * 2018-02-01 2019-08-09 比亚迪股份有限公司 一种锂吸附剂及其制备方法和应用以及一种从含锂溶液中提取锂的方法
CN109225124A (zh) * 2018-11-09 2019-01-18 华东理工大学 一种颗粒锂吸附剂的制备方法
CN111905700A (zh) * 2020-08-24 2020-11-10 中蓝长化工程科技有限公司 一种树脂基无机纳米粒子复合提锂颗粒

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114011386A (zh) * 2021-12-04 2022-02-08 深圳市聚能永拓科技开发有限公司 一种锂吸附颗粒的制备方法
CN115155510A (zh) * 2022-08-04 2022-10-11 成都开飞高能化学工业有限公司 一种铝盐提锂功能材料的制备方法
CN115155510B (zh) * 2022-08-04 2023-11-10 成都开飞高能化学工业有限公司 一种铝盐提锂功能材料的制备方法

Similar Documents

Publication Publication Date Title
CN112871127B (zh) 一种高孔隙率锂离子筛颗粒的制备方法
EP3712113A1 (en) Method and system for preparing battery-grade, high-purity-grade lithium hydroxide and lithium carbonate from high-impurity lithium source
JP2024522952A (ja) 高吸着容量粒状チタン系リチウムイオンふるい吸着剤の製造方法
CN113289571A (zh) 一种富集锂颗粒材料的制备方法
CN102502720B (zh) 深度碳化法处理碳酸盐型锂精矿生产电池级碳酸锂工艺
CN110983071B (zh) 从低品位的锂矿石矿原料中提取锂盐的方法
CN111215040B (zh) 一种锂提取吸附剂的制备方法
WO2019059814A1 (en) PROCESS FOR PRODUCING GRANULAR SORBENT FOR EXTRACTING LITHIUM FROM LITHIUM-CONTAINING BRINE
CN103958412A (zh) 用于从浓锂卤水制备碳酸锂的方法
CN101125668A (zh) 硫酸锂溶液生产低镁电池级碳酸锂的方法
WO2010105508A1 (zh) 一种钙循环固相转化法从低镁锂比盐湖卤水中提取锂盐的方法
CN109110788B (zh) 一种盐湖卤水中锂镁资源综合利用的方法
CN111960445A (zh) 一种采用硫酸锂粗矿制备电池级碳酸锂并回收副产物的方法
CN110438338B (zh) 从镍钴镁废液中回收镍、钴并联产氧化镁的装置及方法
CN114288983B (zh) 一种钛基锂离子交换剂及其制备方法
CN104841365A (zh) 一种复合除氟剂及制备方法
CN113511663A (zh) 一种油田地下卤水提锂制备碳酸锂工艺
CN112871126A (zh) 一种高吸附容量锂离子筛颗粒的制备方法
CN111620354A (zh) 一种用碳酸锂和石灰乳生产氢氧化锂的工艺
CN113578252B (zh) 一种锂提取吸附剂的制备方法
RU2455063C2 (ru) Способ получения гранулированного сорбента для извлечения лития из литийсодержащих рассолов
CN108840354B (zh) 电池级氯化锂深度除杂方法
CN113429282B (zh) 一种高纯度锂盐的制备方法
CN111533145B (zh) 一种从锂辉石制氢氧化锂副产芒硝母液中回收锂的方法
CN112573539A (zh) 一种基于锂聚合物与锂辉石的元明粉制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20210914

Address after: 518052 l208, China Resources Building, 2666 Keyuan South Road, Haizhu community, Yuehai street, Nanshan District, Shenzhen, Guangdong

Applicant after: Shenzhen Integrated Technology Development Co.,Ltd.

Address before: 518052 l208, China Resources Building, 2666 Keyuan South Road, Haizhu community, Yuehai street, Nanshan District, Shenzhen, Guangdong

Applicant before: Shenzhen Juneng Tianji Technology Co.,Ltd.

TA01 Transfer of patent application right